

Carbon Smart

Dr. Anna Cates, State Soil Health Specialist catesa@umn.edu @MNSoil Jodi DeJong-Hughes, Regional Extension Educator <u>dejon003@umn.edu</u> @Soilorax Mark Lefebvre Stearns Co SWCD Mark.Lefebvre@mn.nacdnet.net

Why is Carbon Important?

- Carbon is the duct tape for all life on Earth!
- Carbon as CO₂ is a greenhouse gas;
 increases climate changes

Where is Carbon Stored Globally?

(GT = *Billion* Metric Ton)

Redrawn from Hillel and Rosenzweig, 2010

Organic Matter is ~58% Carbon

- May hear soil organic carbon used as soil organic matter.
- 1% OM has 11,600 pounds of C in 6" of topsoil per acre.

You can see when carbon is stored in the soil

Annual Mt

http://energyatlas.iea.org/

25%

EPA - Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019.

Agricultural Emissions By Source, 2019*

Million Metric Tons CO2 Equivalent

Fertilizer and tillage

MN's Potential

- Methane (CH₄) and nitrous oxide (N₂O)have greater climate impact than soil C
- Emissions reductions over 10-20 years peak at ½ annual MN Ag emissions

Carbon Sequestration if implemented on ½ of MN cropping land (10 million acres)

Companies Are Reducing Their Carbon Footprint

- Inset- a company reduces its emissions through a carbon offset project within its own value chain.
- Offset –a company funds projects in other locations that remove greenhouse gases from the atmosphere or from being released.

Carbon Cycling -Plants and Soil

Photosynthesis

- Plant takes in CO₂ from atmosphere
- With sunlight and water plant makes sugars $(C_6H_{12}O_6)$
- Carbon is stored in plant tissue and leaked into soil via roots as food for microbes

Carbon Cycling

- Plants leak up to 30% of its carbon through the roots
- Carbon is a food source for microbes
- Microbes use C and respire it off at CO₂
- <1% make it to a stable form

Figure from Soil Organic Matter Does Matter, NDSU and UMN

Soil Organic Matter in the US

Carbon Concept

Carbon Storage is Like a Bank Account

Carbon Markets

one size will not fit all

Average Annual Temperature (1981-2010)

http://glisa.umich.edu/

Figure courtesy of Midwestern Regional Climate Center

Total Annual Precipitation (1981-2010)

http://glisa.umich.edu/

Figure courtesy of Midwestern Regional Climate Center

Harvested Corn Yield

Important for pounds of biomass (C)

Carbon Credit by Practice and Location (as estimated by Indigo Ag, 2020)

Minnesota County	Conventional to Vertical Till	Conventional to No Till	Add Non- Legume Cover	Add Legume Cover
Polk	0.15 - 0.24	0.43 - 0.70	0.12 - 0.19	0.17 - 0.28
Swift	0.20	0.60 - 0.64	0.16 - 0.17	0.20 - 0.23
Blue Earth	0.22 - 0.25	0.69 - 0.77	0.19 - 0.20	0.21 - 0.23

Range represents non-irrigated vs irrigated

Carbon Credit by Practice and Location (as estimated by Indigo Ag, 2020)

Minnesota County	Conventional to Vertical Till	Add Non- Legume Cover	Carbon Credit by Ton	Price received before fees
Polk	0.15	0.12	\$15	\$4.05
Swift	0.20	0.16	\$15	\$5.40
Blue Earth	0.22	0.19	\$15	\$6.15

Logistical Considerations

• Who

- Collects, verifies, and owns management data, soil samples, etc
- Landlord or renter responsibilities
- What
 - Practices and data specifications and fees
- When
 - Contract length, payment schedule, and exit clause
- Where
 - Start with low productivity lands (more likely to change)
- Why
 - Not enough to pay for practices Just the gravy

Secondary Considerations

• Plan B

- What happens if you are not able to implement the new practice?
- What happens if soil carbon doesn't increase over the contract time?
- Conflict of interest
 - Does the company sell other services or products?
 - Are any of these services/products required to be purchased in order to participate?

Public Perception

Think about C Management

One size does not fit all

- Climatic differences
- Biomass potential
- Starting point
- Equipment needs
- ROI

• Learning curve

What's the science on C sequestration?

