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Therefore the series converges absolutely for −1 < x < 1. Check endpoints: x = 1
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Thus both series must diverge because
∞∑
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diverges. So we do not include x = −1. Hence the interval

of convergence is (−1, 1].

2 Examples:
1. Find the first three terms of the Taylor series for 2 sin(x) cos(x). Let f(x) = 2 sin(x) cos(x) = sin(2x).

f(x) = sin(2x) f(0) = 0

f ′(x) = 2 cos(2x) f ′(0) = 2

f ′′(x) = −4 sin(2x) f ′′(0) = 0

f (3)(x) = −8 cos(2x) f (3)(0) = −8
f (4)(x) = 16 sin(2x) f (4)(0) = 0

f (5)(x) = 32 cos(2x) f (5)(0) = 32 = 25

f (2n+1)(0) = (−1)n22n+1

Thefore the Mac series is
∞∑
n=0
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2. Use the Maclaurin series for ln(x+ 1) to approximate ln(4) (Note: ln(4) = − ln(1/4)).

3. Find the Taylor series for sin(x) about π/2. Use this expansion to approximate sin(1).
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3: To find a Taylor series, let f(x) = sin(x).

f(x) = sin(x) f(π/2) = 1 f ′(x) = cos(x) f ′(π/2) = 0

f ′′(x) = − sin(x) f ′′(π/2) = −1 f (3)(x) = − cos(x) f (3)(π/2) = 0

f (4)(x) = sin(x) f (4)(π/2) = 1 f (5)(x) = cos(x) f (5)(π/2) = 0

f (2n)(x) = (−1)n sin(x) f (2n)(π/2) = (−1)n f (2n+1) = (−1)n cos(x) f (2n+1)(π/2) = 0

∞∑
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To approximate sin(1) =

∞∑
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3 Group Problems:
1. Find a Taylor series for f(x) = ex centered at a = 3.

2. Find a Taylor series for f(x) = sin(x) centered at π/2.

3. Find a Maclaurin series for f(x) = e2x.

4. Use an infinite series to evaluate the integral
ˆ π

0

sin(x2) dx.
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