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1 Questions:

2 Power Series:
Find center, radius, and interval of convergence.
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For all x. Therefore the power series converges absoluetly for all values of x. The radius of convergence
is R =∞ and the interval of convergence I = (−∞,∞).
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−1 < x − 2 < 1 ⇒ 1 < x < 3. Radius of convergence is R = 1. For interval, we need to check end
points.
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Is absolutely convergent (as we have seen before). x = 3

∞∑
n=0

1

n2 + 1

is convergent. Therefore interval of convergence is 1 ≤ x ≤ 3. Center of the power series is c = 2.
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