11/06/12
Series Rule:

1. Integral Test
2. Comparison Test
3. Limit comparison Test
4. Ratio Test
5. Root Test
6. Alternating Series Test
7. Test for divergence
8. Test for Absolute Convergence

Question: Does the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converge? If it converges, can we find where?

This is a geometric series with $r=\frac{1}{2}$. Therefore the sries converges: $\frac{1 / 2}{1-1 / 2}$.
Question: section $10.5 \# 18 . \sum_{n=1}^{\infty} \frac{(n!)^{3}}{(3 n)!}$. Determine if the series converges absolutely.

We apply the ratio test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{((n+1)!)^{3}}{(3(n+1))!} \cdot \frac{(3 n)!}{(n!)^{3}}\right| & =\lim _{n \rightarrow \infty} \frac{(n+1)^{3}(n!)^{3}(3 n)!}{(3 n+3)(3 n+2)(3 n+1)(3 n)!} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{3}}{(3 n+3)(3 n+2)(3 n+1)}=\frac{1}{27}<1
\end{aligned}
$$

Note that $\frac{1}{27}<1$. By the ratio test, the original series converges absolutely.
Question: $10.5 \# 42$. Prove that $\sum_{n=1}^{\infty} \frac{2^{n^{2}}}{n!}$ diverges. Hint: Use $2^{n^{2}}=\left(2^{n}\right)^{n}$ and $n!\leq n^{n}$.

