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Abstract. In a factorial domain every nonzero element has only finitely many

prime divisors. We study integral domains having nonzero elements with in-
finitely many prime divisors.

Let D be an integral domain. It is well known that if D is a UFD then every
nonzero element has only finitely many prime divisors (see e.g. [G]). This is also
true if D is a Noetherian domain, or more generally, if D satisfies the ascending chain
condition for the principal ideals (ACCP). Indeed, if some nonzero element d ∈ D
has infinitely many (mutually non-associate) primes pn, then the principal ideals
d/p1 · · · pnD form a strictly ascending chain. Moreover, the element d cannot be
written as a product of irreducible elements, say d = a1a2 · · · am, because then each
pn is an associate of some aj , a contradiction; so D is not even an atomic domain.
We call a domain having nonzero elements with infinitely many prime divisors an
IPD domain. Examples of IPD domains are not hard to find. For instance, the ring
E of entire functions, that is, complex functions which are analytic in the whole
plane, is an IPD domain. Indeed, by [G, page 147, Exercises 16-21], if a, b are
distinct complex numbers, then z−a, z− b are non-associated prime elements of E
and if (an) is an infinite sequence of distinct complex numbers with |an| → ∞, there
exists 0 6= f ∈ E divisible by each z − an. The subring A of Q[X] consisting of all
polynomials with constant term in Z is an IPD domain as well, because every prime
p ∈ Z is prime in A and p divides X (see also Proposition 2). The IPD domains
appear in [MO] under the name of non-GD(1) domains. In [Co], an example of a
non-IPD domain whose integral closure is an IPD domain is given.

In this note, we study some transfer properties for the IPD domains and indicate
some constructions producing IPD domains. First, we describe the IPD domains
of type A+XB[X] (Proposition 2). Here, when A ⊆ B is an extension of domains,
A + XB[X] is the subring of B[X] consisting of all polynomials f whose constant
term is in A. Then, we investigate the possible connections between D being an
IPD domain and its integral closure (or its complete integral closure) being an IPD
domain (see Propositions 7, 9 and 11).

Throughout this paper, all rings are commutative and unitary. For basic results
and terminology our reference is [G].

Let A ⊆ B be a domain extension and A + XB[X] be the subring of B[X]
consisting of all polynomials f whose constant term is in A. Our first aim is to
describe the IPD domains of type A + XB[X].
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Lemma 1. Let A ⊆ B be an extension of domains and 0 6= p ∈ A. Then p is a
prime element of A + XB[X] if and only if either

(a) p is a prime element of A and pB = B, or
(b) p is a prime element of B and pB ∩A = pA.

Proof. Set D = A + XB[X]. If pB = B, then D/pD ∼= A/pA and so p is a prime
element of A if and only if it is a prime element of D. We will therefore assume
that pB 6= B. If (b) holds, we get the induced domain extension A/pA ⊆ B/pB
and D/pD = A/pA + X(B/pB)[X] and so p is prime in D.

Conversely, assume that p is a prime element of D. Let c ∈ pB∩A. Then c = pb
for some b ∈ B. Since cX = p(bX), p |D cX. As pB 6= B, p does not divide X in D.
So, p |D c, that is, b ∈ A. Hence pB ∩ A = pA. Consequently, we get the induced
ring extension A/pA ⊆ B/pB. It is easy to see that D/pD = A/pA+X(B/pB)[X].
The conclusion follows. �

We are now able to characterize the IPD domains of type A + XB[X].

Proposition 2. Let A ⊆ B be an extension of domains. Then A + XB[X] is an
IPD domain if and only if there exists an infinite sequence of mutually non-associate
prime elements (pn) of A such that either

(a) pnB = B for each n, or
(b)

⋂
m pmB 6= 0 and, for each n, pn is a principal prime of B and pnB ∩ A =

pnA.