Soil carbon balance =

Inputs: photosynthesis

Outputs: microbial respiration

*can calculate daily or annually

Soil C is a pause in the cycle

Increase biomass + residue to increase C

Increase manure + residue to increase C

...this will flatten out eventually

Cover crops provide some C, tradeoffs

Total productivity

Maize NPP Cover NPP

Daily C balance

Gamble et al. 2021

Cover crops show other benefits more reliably

Cover Crop Biomass

adapted from Cates et al. 2019

agevidence.org

Best Measurement Practices

Measuring C accrual – Time

- Each scenario = 5 Mg C ha⁻¹ difference
- Paired comparison is misleading
- Baseline measurement critical for interpretation

slide by G. Sanford, adapted from Sanderman and Baldock, 2010, Env. Res. Letters

Measuring C accrual – Soil Depth

- Most changes happen in the top 15 to 30 cm of soil
- Changes at depth can significantly affect interpretation

slide by G. Sanford, bars = 90% confidence limits adapted from Sanford, 2014, Soil Carbon

Measuring C accrual – Soil Mass

SOC (1 g)Mineral soil (1 g)

- fixed depth sampling is standard practice
- changes in bulk density can mask or exaggerate sequestration
- imperative to compare equivalent soil mass

Depth: 0 – 10 cm **Mass:** 100 g **SOC:** 2.0 g/cm2 **Depth:** 0 – 10 cm **Mass:** 120 g **SOC:** 2.4 g/cm2

slide by G. Sanford, adapted from von Haden et al. 2020, Global Change Biol.

Fig. 1. Twenty-year differences in soil organic carbon (1989 to 2009) across entire soil depth (~3 ft.) at the Wisconsin Integrated Cropping Systems Trial. Crops on x-axis from L to R: (1) high-input continuous corn, (2) high-input corn-soybean rotation, (3) organic corn-soybean rotation with wheat cover crop, (4) high-input corn-alfalfa rotation, (5) organic corn-alfalfa rotation with oat cover crop, and (6) cool-season pasture with managed rotational grazing (from Sanford et al. 2012 Agriculture, Ecosystems & Environment).

Factors Beyond Our Control

Effects of climate and soil on C increase

Add cover crops: Faster SOC increase in fine soil

Soil texture: coarse \rightarrow fine

Conversion to grass: greater SOC increase with low start, low precip

Models take these factors into account

Carpetool scenario: 50% adoption of cover crops, mostly non-legume

How to Build Soil Health

Soil health is more than soil carbon

- Healthy soil captures and supplies water to plants
- Resilience protects yield

Building soil health

Reduce or use no tillage

- >40% residue cover
- Keep the soil covered
 - diverse crop rotation
 - cover crops

Building soil health

- Add organic inputs
 - compost
 - livestock manure
 - green manure
- Add livestock

Building soil health: patience

"....Invest in the millennium. Plant sequoias. Say that your main crop is the forest that you did not plant, that you will not live to harvest.

Say that the leaves are harvested when they have rotted into the mold. Call that profit. Prophesy such returns. Put your faith in the two inches of humus that will build under the trees every thousand years...."

Hargrove and Luxmoore

"Manifesto: the Mad Farmer's Liberation Front", Wendell Berry

Carbon Programs: The Wild West or a Promising Opportunity?

2022 Advanced Crop Advisors Workshop February 8, 2022

Mark Lefebvre Conservation Planner Manager Stearns County Soil and Water Conservation District

MN ESMC Pilot

Ecosystem Services Market Consortium

Why ESMC?

- Multiple Credits Created
- Non-profit
- Voluntary & Regulatory / Insets & Offset
- Open Protocols
- Technology + Soil Testing
- Row Crop & Grassland
- Test then launch
- Ag Industry Lead
- Scientific Rigor

Multiple Credits: Generation and Quantification

One protocol generates stacked credits and assets

 Increased soil carbon and Reduced GHG emissions

Improved water quality

Producer impacts monetized

• Piloting: Biodiversity

jarmers & ranchers jor their

- **Greenhouse gas**: SOC (removals), and GHG (CH₄, N₂O and CO₂) (reductions)
- Water quality: total phosphorus and nitrogen, and sediment
- Water quantity: irrigation efficiency based on monitoring

MN - ESMC Pilot

- No minimum or maximum acreage limits and no requirement to enroll all their acreage at any time
- Producers can phase in more acres and/or practices over time
- Producers are not required to relinquish data ownership

Contracts

- During 2022 pilot years contracts are annual
- Producers will have an option to roll into a 5-year contract at market launch at the end of 2022

The Minnesota Pilot Project is focused on acres that have corn and soybean cropping systems with a heavy dairy or livestock component in Central and South Minnesota to help farmers understand how their improved soil health practices translate into economic benefits.

