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Abstract.
A commutative ring R is said to be fragmented if each nonunit of R is

divisible by all positive integral powers of some corresponding nonunit of R. It
is shown that each fragmented ring which contains a nonunit non-zero-divisor
has (Krull) dimension ∞. We consider the interplay between fragmented rings
and both the atomic and the antimatter rings. After developing some results
concerning idempotents and nilpotents in fragmented rings, along with some
relevant examples, we use the “fragmented” and “locally fragmented” concepts
to obtain new characterizations of zero-dimensional rings, von Neumann regular
rings, finite products of fields, and fields.
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1. Introduction.
All rings considered below are commutative with identity. As in [6], a ring

R is said to be fragmented if for each nonunit r ∈ R, there exists at least
one nonunit s ∈ R such that r ∈

⋂∞
n=1 Rsn. The theory of fragmented rings

was initiated in the context of integral domains in [7], with special attention
to the semi-quasilocal case and issues involving prime spectra and (Krull) di-
mension. The fragmented-theoretic arena was broadened to rings possibly with
zero-divisors, as above, in [6], which also pursued factorization-theoretic con-
nections.

In the present work, we first show (in Theorem 2.1) that any fragmented ring
possessing a nonunit non-zero-divisor must have infinite dimension, generalizing
[7, Corollary 2.8] from the quasilocal integral domain case.

Thus, a fragmented ring either is infinite-dimensional or has the property
that each of its nonunits is a zero-divisor (the latter option holding for any
zero-dimensional ring).

Although zero-dimensional integral domains are fields (and hence do not
sustain interesting ideal theory), zero-dimensional fragmented rings do relate
well to several central concepts in ring theory and hence form the focus for
much of this work.

In particular, Section 4 uses the “fragmented” concept to develop new char-
acterizations of zero-dimensional rings, von Neumann regular rings, finite prod-
ucts of fields, and fields (see Theorem 4.2 and Corollaries 4.3, 4.4 and 4.8).

As a byproduct, we also find contact with connected rings (see Proposition
4.7) and Noetherian rings (Corollary 4.4).

The semi-quasilocal case receives emphasis in Theorem 4.9, which estab-
lishes that a semi-quasilocal ring is von Neuman regular if and only if it is
zero-dimensional and fragmented. Example 4.10 shows, however, that a zero-
dimensional fragmented ring need not be von Neumann regular (i.e., it may
have a nonzero nilpotent element).

Prior to the applications mentioned above, Section 3 is devoted to an exten-
sive study of atoms, idempotents and nilpotents in fragmented rings.

We exhibit interplay between “fragmented” and factorization-theoretic con-
cepts such as “atomic” (in the sense of [1]) and “antimatter” (in the sense of
[5], [6]).

For instance, Theorem 3.5 establishes that a zero-dimensional ring R is frag-
mented if and only if each nonunit of R is divisible by some nonunit idempotent
of R; and Proposition 3.11 establishes that the zero-dimensional fragmented
atomic rings are just the finite products of fields. Also noteworthy in Section
3 are examples of a fragmented ring containing a nonzero nilpotent element (in
Example 3.2); and a fragmented integral domain with infinitely many maximal
ideals (Example 3.8).

For a ring A, we denote the set of units of A by U(A); the set of zero-divisors
of A by Z(A); the Jacobson radical of A by J(A); the nilradical of A by Nil(A);
the prime spectrum of A by Spec(A); the Krull dimension of A by dim(A); the
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set of maximal ideals of A by Max(A); and the set of minimal ideals of A by
Min(A). It will be convenient to decree that the zero ring is zero-dimensional.

Additional notation and background will be introduced as needed. Any
unexplained material is standard, as in [8], [9], [10].

2. The dimensional dichotomy.
It was shown in [7, Corollary 2.8] that any quasilocal fragmented integral

domain either is a field (that is, has dimension 0) or has dimension∞. The main
result of this section generalizes this result by eliminating both the “quasilocal”
and the “integral domain” restrictions, at the cost of adding an assumption
about zero-divisors.

Theorem 2.1.
Let R be a nonzero fragmented ring which contains a nonunit non-zero-

divisor x.
Then some maximal ideal M of R contains a strictly increasing chain {Pn}

of prime ideals of R such that x ∈ Pn for each n. In particular, the height of M
in R is ∞, and so dim(R) = ∞.

Proof. (Sketch)
This result was established in [4, Theorem 2.3] for the case in which R is an

integral domain.
The proof of that result and the proofs of the lemmas leading up to it carry

over to the present situation because of the following observations.
If x1 := x and xn ∈

⋂∞
k=1 Rxk

n+1 with xn ∈ R for each n ≥ 1, then each xn

inherits from x the property of being a nonunit non-zero-divisor. In particular,
any product of powers of the xj is also a non-zero-divisor, thus permitting the
“By cancellation” step near the end of the proof of [4, Lemma 2.2].

2

The next result follows immediately from Theorem 2.1.

Corollary 2.2.
Let R be a fragmented ring. Then at least one of the following conditions

holds:
(i) Each nonunit of R is a zero-divisor of R;
(ii) dim(R) = ∞.

