1 Questions:

10.6 \#19: $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt{n^{2}+1}}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1}}{\sqrt{(n+1)^{2}+1}} \frac{\sqrt{n^{2}+1}}{(-1)^{n} x^{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{x \cdot x^{n} \sqrt{n^{2}+1}}{\left(\sqrt{(n+1)^{2}+1}\right) x^{n}}\right| \\
& =|x| \lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+1}}{\sqrt{(n+1)^{2}+1}} \\
& =|x|<1
\end{aligned}
$$

Therefore the series converges absolutely for $-1<x<1$. Check endpoints: $x=1$

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}+1}}
$$

converegs by the alternating series test: check $\frac{1}{\sqrt{n^{2}+1}}$ decreasing? Yes because the denominator is increasing. Check: $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+1}}=0$. Therefore the above series converges. So we include $x=1$.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n}}{\sqrt{n^{2}+1}}=\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{2}+1}}
$$

Limit compare to $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{2}}}$:

$$
\lim _{n \rightarrow \infty} \frac{1 / \sqrt{n^{2}+1}}{1 / \sqrt{n^{2}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}}}{\sqrt{n^{2}+1}}=1
$$

Thus both series must diverge because $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}}}$ diverges. So we do not include $x=-1$. Hence the interval of convergence is $(-1,1]$.

2 Examples:

1. Find the first three terms of the Taylor series for $2 \sin (x) \cos (x)$. Let $f(x)=2 \sin (x) \cos (x)=\sin (2 x)$.

$$
\begin{aligned}
f(x)=\sin (2 x) & f(0)=0 \\
f^{\prime}(x)=2 \cos (2 x) & f^{\prime}(0)=2 \\
f^{\prime \prime}(x)=-4 \sin (2 x) & f^{\prime \prime}(0)=0 \\
f^{(3)}(x)=-8 \cos (2 x) & f^{(3)}(0)=-8 \\
f^{(4)}(x)=16 \sin (2 x) & f^{(4)}(0)=0 \\
f^{(5)}(x)=32 \cos (2 x) & f^{(5)}(0)=32=2^{5} \\
& f^{(2 n+1)}(0)=(-1)^{n} 2^{2 n+1}
\end{aligned}
$$

Thefore the Mac series is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1}}{(2 n+1)!} x^{2 n+1}
$$

2. Use the Maclaurin series for $\ln (x+1)$ to approximate $\ln (4)$ (Note: $\ln (4)=-\ln (1 / 4)$).
3. Find the Taylor series for $\sin (x)$ about $\pi / 2$. Use this expansion to approximate $\sin (1)$.

3: To find a Taylor series, let $f(x)=\sin (x)$.

$$
\begin{aligned}
& f(x)=\sin (x) f(\pi / 2)=1 \\
& f^{\prime}(x)=\cos (x) f^{\prime}(\pi / 2)=0 \\
& f^{\prime \prime}(x)=-\sin (x) f^{\prime \prime}(\pi / 2)=-1 \\
& f^{(3)}(x)=-\cos (x) f^{(3)}(\pi / 2)=0 \\
& f^{(4)}(x)=\sin (x) f^{(4)}(\pi / 2)=1 \quad f^{(5)}(x)=\cos (x) f^{(5)}(\pi / 2)=0 \\
& f^{(2 n)}(x)=(-1)^{n} \sin (x) f^{(2 n)}(\pi / 2)=(-1)^{n} \quad f^{(2 n+1)}=(-1)^{n} \cos (x) f^{(2 n+1)}(\pi / 2)=0 \\
& \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(x-\pi / 2)^{2 n}=\sin (x)
\end{aligned}
$$

To approximate $\sin (1)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(1-\pi / 2)^{2 n}$

3 Group Problems:

1. Find a Taylor series for $f(x)=e^{x}$ centered at $a=3$.
2. Find a Taylor series for $f(x)=\sin (x)$ centered at $\pi / 2$.
3. Find a Maclaurin series for $f(x)=e^{2 x}$.
4. Use an infinite series to evaluate the integral $\int_{0}^{\pi} \sin \left(x^{2}\right) d x$.