50,000 Acre Goal

Why Here?

- Miss. Headwaters
- Existing Cost Share
- High Livestock
 Density
- Downstream Water Quality buyer

Crops

- Corn/Silage Soy
- Dairy (#28 Co. in US)
- Poultry

50,000 Acre Goal

Project area expanded in 2021

- 2020 4 farms and 116 ac.
- 2021 6 farms and 1000 ac.
- 2022 4 farms and 1000 ac.
 In Stearns County to date

Producer Eligibility & Requirements

Screening process is done via Producer Portal or/and Enrollment Specialist

- Interested in adopting soil health and conservation practice change(s)
- Interested in implementation of improvements that exceed minimum standards set by law
- Managing land that has not been deforested in the past 10 years
- Fields located within an approved ESMC Project region and production system
- Can provide proof of land ownership or lease agreement
- ESMC fields that are not enrolled in another carbon market

Modeling Overview

- Soil Sampling is conducted in year 1 (Spring 2022) to determine the baseline.
- Use field management data and soil sampling results to model:
 - Soil Organic Carbon (SOC) removals
 - GHG Emission Reductions
- Carbon reductions and removals are modeled using DNDC model (DeNitrification-DeComposition) which simulates carbon and nitrogen biogeochemistry in agricultural ecosystems
- Water quality and quantity are modeled using APEX (Agricultural Policy / Environmental eXtender)
 - Water quality: total phosphorus and nitrogen, and sediment
 - Water quantity: irrigation efficiency based on monitoring

Year 1

Baseline Soil Test Practice Implementation

Year 2-4

Annual Credit Generation via Remote sensing and Modeling Year 5 Soil test "True-Up"

Practice Change for 2022

- Timing
 - Needs to occur after harvest of 2021 to harvest of 2022
- What is considered a practice change?
 - The practice must be additional = new to the field that is enrolled
 - Examples: Cover crops, tillage reduction, conservation crop rotation, edge of field practices
- What doesn't qualify?
 - Historical practices that have been part of the field operation

Conservation Practice	Applicable Attributes ¹	
Residue and tillage management, reduced till/no till	GHG, Water Quality	
Cover crop	GHG, Water Quality	
Nutrient management	GHG, Water Quality	
Prescribed grazing	GHG, Water Quality	
Field buffer, filter strip, field border	Water Quality	
Contour buffer strip, vegetative barrier within a field	GHG, Water Quality	
Constructed ponds and wetlands	Water Quality	
Grassed waterway	Water Quality	
Conservation crop rotation	GHG, Water Quality	
Prescribed burning	GHG	
Irrigation water management	GHG, Water Quality,	
	Water Quantity	
Drainage water management practices	Water Quality	

1. Data requirements vary between Scope 1 and Scope 3 attributes

Scope Definitions

Scope 1

- Carbon Offset Credits
- GHG directly emitted by a company
- 'Compliance Grade' Water Quality Credits
- Example: Southern MN Beet Sugar Coop Cover Crop Program

Scope 3

- Supply Chain Reporting Assets
- GHG emitted indirectly via supply chain
- Carbon footprint reduction claim
- Example: Target stores to be Net Zero GHG by 2040

Verification

Scope 1

Third-party verification through Gold
 Standard/SustainCert, some on-site visits

Scope 3

- Second-party from a trained, approved Verifier
- Advisors, SWCDs, etc. (no conflict of interest)
- Most will be done remotely
- Documentation requirements under development

Cropland Timeline

March 1, 2022: Producers are enrolled into the pilot project via ESMC Producer Portal **December 31, 2022:** Field level management data is completed via ESMC Producer Portal

Data Collection Option

ESMC Market Function Overview:

How Growers are Paid Annually for Multiple Ecosystem Services Impacts & Outcomes

Advantages

- Increase income
- Stack payments with financial assistance or cost share
- Encourages conservation practice adoption
- We all benefit
- Any sized farm is eligible

Barriers

- Additionality requirement
- Data entry
- Long term contract
- Does payment cover the cost of new practice adoption?
- Shortage of technical expertise/Enrollment Specialist

Mark Lefebvre mark.lefebvre@mn.nacdnet.net 320-345-6488 www.acresforwater.com/esmc www.esmcportal.org

Dr. Anna Cates catesa@umn.edu www.MOSH.umn.edu @MNSoil

Jodi DeJong-Hughes dejon003@umn.edu z.umn.edu/TillageGuide z.umn.edu/SOMpub @Soilorax

Questions?