Any zero-dimensional ring satisfies condition (i) in Corollary 2.2 [9, Theorem
91]. We do not know of any fragmented ring which has finite positive (Krull)
dimension and satisfies condition (i).

Apart from any such possible example, other fragmented rings R must satisfy
the dichotomy referred to in the title of the section: either dim(R) = 0 or
dim(R) = ∞.
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3. On idempotents, nilpotents and atoms in fragmented rings.

Recall from [6] that if R is a ring and r ∈ R\U(R), then r is said to fragment
(in R) (or is said to be a fragmented element of R) if there exists s ∈ R \ U(R)
such that r ∈

⋂∞
n=1 Rsn. Of course, a ring R is a fragmented ring if and only if

each of its nonunits is fragmented.
We begin with an elementary result which collects some useful information.

Proposition 3.1.
(a) If e 6= 1 is an idempotent element of a ring R, then e fragments in R.
(b) A fragmented element need not be idempotent.
(c) Each multiple of a fragmented element fragments. In particular, if e 6= 1

is an idempotent of a ring R, then each element of the ideal Re fragments in R.
(d) A divisor of a fragmented element need not fragment.
(e) There is no logical connection between the concepts of “fragmented ele-

ment of R” and “nilpotent element of R”.

Proof.
(a) For each n ≥ 1, e = 1en ∈ Ren.
(b) In R = Z/12Z, r := 3 + 12Z is a nonunit which fragments since r ∈⋂∞

n=1 Rrn. Of course, r is not idempotent because 9 6≡ 3 (mod 12). (In this
example, R does have nontrivial idempotents, namely 4 + 12Z and 9 + 12Z,
which fragment by (a).)

(c) If r, s ∈ R satisfy r ∈
⋂∞

n=1 Rsn and t ∈ R, then tr ∈ Rr ⊆
⋂∞

n=1 Rsn.
(d) In R = Z/12Z, 6 + 12Z fragments (either by direct calculation or by

combining (b) and (c)), although its divisor 2+12Z does not fragment in R. (The
last assertion can be verified here by exhaustive calculation. A quicker, more
conceptual proof is available using the “very stong atom” idea which appears
later in this section.)

(e) In the ring Z/12Z, 3+12Z is a fragmented element which is not nilpotent,
2 + 12Z is a non-fragmented nonunit which is not nilpotent, and
6 + 12Z is a fragmented element which is nilpotent; and
2 + 4Z is a non-fragmented nonunit which is nilpotent in the ring Z/4Z.
2

In view of Proposition 3.1 (e), it seems reasonable to ask whether a frag-
mented ring can contain a nonzero nilpotent element. The answer is in the
negative for rings of the form Z/nZ. Indeed, by [6, Proposition 17], Z/nZ is
fragmented if and only if n is a product of pairwise distinct primes, in which
case Z/nZ is isomorphic to a product of fields and hence contains no nonzero
nilpotents.

Nevertheless, Example 3.2 answers the general question in the affirmative.
A zero-dimensional example to the same effect appears in Example 4.10 below.
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Example 3.2.
There exists a fragmented ring which contains a nonzero nilpotent element.

Proof.
Consider a valuation domain V (constructed, for instance, as in [11, Corol-

lary 3.6]) whose prime spectrum is the countable set
{Pn : n ≥ 0} ∪ {M}, where

0 = P0 ⊂ P1 ⊂ · · · ⊂ Pn ⊂ · · · ⊂ M.
Choose x ∈ P1 \ P0, and set R := V/(x2).
We claim that R has the asserted properties.
First, note that V is fragmented, by [7, Corollary 2.6], since M is unbranched

in V . As (x2) ⊆ M = J(V ), it follows from [6, page 223] that R is also
fragmented. Moreover, x + (x2) ∈ R is nilpotent (since its square is 0) and
nonzero (since x is a nonunit of V ). This establishes the claim and completes
the proof.

(Observe that dim(R) = ∞, and so this example does not shed light on the
question of whether there exists a fragmented ring of finite positive dimension
which satisfies condition (i) in Corollary 2.2.)

2

We begin our focus on the zero-dimensional case with the following straight-
forward result.

Proposition 3.3.
Let R be a zero-dimensional ring. Then:
(a) For each r ∈ R, there exists n ≥ 1 such that rn = ue for some u ∈ U(R)

and some idempotent e ∈ R.
(b) For each r ∈ R \ U(R), there exists n ≥ 1 such that rn fragments in R.
(c) If R is nonzero and not quasilocal, then some nonzero element of R

fragments in R.

Proof.
(a) According to [8, Theorem 3.2], the conclusion characterizes π-regularity

in the class of total quotient rings. The conclusion follows since any zero-
dimensional ring is a π-regular total quotient ring (cf. [8, Theorem 3.1]).

(b) Combine (a) with Proposition 3.1 (a), (c).
(c) The hypothesis allow us to choose M ∈ Max(R) and to conclude that

Nil(R) ⊂ M . Pick r ∈ M\ Nil(R). By (b), rn fragments for some n ≥ 1;
moreover, rn 6= 0 since r is not nilpotent.