Proof. Set D = A + XB[X]. Let (fn) be an infinite sequence of (mutually non-
associate) prime elements of D. If infinitely many fn’s are non-constant polyno-
mials, it is easy to see that

⋂
n fnD =

⋂
n f1 · · · fnD = 0. So D is an IPD domain

if and only if there exists an infinite sequence of nonzero elements pn ∈ A which
are prime in D and

⋂
n pnD = 0. Note that

⋂
n pnD =

⋂
n pnA +

∫
n

X(pnB)[X].
Hence when D is an IPD domain, Lemma 1 shows that either (a) or (b) holds.

Conversely, assume that either (a) or (b) holds. If (a) holds, then X ∈
⋂

n pnD.
While if (b) holds and 0 6= b ∈

⋂
n pnB, then bX ∈

⋂
n pnD. In either case, Lemma

1 shows that D is an IPD domain. When condition (b) holds, then B itself is an
IPD domain, but note that A may be not, as the example Z + XQ[X] shows. �

Note that when condition (b) holds, then B itself is an IPD domain, but note
that A may be not, as the example A = Z + Y Q[Y ] shows.

It is easy to see that the proof above works also when replacing A + XB[X] by
A + (X1, ..., Xn)B[X1, ..., Xn].

Corollary 3. A domain D is IPD if and only if D[X] is IPD.

Corollary 4. Let A be a domain, L the algebraic closure of the quotient field of A
and B the integral closure of A in L. Then A + XB[X] is a not an IPD domain.

Proof. For every principal prime p ∈ A, pB 6= B and B has no nonzero prime
element. Proposition 2 applies. �

Corollary 5. Let D be a domain and K a field containing D. Then D + XK[X]
is an IPD domain if and only if D has infinitely many prime elements.

Consequently, every field K can be embedded in the two-dimensional IPD Bézout
domain K(Y ) + XK(Y )[X].

Hereafter, for any domain A, let A′ denote its integral closure.



INTEGRAL DOMAINS HAVING NONZERO ELEMENTS WITH INFINITELY MANY PRIME DIVISORS3

Corollary 6. Let D be a domain, K a field containing D and set A = D+XK[X].
For suitable choices of D and K, there exist examples where:

(a) A′ is an IPD domain and A is not,
(b) A is an IPD domain and A′ is not.

Proof. By [AHZ, Theorem 2.7], A′ = E + XK[X] where E is the integral closure
of D in K. We apply the preceding corollary as follows.

For (a), we take K the quotient field of D. We need a domain D with finitely
many prime elements and D′ having infinitely many prime elements. We can use the
domain in [H, Example 1]. That is, we take D = GS , where G = L[X2

i , X3
i ; i ≥ 1], L

is a field and S = G\
⋃

i(X
2
i , X3

i )G. It was shown in [H] that D is a one-dimensional
Noetherian domain without prime elements and D′ is a PID with infinitely many
primes. In fact D′ = HS where H = L[Xi; i ≥ 1].

For (b), we take K = C the field of complex numbers and D = Z the ring of
integers. It is well-known that the integral closure of Z in C, that is, the ring of all
algebraic integers, has no prime element. �

In contrast with the polynomial extension case (see Corollary 3), power series
rings behave differently. Clearly, if D is an IPD domain, say with the nonzero ele-
ment d having the infinitely many prime divisors pn, then D[[X]] is an IPD domain,
because each pn remains prime in D[[X]]. But there exist non-IPD domains with
IPD power series ring. Indeed, let V be a non-discrete one-dimensional valuation
domain. Clearly, V is non-IDP since V has no prime element. By [KP, Theorem
2.1], if a, b are distinct non-units of V , then X−a, X− b are non-associatted prime
elements of V [[X]]. Now, choose infinitely many distinct nonzero nonunits elements
an ∈ V . By the proof of [KP, Theorem 3.8], there exists a nonzero g ∈ V [[X]] which
is divisible by all X − an. Hence V [[X]] is an IPD domain.

The second example in [Co] exhibits a one-dimensional quasi-local domain whose
integral closure has infinitely many maximal ideals. We modify it to show there
exist one-dimensional quasi-local domains with IPD integral closure.

Proposition 7. Every discrete valuation ring with finite residue field can be em-
bedded in a one-dimensional quasi-local domain whose integral closure is a Bézout
almost Dedekind IPD domain.

