Efficacy of Fungicides at Different Application Timings to Manage Fusarium Head Blight in Hard Red Spring Wheat

Venkat Chapara, Amanda Arens and Andrew Friskop

Objective:

To evaluate the efficacy of fungicides at different application timings to manage Fusarium head blight in Hard Red Spring Wheat (HRSW).

Methods:

Location: NDSU Langdon Research Extension Center

Experimental design: Randomized complete block, replicated four times.

Previous crop: Canola

Cultivars of HRSW tested: WB Mayville

Planting: 1.5 million pure live seeds/acre planted on May 20, 2020. A border plot was planted between treated plots to minimize interference from spray drift.

Plot size: Seven rows at six inch spacing, 5 ft. x 20 ft., mowed back to 5 ft. x 16 ft.

Herbicides applied: Axial XL (16.4 oz/A) + Huskie (13 oz/A) applied on June 17, 2020.

Inoculation: Plots were inoculated by spreading corn spawn inoculum at approximately boot stage (Feekes 9-10) at the rate of 300 g/plot.

Disease development: Supplemental moisture was provided by running overhead irrigation from booting to soft dough stage at the rate of one hour per day to create a conducive environment for FHB development.

Fungicide treatments: Fungicides were applied with a CO₂-pressurized backpack sprayer with a three nozzle boom (XR-8002) and the water volume used was 20 GPA. Fungicide (Miravis Ace) application was made at full head emergence on July 2nd. Miravis Ace, Prosaro and Caramba were applied at 10% flowering (anthesis) on July 6th and repeated 5 days after the first spray (July 11th). Refer to Table 1 for the treatments, rates and application timings.

Disease assessment: Data on FHB incidence was obtained by counting the number of heads showing FHB symptoms out of 50 heads at hard dough stage. FHB head severity was rated using 0-100% scale on arbitrary 50 heads, excluding two outer rows. FHB index (Index) was calculated using formula: Index = (SEV*INC)/100.

Harvest: Plots were harvested on September 2nd with a small plot combine and the yield was determined at 13.5% moisture.

Data analysis: Statistical analysis was done using Agrobase Generation II software. Fisher's least significant difference (LSD) was used to compare means at p ($\alpha = 0.05$). Means were presented in the table for simplicity of understanding.

Table 1: Efficacy of fungicides at various application timings to manage Fusarium Head Blight on Hard Red

 Spring Wheat.

		Fusarium Head Blight			Yield	Test Weight
Treatments and their application timings	Rate (Fl Oz/A)	Incidence (%)	Severity (%)	Index	bu/A	lbs/bu
Non-Treated Check	Check	73	20	15	53	55
Prosaro at 10% flowering	6.5	23	8	2.0	57	57
Caramba at 10% flowering	13.5	23	7	1.9	50	54
Experimental 1 at 10% flowering	7.3	10	3	0.3	56	56
Miravis Ace at complete head emergence	13.7	24	7	2.3	62	58
MiravisAce at 10% flowering	13.7	16	4	0.7	72	60
MiravisAce 4-5 days after 10% flowering	13.7	12	4	0.5	66	58
MiravisAce at 10% flowering + Prosaro 4-5 days after 10% flowering	13.7+6.5	5	2	0.1	74	59
MiravisAce at 10% flowering + Tebuconazole 4-5 days after 10% flowering	13.7+4	12	4	0.5	70	58
MiravisAce at 10% flowering + Caramba 4-5 days after 10% flowering	13.7+13.5	6	3	0.2	66	58
Experimental 2 at 10% flowering	6.5	15	5	0.7	66	57
	Mean	20	6	2.2	63	2
	CV %	47	41	83	12	2
	LSD	13	4	2.7	11	2
	P- Value (0.05)	0.00001*	0.00001*	0.00001*	0.001*	0.00001*

* Indicates treatments are statistically significant.

Note: All treatments were applied with NIS @ 0.125 v/v.

Results: All the fungicide treatments at different application timings were statistically significant from that of the non-treated check among the variables tested except yield. Application of Miravis Ace at 10% flowering plus Prosaro 4-5 days after 10% flowering was the best treatment (Table 1).

Funded by: US Wheat and Barley Scab Initiative Project.