2
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We next show that, in some sense, parts (b) and (c) of Proposition 3.3 are
best possible.

Remark 3.4.
(a) One may verify that R := Z/12Z is an example of a zero-dimensional

ring in which r2 fragments for every r ∈ R \U(R), although [6, Proposition 17]
shows that R is not a fragmented ring since 12 is not a square-free integer. A
more trivial example of this phenomenon is provided by the ring Z/4Z.

(b) Proposition 3.3 (c) fails without the hypothesis that R is not quasilocal.
To see this, suppose that a nonzero ring R is a zero-dimensional and quasilocal.
Then R has a unique prime ideal, and so each nonunit of R is nilpotent. It
follows easily that no nonzero element of R is fragmented.

Continuing the theme in Proposition 3.3 (a), we next characterize fragmented
rings in the class of zero-dimensional rings.

Theorem 3.5.
Let R be a zero-dimensional ring.
Then the following conditions are equivalent:
(1) If r ∈ R \ U(R), then r is divisible by some idempotent e 6= 1 of R.
(2) R is a fragmented ring.

Proof.
(1) ⇒ (2): We show that each r ∈ R \ U(R) fragments. By (1), r = se for

some s ∈ R and some idempotent e 6= 1 of R. The conclusion now follows by
combining parts (a) and (c) of Proposition 3.1.

(2) ⇒ (1): Let r ∈ R \ U(R). By (2), r ∈
⋂∞

n=1 Rsn for some s ∈ R \ U(R).
By Proposition 3.3 (a), there exists m ≥ 1 such that sm = ue for some u ∈ U(R)
and some idempotent e ∈ R.

As s is a nonunit of R, so is e; that is, e 6= 1.
Since r = tsm for some t ∈ R, we have that r = (tu)e is divisible in R by e.
2

Our focus now sharpens to the context of von Neumann regular rings. Recall
that a ring R is said to be von Neumann regular if for each a ∈ R, there exists
b in R such that a = a2b; equivalently, if RM is a field for each M ∈ Max(R)
(cf. [2, Exercise 9, page 138]). Some other characterizations of von Neumann
regularity are more obviously germane to the present work. Specifically, a ring
R is von Neumann regular if and only if

each principal ideal of R can be generated by an idempotent;
equivalently, if each r ∈ R can be expressed in the form r = ue for some

u ∈ U(R) and some idempotent e of R.
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Most telling for our purposes is the following characterization: a ring R is
von Neumann regular if and only if

R is zero-dimensional and reduced (cf. [2, Exercise 16 (d), page 143]).

Proposition 3.6.
Any von Neumann regular ring is a fragmented ring.

Proof.
Let R be a von Neumann regular ring. By the above remarks, dim(R) = 0.

Accordingly, by Theorem 3.5, it suffices to show that if r ∈ R \ U(R), then r
is divisible by some idempotent e 6= 1 of R. Now, by von Neumann regularity,
the principal ideal Rr = Rf for some idempotent f of R. Since r is a nonunit
of R, so is f ; and, of course, r is divisible by f in R.

2

The next result provides other useful examples of fragmented rings.

Proposition 3.7.
Let a ring R be ring-isomorphic to ΠRα, a nonempty product of rings Rα.

Then R is a fragmented ring if and only if Rα is a fragmented ring for each α.

Proof.
We first prove the “only if” assertion. Without loss of generality, R =

R1 × R2 and we need only show that R1 is fragmented. Let c ∈ R1 \ U(R1).
Since R is fragmented by assumption, r := (c, 1) ∈

⋂∞
n=1 R(a, b)n for some

(a, b) ∈ R \ U(R). It follows that b ∈ U(R2) and a ∈ R1 \ U(R1). As c ∈⋂∞
n=1 R1a

n, c fragments in R1, as desired.
For the “if” assertion, we may suppose that R = ΠRα, where each Rα is

fragmented. Let r = (rα) ∈ R \U(R). Consider an index α. If rα ∈ U(Rα), put
sα := 1 ∈ Rα. On the other hand, if rα ∈ Rα \U(Rα), choose sα ∈ Rα \U(Rα)
such that rα ∈

⋂∞
n=1 Rαsn

α. Put s := (sα) ∈ R. Of course, r ∈
⋂∞

n=1 Rsn.
Moreover, s ∈ R \U(R) because there is an index α such that sα ∈ Rα \U(Rα)
(since the assumption on r ensures that there is an index α such that rα ∈
Rα \ U(Rα)).

2

Since any field is evidently a fragmented ring, we see (by using an infinite
index set in Proposition 3.7) that a fragmented ring need not be semi-quasilocal.
The corresponding question for integral domains has not been addressed in the
earlier literature. Example 3.8 settles this issue.