We make an inductive construction as in section 42 of [G]. Our basic step is the
following lemma which is a particular case of [G, Theorem 42.5]. Denote by D′

L

the integral closure of domain D in a bigger field L.

Lemma 8. Let D be a PID with finitely many primes, say, p1, ..., pn, q, n ≥ 0,
each with finite residue field. There exists a quadratic separable field extension L
of K (=the quotient field of D) such that p1, ..., pn are primes of E = D′

L and
q = q1q2 for two non-associate primes q1, q2 of E.

We shall say that the application of this lemma outputs (E, p1, ..., pn, q1, q2) from
the input data (D, p1, ..., pn, q).

Proof of Proposition 7. Let D0 be a DVR with finite residue field D/q0D where
q0 is the prime element of D (e.g., D0 = Z(2)). Let Lemma 8 output (D1, p1, q1)
from input (D0, q0). Inductively, we let Lemma 8 output (Dn, p1, ..., pn−1, pn, qn)
from input (Dn−1, p1, ..., pn−1, qn−1). Set D = ∪nDn. Clearly, D is the integral
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closure of D0 in the quotient field L of D. Moreover, D is an almost Dedekind
domain, hence one-dimensional, cf. [G, Corollary 42.2]. Being an inductive limit of
PIDs, D is a Bézout domain. By construction, the nonzero prime ideals of D are
pnD, n ≥ 1, and and (q1, q2, ...)D, the last one being clearly not finitely generated.
In particular, every nonzero prime ideal contains q0. Consequently, D is an IPD
domain. Consider now its subring E = D0 + q0D. As D is an overring of E, D
is the integral closure of E. To complete the proof, we prove that E is quasilocal.
Indeed, let M be a maximal ideal of E and N a maximal ideal of D lying over M .
As q0 ∈ N , we get q0D ⊆ M , so M = q0D, because q0D is a maximal ideal of E.
Indeed, E/q0D ∼= D0/q0D0. �

For a domain D, let D∗ (resp. D) denote the complete integral closure (resp.
the pseudo integral closure) of D. Recall that the pseudo integral closure of D is
the ring D =

⋃
(Iv : Iv), where I ranges over nonzero finitely generated ideals of

D and Iv = D : (D : I) (for a good reference on the concept of pseudo integrality,
see [?]). It is easy to see that D′ ⊆ D ⊆ D∗. The complete integral closure of
an IPD domain can be non-IPD. For instance, it is easy to see that the complete
integral closure of Z+XC[X] is C[X]. For the Archimedean domain case, we have
the following positive result. Recall that a domain D is called an Archimedean
domain if ∩ndnD = 0 for each nonunit d of D.

Proposition 9. Let D be an Archimedean domain. If D is an IPD domain, then
D and D∗ are IPD.

Proof. Let E denote D or D∗. In [DZ, Corollary 2], it was proved that E ⊆ DpD

and pDpD∩E = pE for each prime element p of D. In particular, any prime element
p of D is also a prime element of E and pE∩D = pD. So two non-associate primes
of D are also non-associate in E.

Now, assume that D is an IPD domain. Then there exist infinitely many (mutu-
ally non-associate) primes pn of D dividing the same nonzero element x. As argued
above, the same remains true in E. So, E is IPD. �

Let D be a one-dimensional domain. It is well-known that D is Archimedean.
By [DHLZ, Corollary 2.7], the extension D ⊆ D′ is R2-stable in the sense that
whenever 0 6= a, b ∈ D and aD ∩ bD = abD, we have aD′ ∩ bD′ = abD′. By [DZ,
Proposition 1], every prime element of D remains prime in D′. So, the proof of
Proposition 9 can be used to show the following result.

Corollary 10. Let D be a one-dimensional domain. If D is an IPD domain, then
D′ is IPD.

As our next result shows, if E is an Archimedean IPD domain of dimension ≥ 2,
E′ is not necessarily IPD, even if E′ is a finite E-module.

Proposition 11. Every discrete valuation ring with finite residue field can be em-
bedded in a two-dimensional Archimedean IPD domain E whose integral closure E′

is not IPD and E′ is a finite E-module.

