1 Questions:

10.7 $\# 33$: Find a Taylor series centered at 2 for $f(x)=x^{4}+3 x-1$.

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}+3 \quad f^{\prime}(2)=35 \\
f^{\prime \prime}(x)=12 x^{2} \quad f^{\prime \prime}(2)=48 \\
f^{(3)}(x)=24 x \quad f^{(3)}(2)=48 \\
f^{(4)}(x)=24 \quad f^{(4)}(2)=24 \\
f^{(n)}(x)=0 \quad f^{(n)}(2)=0 n \geq 5 \\
\sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!}(x-2)^{n}=21+35(x-2)+\frac{48}{2}(x-2)^{2}+\frac{48}{6}(x-2)^{3}+\frac{24}{24}(x-2)^{4} .
\end{gathered}
$$

Practice Exam \#8: $\sum_{n=0}^{\infty} \frac{1}{n^{2}+18 n+7} x^{n}$ has radius of convergence 1. Find a power series for $f^{\prime}(x)$.

$$
f^{\prime}(x)=\frac{d}{d x} \sum_{n=0}^{\infty} \frac{1}{n^{2}+18 n+7} x^{n}=\sum_{n=0}^{\infty} \frac{d}{d x} \frac{1}{n^{2}+18 n+7} x^{n}=\sum_{n=0}^{\infty} \frac{n}{n^{2}+18 n+7} x^{n-1}
$$

has radius of convergence 1 by theorem 2 from 10.6.
Practice Exam \#5: Use comparision test or limit comparison test for the series: $\sum_{n=0}^{\infty} \frac{\sqrt{n}}{n+2}$. Limit comparision with $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\sqrt{n} /(n+2)}{\sqrt{n} / n} & =\lim _{n \rightarrow \infty} \frac{n}{n+2} \\
& =1
\end{aligned}
$$

Therefore both series converge or both diverge. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges by p-series with $p=1 / 2$.
Practice Exam \#6: $\sum_{n=0}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+2}$. Alternating series test: $\frac{\sqrt{n}}{n+2}>0$. If $f(x)=\frac{\sqrt{x}}{x+2}$, then $f^{\prime}(x)=$ $\frac{-x+2}{2 \sqrt{x}(x+2)^{2}}<0$ for $x>2$. So $f(x)$ is decreasing for $x>2$. Also we have

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n+2}=0
$$

2 Group Problems:

1. Eliminate the parameter for the parametric curve defined by $x=t^{-1}$ and $y=t^{-2}$.
2. Sketch the curve $c(t)=\left(t^{2}, t^{3}-3 t\right)$.
3. Find the equation of the tangent line for the parametric curve defined by $x=6 \sin (t)$ and $y=t^{2}+t$ at the point $(0,0)$.
4. Find the length of the curve defined by $x(t)=e^{t}+e^{-t}$ and $y(t)=5-2 t$ on the interval $0 \leq t \leq 3$.
5. Find the length of the curve defined by $x(t)=\frac{t}{1+t}$ and $y(t)=\ln (1+t)$ for $0 \leq t \leq 2$.