Example 3.8.
There exists a fragmented integral domain with infinitely many maximal

ideals.
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Proof.
An integral domain R with the asserted properties can be constructed as

follows.
First, let
A := F2[{xi,j ,

xi,j

xn
i,j+1

: i ≥ 1, j ≥ 1, n ≥ 1}].
Consider the collection consisting of the following prime ideals of A:
P1 = ({x1,j : j ≥ 1}),
P2 = ({x2,j : j ≥ 1}), . . ..
Then S := A \

⋃∞
i=1 Pi is a saturated multiplicatively closed subset of A;

set R := AS .
We claim that the integral domain R is fragmented.
Observe that each xi,j fragments in R since xi,j ∈

⋂∞
n=1 Rxn

i,j+1.
Thus, to prove the claim, it suffices, by Proposition 3.1 (c), to show that

each nonunit of R is a multiple of some xi,j .
Let y ∈ R \ U(R).
Since y = a

s for some a ∈ A \ S and some s ∈ S, it suffices to show that a is
a multiple of some xi,j in R.

As a 6∈ S = A \
⋃∞

i=1 Pi, we have that a lies in some Pi. Without loss of
generality, a ∈ P1.

Then a can be expressed in the form
x1,1f1 + · · ·+ x1,sfs, for some positive integer s and some fi ∈ A. Note that

x1,s divides x1,j in A for any j ≤ s, and so x1,s divides a in A.
Thus, a is a multiple in R of a fragmented element, to complete the proof of

the claim.
It remains to show that R has infinitely many maximal ideals. For each

i ≥ 1, observe that
xi,1 is a nonunit of R, and so must lie in some maximal ideal, say Mi, of R.

Suppose that Mi = Mi′ for some i 6= i′. Then z := xi,1 + xi′,1 ∈ Mi.
However, if we consider z as an element of A, we see that z does not lie in

Pi or in Pi′ .
JIM, WE WANT YOU TO SUBSTANTIATE THE NEXT SENTENCE.
In fact,
z does not lie in any of the ideals Pk of A. Hence, z ∈ S = A \

⋃∞
i=1 Pi, and

hence z ∈ U(R), a contradiction. Thus, the Mi must be pairwise distinct, as
desired.

2

For the final theme of this section, we make contact with some of the
factorization-theoretic concepts from [1], [5] and [6].

Recall that if R is a ring, then a, b ∈ R are said to be very strong associates
(or a is very strongly associated to b) if either (i) a = b = 0 or (ii) a 6= 0,
Ra = Rb, and r ∈ U(R) for all r ∈ R such that a = rb.
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Also, a nonunit a ∈ R is said to be a very strong atom if a = bc with b, c ∈ R
implies a is very strongly associated with either b or c.

It was shown in [1] that the concept of a “very strong atom” in a ring possibly
with zero-divisors is closely related to

the familiar concept of an “atom” (also called an “irreducible element”) in
an integral domain. Indeed, a nonzero nonunit a in a ring R is a very strong
atom of R if and only if a = bc with b, c ∈ R implies either b or c is a unit of R
[1, Theorem 2.5].

Moreover, an integral domain R is called an antimatter domain if it does
not contain any atoms. Similarly, a ring R is called an antimatter ring if R
does not contain any very strong atoms except possibly zero. It was noted in
[5] that any fragmented integral domain is an antimatter integral domain. The
next proposition generalizes

this result to context of arbitrary commutative rings.

Proposition 3.9.
Any fragmented ring is an antimatter ring.

Proof.
Deny. Choose a fragmented ring R which is not an antimatter ring. Then

there exists a nonzero very strong atom a ∈ R. Since a ∈ R \ U(R) and R is
fragmented, there exists s ∈ R \ U(R) such that a ∈

⋂∞
n=1 Rsn. In particular,

a = rs2 for some r ∈ R. But then a = (rs)s, where neither rs nor s is a unit,
contradicting the above-mentioned criterion that a be a very strong atom of R.

2

In addition to the concept of a “very strong atom,” other related concepts
have been employed in the literature to study factorization in commutative
rings. Following [1], a nonunit a in a ring R is said to be an m-atom of R if Ra
is maximal in the set of proper principal ideals of R. Also recall that if R is a
ring, then a, b ∈ R are said to be strong associates (resp., associates)

if a = bu for some u ∈ U(R) (resp., Ra = Rb).
Then a nonunit a ∈ R is said to be a strong atom (resp., atom) if a = bc

with b, c ∈ R implies a is strongly associated (resp., associated) with either b or
c.

The various types of “atoms” discussed above are related in general by the
following non-reversible implications: nonzero very strong atom ⇒ m-atom ⇒
strong atom⇒ atom [1]. It should be noted, however, that these four conditions
are equivalent in the setting of integral domains.

We further recall that a ring R is said to be very strongly atomic (resp.,
m-atomic; resp., strongly atomic; resp., atomic) if every nonzero nonunit of R
is a finite product of very strong atoms (resp., m-atoms; resp., strong atoms;
resp., atoms).

Note that the zero ring vacuously satisfies the very strongly atomic condition.

9



Also recall that for an integral domain, Noetherian implies atomic. This
implication holds more generally

for a ring possibly with zero-divisors (cf. [1, Theorem 3.2]). Nevertheless, a
Noetherian ring need not be very strongly atomic, as can be seen by applying
the criterion in [6, Corollary 13] to Z/12Z.