Proof. Let D be the domain constructed in the proof of Proposition 7 and set
a = q0. As shown there, D is an almost Dedekind domain and, with one exception,
all nonzero prime ideals of D are principal. So D is a one-dimensional domain,
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hence an Archimedean domain. Moreover, a belongs to every nonzero prime ideal.
Consequently, the quotient field K of D equals D[1/a].

We adapt a contruction from [DZ, Proposition 3] which in turn uses a con-
struction idea from [DHLRZ, Example 4.1]. Consider the subring E of D[X],
E = D+X(1−aX)D[X]. Note that E has the following pull-back description. Let
q : D[X] → D ×K be the ring homomorphism given by q(f(X)) = (f(0), f(1/a)).
Clearly, A = q(D) is a subring of D × K isomorphic to D. It is easy to see that
E = q−1(A) = {f(X)| f(0) = f(1/a)}. Clearly, D[X] is an overring of E and
U(D) = U(E). It easily follows that E is Archimedean.

Let p be a prime element of D. We claim that pD[X]∩E = pE, hence p is a prime
element of E. Indeed, if f(X) ∈ D[X] and pf(X) ∈ E, then pf(0) = pf(1/a), so
f(0) = f(1/a), thus f(X) ∈ E. Hence, pE ∩D = pD. As D is an IPD domain, so
is E.

We describe E′ (=the integral closure of E). Since D is integrally closed, E′ ⊆
D[X]. For f(x) ∈ D[X], f(X) ∈ E′ if and only if q(f(X)) = (f(0), f(1/a)) is
integral over A if and only if f(1/a) ∈ D. So E′ = {f(X) ∈ D[X]| f(1/a) ∈ D} =
D + (1− aX)D[X]. Note that E′ = E[aX], so E′ is a finite E-module.

To prove that E′ is not an IPD domain, it suffices to see it has no nonzero
constant (polynomial) prime element. But this is done if we show that every prime
element p of D is no longer prime in E′. To this aim, note that aX, 1 − aX
and X(1 − aX) belong to E′. Since p divides a in D, p divides (aX)(1 − aX) =
a(X(1− aX)) in E′. Now g(X) = (a/p)X is not in E′ because g(1/a) = 1/p 6∈ D.
So p does not divide aX in E′. Also, p does not divide 1 − aX in E′ because
p does not divide 1 − aX in D[X]. Consequently, p is not prime in E′. The
domain E is the desired example. Note that E′, hence E, is two-dimensional.
Indeed, E′ and D[X] share the ideal J = (1 − aX)D[X] and J is maximal in
D[X] because D[X]/J ∼= D[1/a] = K. So [Ca, Corollaire 2] applies to give that
dim(E′) = max(dim(D[X]),htD[X]J + dim(E′/J)) = max(2, 1 + 1) = 2, because
clearly E′/J = D, and dim(D[X]) = 2 cf. [G, Proposition 30.14]. �

Call an extension of domains A ⊆ B an IPD-pair if every intermediate ring A ⊆
D ⊆ B is an IPD domain. Let D be the domain constructed in the proof of Propo-
sition 7. We use notation of the proof of Proposition 7. Then D ⊆ D[1/p1 · · · pn]
is an IPD pair. Indeed, since D is a Bézout domain, every intermediate ring has
the form D[1/a] where a is the product of some subset of p1, ..., pn. In contrast,
D ⊆ D[X] is not an IPD-pair, because, as shown in the proof of Proposition 11,
the intermediate ring D + (1− q0X)D[X] is not an IPD domain.

Another large class of examples with a similar flavor can be generated as follows.
Let D be a Prüfer IPD domain. Select an element q ∈ D whose prime divisors form
an infinite set X, and let Y be an infinite subset of X. If we set E :=

⋂
p∈Y DpD

then D ⊆ E is an IPD pair. To verify this, we note that if F is a ring between
D and E then by [G, Theorem 26.1], the elements of Y are distinct primes of F .
Clearly they continue to divide q.
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