1 Questions:

2 Power Series:

Find center, radius, and interval of convergence.

1. $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \frac{n!}{x^{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{x x^{n}}{(n+1) n!} \frac{n!}{x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x}{(n+1)}\right| \\
& =|x| \lim _{n \rightarrow \infty} \frac{1}{n+1}=0<1
\end{aligned}
$$

For all x. Therefore the power series converges absoluetly for all values of x. The radius of convergence is $R=\infty$ and the interval of convergence $I=(-\infty, \infty)$.
2. $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n^{2}+1}$ Ratio Test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}}{(n+1)^{2}+1} \frac{n^{2}+1}{(x-2)^{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(x-2)(x-2)^{n}\left(n^{2}+1\right)}{\left[(n+1)^{2}+1\right](x-2)^{n}}\right| \\
& =|x-2|<1
\end{aligned}
$$

$-1<x-2<1 \Rightarrow 1<x<3$. Radius of convergence is $R=1$. For interval, we need to check end points.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

Is absolutely convergent (as we have seen before). $x=3$

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}
$$

is convergent. Therefore interval of convergence is $1 \leq x \leq 3$. Center of the power series is $c=2$.
3. $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n 3^{n}}$
4. $\sum_{n=0}^{\infty} \frac{n(2 x-1)^{2 n}}{\left(n^{2}+1\right) 5^{n}}$