We also say that a ring R is an antimatter (resp., m-antimatter; resp., highly
antimatter; resp., very highly antimatter) ring if R does not contain any very
strong atoms (resp., m-atoms; resp., strong atoms; resp., atoms) except possibly
zero.

It is easily verfied that very strongly atomic ⇒
m-atomic ⇒
strongly atomic ⇒
atomic; and that
very highly antimatter ⇒
highly antimatter ⇒
m-antimatter ⇒
antimatter.
Although Proposition 3.9 showed that a fragmented ring cannot contain any

nonzero very strong atoms, we show in Remark 3.10 (a) that it is possible for
such a ring to contain a nonzero m-atom.

Remark 3.10.
(a) A fragmented ring R need not be m-antimatter (and therefore, R need

not be highly antimatter or very highly antimatter). For an example, note
that R := Z/6Z is a fragmented ring by Proposition 3.7 (or the criterion in
[6, Proposition 17]), but R is not m-antimatter since 2 + 6Z and 3 + 6Z are
evidently m-atoms of R.

(b) Let R be a zero-dimensional fragmented ring. As announced above,
Example 4.10 shows that R need not be

reduced; that is, R need not be von Neumann regular. Equivalently, it need
not be the case that each principal ideal of R can be generated by an idempotent.

We next observe, however, that at least some important principal ideals of
R are so generated.

Specifically, we claim that if R is a zero-dimensional fragmented ring and
r ∈ R is an m-atom, then there exists an idempotent e of R such that Rr = Re.
For a proof, note that since r ∈ R \ U(R), Theorem 3.5 ensures that

r is divisible by some idempotent f 6= 1 of R. Thus Rr ⊆ Rf ⊂ R, and
hence by the maximality of Rr, it follows that Rr = Rf , as desired.

The next result combines the “zero-dimensional fragmented” and “atomic”
themes to produce a characterization of an important class of von Neumnann
regular rings.

We first collect three useful results from [1].
First, let R = ΠRα be a nonempty product of rings Rα.
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Then
an element (rα) ∈ R is an atom of R if and only if
there exists an index α0 such that rα0

is an atom of Rα0 and rα ∈ U(Rα) for all α 6= α0 [1, Theorem 2.15 (2)].
Secondly, a nonempty product R = ΠRα of rings Rα is atomic if and only if

the index set is finite and Rα is atomic for each α [1, Theorem 3.4 (1)].
Finally, if a ring R is atomic, then R is a finite direct product of indecom-

posable atomic rings [1, Corollary 3.5].

Proposition 3.11.
Let R be a ring. Then the following conditions are equivalent:
(1) R is a zero-dimensional fragmented atomic ring;
(2) R is a product of finitely many fields (with an empty product being

viewed as the zero ring).

Proof.
(2) ⇒ (1): Assume (2). Then R is evidently zero-dimensional; R is frag-

mented by Proposition 3.7; and R is atomic by a result recalled above [1, The-
orem 3.4 (1)].

(1) ⇒ (2): Assume (1). Since R is atomic, a result recalled above [1, Corol-
lary 3.5] implies that R = Πm

i=1Ri is a finite direct product of indecomposable
atomic rings Ri. As R is fragmented by hypothesis, each Ri is fragmented by
Proposition 3.7. Then for each i, Ri inherits zero-dimensionality from R and,
by Theorem 3.5, each nonzero nonunit of Ri is divisible by a nontrivial idem-
potent of Ri. However, since Ri is indecomposable, Ri contains no nontrivial
idempotents. Thus, each Ri must be a field, as desired.

2

Observe that each of the fragmented rings characterized in Proposition 3.11
is zero-dimensional and reduced, hence von Neumann regular. However, not

every von Neumann regular ring satisfies the equivalent conditions in Proposi-
tion 3.11,

since a product of infinitely many fields is not atomic.

4. Fragmented-theoretic characterizations of some classes of zero-
dimensional rings.

We have seen in Proposition 3.11 that the “fragmented” concept can be
used to characterize finite products of fields. Corollary 4.4 will provide another
fragmented-theoretic characterization of such rings.

In fact, this section is primarily devoted to similar characterizations of some
other important classes of zero-dimensional rings. We begin with a result which
is valid in arbitrary dimensions. Recall that distinct prime ideals P and Q of a
ring A are said to be adjacent (in A) if one of P , Q is contained in the other
and no prime ideal of A is contained properly between P and Q.
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Lemma 4.1.
If Q ⊂ P are adjacent prime ideals of a ring R, then RP is not a fragmented

ring.

Proof.
Deny. Then A := RP /QRP is a fragmented ring by [6, page 223], since

QRP ⊆ J(RP ). Moreover, the “adjacent” hypothesis guarantees that dim(A) =
1; and, of course, A is a quasilocal integral domain. However, according to [7,
Corollary 2.8] any quasilocal fragmented integral domain which is not a field
must be infinite-dimensional, and so we have the desired contraction.

2

Theorem 4.2.
Let R be a ring. Then the following conditions are equivalent:
(1) RP is a fragmented ring for each P ∈ Spec(R)\Min(R);
(2) dim(R) = 0.

Proof.
(2) ⇒ (1) vacuously. It suffices to establish the contrapositive of (1) ⇒ (2).

Suppose that dim(R) > 0, with P ⊂ N distinct prime ideals of R. By [9, The-
orem 11], we have P ⊆ Q1 ⊂ Q2 ⊆ N , for some adjacent prime ideals Q1 ⊂ Q2

of R. By Lemma 4.1, RQ2 is not fragmented, although Q2 ∈ Spec(R)\Min(R).
2

Corollary 4.3.
Let R be a ring. Then RP is a fragmented ring for each P ∈ Spec(R) if and

only if R is von Neumann regular.

Proof.
The “if” assertion is immediate since any von Neumann ring is locally a field

(cf. [2, Exercise 9, page 138]). Conversely, suppose that RP is fragmented for
each P ∈ Spec(R). By Corollary 4.2, dim(R) = 0. Hence, it suffices to show
that R is reduced. Therefore, it is enough to prove that A := RP is reduced for
each P ∈ Spec(R). Since A is zero-dimensional and quasilocal, its unique prime
(maximal) ideal is Nil(A), and so each nonunit of A is nilpotent. Now, suppose
that a ∈ A is nilpotent. Since a ∈ A \ U(A) and A is a fragmented ring (by
hypothesis), there exists b ∈ A \ U(A) such that a ∈

⋂∞
n=1 Abn. By the above

remarks, b is nilpotent and so bn = 0 for some n ≥ 1, whence a = 0 and so A is
reduced.

2

Before passing to some fragmented rings possibly having Krull dimension 1,
Corollary 4.4 characterizes the zero-dimensional Noetherian fragmented rings.
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These form a subclass of the rings characterized in Corollary 4.3. Since any
Noetherian ring is atomic, one has an alternate proof of Corollary 4.4 via an ap-
plication of Proposition 3.11. The following proof avoids factorization-theoretic
ideas.

Corollary 4.4.
Let R be a ring. Then the following conditions are equivalent:
(1) R is a zero-dimensional Noetherian fragmented ring;
(2) R is a product of finitely many fields (with an empty product being

viewed as the zero ring).

Proof.
(2) ⇒ (1): Assume (2). Since any field is fragmented, R is fragmented by

Proposition 3.7. Then (1) follows since any finite product of zero-dimensional
(resp., Noetherian) rings is zero-dimensional (resp., Noetherian).

(1)⇒ (2): Assume (1). As R is Noetherian and dim(R) = 0, R is an Artinian
ring. By the fundamental structure theorem for such rings [13, Theorem 3, page
205], R = ΠαRα for some indexed family {Rα} of Artin local rings Rα. For
each α, Rα is fragmented by Proposition 3.7 and zero-dimensional (because
Artinian), and so Rα is von Neumann regular by Corollary 4.3. Therefore, since
Rα is canonically the localization at its maximal ideal, Rα is a field.

2

Corollary 4.5.
Let R be a ring. Then the following conditions are equivalent:
(1) RP is a fragmented ring for each P ∈ Spec(R)\Max(R);
(2) dim(R) ≤ 1 and RP is a field for each P ∈ Min(R)\Max(R).

Proof.
(2) ⇒ (1): Trivial, since any field is fragmented.
(1) ⇒ (2): Assume (1).
If dim(R) > 1, choose distinct prime ideals Q0 ⊂ Q ⊂ N of R.
By [9, Theorem 11], we have Q0 ⊆ Q1 ⊂ Q2 ⊆ Q, for some adjacent prime

ideals Q1 ⊂ Q2 of R.
By Lemma 4.1, RQ2 is not fragmented, although Q2 ∈ Spec(R)\Max(R), a

contradiction. Therefore, dim(R) ≤ 1.
Next, consider P ∈ Min(R)\Max(R). Then RP is zero-dimensional, quasilo-

cal and fragmented, hence von Neumann regular by Corollary 4.3, and hence a
field.

2

Since the localization of an integral domain D at its unique minimal prime
ideal is the quotient field of R, the next result is a special case of Corollary 4.5.
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Corollary 4.6.
Let R be an integral domain. Then the following conditions are equivalent:
(1) RP is a fragmented ring for each P ∈ Spec(R)\Max(R);
(2) dim(R) ≤ 1.

We next merge the “idempotent” theme from Section 3 with the topological
aspect of the “Spec” theme introduced above. Recall that a ring A is called
a connected ring if and only if 0 and 1 are the only idempotent elements of
A; equivalently, if and only if Spec(A) (in the Zariski topology) is a connected
space

[2, Corollary 2, page 104 ].

Proposition 4.7.
Let R be a ring. Then the following conditions are equivalent:
(1) dim(R) = 0 and R is a nonzero connected ring;
(2) R has a unique prime ideal;
(3) Nil(R) = R \ U(R).

Proof.
(1) ⇒ (3): Assume (1). Since R is nonzero, each nilpotent element of R

is a nonunit. It remains to show that each nonunit r ∈ R is nilpotent. As
dim(R) = 0, it follows from Proposition 3.3 (a) that there exist n ≥ 1, u ∈ U(R)
and an idempotent e of R such that rn = ue. Of course, e 6= 1 since r is a
nonunit, and so e = 0 since R is connected. Therefore, rn is a multiple of 0,
and so r is nilpotent.

(3) ⇒ (2): Assume (3). Let M ∈ Max(R) and P ∈ Spec(R). If there exists
r ∈ M \ P , then r ∈ (R \ U(R))\Nil(R), contrary to (3). Therefore, M ⊆ P ,
and (2) follows.

(2)⇒ (1): Assume (2). Evidently, dim(R) = 0. Also, Spec(R) is a connected
topological space (since its underlying set is singleton) and so, by the above
remarks, R is a connected ring.

Finally, R is nonzero since Spec(R) is nonempty.
2

Corollary 4.8.
Let R be a ring. Then the following conditions are equivalent:
(1) R is a nonzero zero-dimensional connected fragmented ring;
(2) R is a field.

Proof.
It is clear that (2) ⇒ (1). Moreover, Proposition 4.7 and Corollary 4.3

combine easily to yield (1) ⇒ (2).
2
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In view of Section 3 and the earlier material in this section, it seems reason-
able to ask for conditions guaranteeing that a

zero-dimensional fragmented ring be von Neumann regular. Of course, Propo-
sition 3.6 ensures that any von Neumann regular ring is fragmented (and it is
surely also zero-dimensional). Thus, one should ask which

zero-dimensional fragmented rings must be reduced. In Theorem 4.9, we
settle this affirmatively in the semi-quasilocal case. First, we indicate a role for
Corollary 4.8 in an analysis of the general case.

According to [12, Theorem 4.4], any ring R can be realized as the ring of
global sections of a suitable sheaf of connected rings defined on a Boolean space
X(R). In fact, X(R) can be taken to be Spec(B(R)) in the Zariski topology,
where B(R) denotes the Boolean ring formed by the set of idempotents of R.
(B(R) inherits its multiplication operation from R, but addition in B(R) is
redefined by e⊕f = e+f−2ef for all idempotents e, f ∈ R.) Recall also that if
x ∈ B(R), then the stalk of the above-mentioned sheaf at x is the connected ring
R/xR. Hence, by standard sheaf theory, R is canonically isomorphic to a subring
of Πx∈X(R)R/xR. Now, suppose that R is a zero-dimensional fragmented ring.

For R to be reduced, it would suffice to show that R/xR is reduced for each
x ∈ X(R).

Evidently, dim(R/xR) = 0 for each x ∈ X(R). Therefore, in view of Corol-
lary 4.8, it would suffice to show that R/xR is fragmented for each x ∈ X(R).
The ring in Example 4.10 shows that R/xR need not be fragmented for all
x ∈ X(R). Thus, despite [7, Lemma 2.3] and [6, page 223], an arbitrary ho-
momorphic image of a fragmented ring need not be fragmented, even in the
zero-dimensional case.

We next give a companion for Corollary 4.3.

Theorem 4.9.
Let R be a semi-quasilocal ring. Then the following conditions are equivalent:
(1) dim(R) = 0 and R is a fragmented ring;
(2) R is von Neumann regular.

Proof.
(2) ⇒ (1) (even if R is not semi-quasilocal) by Proposition 3.6. Conversely,

assume (1).
Without loss of generality, R 6= 0. Let M1, . . . ,Mn be all the (pairwise dis-

tinct) maximal ideals of R. We proceed by strong induction on n. The assertion
for the case n = 1 is an easy consequence of Corollary 4.3. Assume n ≥ 2. By
the Prime Avoidance Lemma [9, Theorem 81], there exists r ∈ M1 \

⋃n
j=2 Mj .

Observe that the reduced ring associated to R, namely A := R/Nil(R), is zero-
dimensional and reduced, hence von Neumann regular. Therefore, the principal
ideal of A generated by r+Nil(R) can also be generated by some idempotent
f = e+Nil(R), for some e ∈ R. Since Nil(R) is a nil ideal, it follows from
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classical idempotent-lifting (cf. [10, Proposition 1, page 72]) that we may as-
sume that e is idempotent. In other words, A(r+Nil(R)) = A(e+Nil(R)), with
e = e2 ∈ R. In particular, r ∈ Re+ Nil(R) and e ∈ Rr+ Nil(R). It follows
that e ∈ M1 \

⋃n
j=2 Mj . Hence, e 6= 0, 1. Therefore, Re and R(1 − e) are

each nonzero rings with identity and R is the internal direct product of them:
R = Re×R(1− e). Since R is fragmented, it follows from Proposition 3.7 that
Re and R(1 − e) are each fragmented; moreover, each of these rings inherits
zero-dimensionality from R. As Spec(Re) and Spec(R(1−e) are each nonempty
and Spec(R) ∼= Spec(Re)∪ Spec(R(1−e), Re and R(1−e) each have fewer than
n prime ideals. By the strong induction hypothesis, Re and R(1 − e) are each
von Neumann regular, and hence so it their product, R.

2

Although for zero-dimensional rings, reduced implies fragmented, our next
example shows that the

converse is false.
Any such example is necessarily non-Noetherian by Corollary 4.4 (in fact,

non-atomic by Proposition 3.11)
and must possess an infinite number of maximal ideals (by Theorem 4.9).

Example 4.10.
There exists a zero-dimensional fragmented ring which contains a nonzero

nilpotent element (and which is therefore not a von Neumann regular ring).

Proof.
A ring R with the asserted properties will be constructed as a direct limit (in

fact, a directed union) of suitable rings Rn, as n ranges over the positive integers.
For simplicity, we begin with R1 as the ring of dual numbers over the field F2

with two elements, namely R1 = F2[X]/(X2) = F2[x] = {0, 1, x, 1 + x}, where
x is the coset represented by X. Since dim(R1) = 0, Theorem 3.5 shows that
the obstacle to R1 being fragmented (and the reason that R1 is not fragmented)
is that x is not divisible in R1 by a nonunit idempotent. Of course, R1 can
also be seen to be non-fragmented by Theorem 4.9 since R1 contains a nonzero
nilpotent, x.

The next step in the construction is to produce a zero-dimensional extension
ring R2 of R1 in which each nonunit of R1 (namely, x) has a nonunit idempotent
factor in R2. Let Y1 be an indeterminate over R1, and set R2 := R1[Y1]/(Y 2

1 −
Y1, xY1 − x) = R1[y1], where y1 is the coset represented by Y1.

Note that R2 is finite since it is an integral algebra-finite (hence module-
finite) algebra over the finite ring R1. Hence, dim(R2) = 0. We claim that R1 is
a subring of R2, more precisely, that the canonical R1-algebra homomorphism
R1 → R2 is an injection. To prove this claim, one needs to observe that R1 ∩
(Y 2

1 − Y1, xY1 − x) = 0. This, in turn, follows by considering the R1-algebra
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homomorphism R1[Y1] → R1 determined by Y1 7→ 1, and so the claim has been
established. Now, x is divisible in R2 by the idempotent y1.

Moreover, it can be seen that y1 is a nonunit of R2 by considering the R1-
algebra homomorphism R1[Y1] → R1 sending Y1 to 0,

and using the fact that x is a nonunit of R1.
We proceed with the inductive construction. Suppose that we have a chain

R1 ⊆ R2 ⊆ · · · ⊆ Rn of integral extensions of finite rings, for some n ≥ 2,
such that each nonunit of Ri is divisible by some nonunit idempotent of Ri+1

whenever 1 ≤ i ≤ n− 1.
Let {α1, . . . , αk} be the set of nonzero nonunits of Rn.
Now, Rn+1 will be obtained by an inductive construction (within this induc-

tion step) resulting in a chain of rings

Rn = An,0 ⊆ An,1 ⊆ · · · ⊆ An,k = Rn+1.
We obtain An,1 from An,0 = Rn just as R2 was obtained from R1, with

α1 playing the earlier role of x. More precisely, let An,1 = An,0[Z1]/(Z2
1 −

Z1, α1Z1 − α1). Exactly as above, we verify that An,1 is a finite ring which
contains and is integral over An,0; and moreover that α1 is divisible in An,1 by
a nonunit idempotent (namely, the coset represented by Z1).

If k ≥ 2, let An,2 = An,1[Z2]/(Z2
2 − Z2, α2Z2 − α2).

Exactly as above, we verify that An,2 is a finite ring which contains and
is integral over An,1; and moreover that α2 is divisible in An,2 by a nonunit
idempotent (namely, the coset represented by Z2). Most importantly, α1 is
also divisible in An,2 by a nonunit idempotent because integrality ensures that
nonunits of An,1 remain nonunits of An,2 (cf. [9, Theorem 44]). The above
reasoning can be repeated essentially verbatim to carry out the induction step,
thus producing An,3, . . . , An,k = Rn+1.

The above inductive construction produces a chain R1 ⊆ R2 ⊆ · · · ⊆ Rn ⊆
· · · of finite (hence, zero-dimensional) rings such that for each n, Rn+1 is integral
over Rn and each nonzero nonunit of Rn is divisible in Rn+1 by a nonunit
idempotent. It remains only to show that R :=dir limRn =

⋃∞
n=1 Rn has the

desired properties. First, note that dim(R) = 0, since a standard result on
direct limits (3, Exercice 11, page VIII.82] ensures that dim(R) ≤ sup dim(Rn).

Next, to show that R is fragmented, we employ the criterion from Theorem
3.5 as follows. If y ∈ R \ U(R), choose n such that y ∈ Rn \ U(Rn), use the
above construction to find a nonunit idempotent e of Rn+1 which divides y in
Rn+1 (and hence divides y in R), and observe that e remains a nonunit in R
since R is integral over Rn+1.

Finally, x is the desired nonzero nilpotent element of R.
2
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