Ruminal Ammonia Concentrations

Principle:

Ammonia reacts with alkaline hypochlorite and phenol in the presence of a catalyst, sodium nitroprusside, to form indophenol. The concentration of ammonia is directly proportional to the absorbance of indophenol, which is measured spectrophotometrically at 570 nm.

Materials:

Centrifuge
25 ml centrifuge tubes with caps
16 x 125 mm borosilicate glass tubes
Vortex mixer
Pipettes, 0-1,000 ul, 1-5 ml capacity
Spectrophotometer

Reagents:

18 MOhm water

Phenol nitroprusside solution (Sigma Cat # P6994-120ML) Store at 4 °C. Note expiration date.

Alkaline hypochlorite solution (Sigma Cat # A1727) Store at 4 °C. Note expiration date.

Ammonium Ion Standard solution, concentration of 100 mM NH₃ (Fluka Cat # 09683-100ML, FW 53.49, CAS # 12125-02-9)

Dissolve 0.06607 g (NH₄)₂SO₄ (dried) (Mallinckrodt Cat # 7725, FW 132.13, CAS # 7783-20-2) in 90 ml 0.1 N HCl (EMD Cat #HX0603-3, FW 36.46, CAS # 7647-01-0). Bring to volume in 100 ml volumetric flask. Store at 4 °C. You may also use a commercial NH₄ standard.

0.1 N Hydrochloric acid, (8.04 ml HCl (EMD Cat #HX0603-3, FW 36.46, CAS # 7647-01-0) / liter water)

Working standards (Store at 4 °C. Solutions are stable 1 month.)

Standard	ml Stock NH ₄	ml Diluent (0.1 N HCl)	Conc. (mg/dl) NH ₃	Conc. (mM) NH ₃
1	0.05	4.95	1.70	1
2	0.10	4.90	3.40	2
3	0.20	4.80	6.80	4
4	0.40	4.60	13.60	8
5	0.60	4.40	20.40	12
6	0.80	4.20	27.20	16
7	1.00	4.00	34.00	20
8	1.20	3.80	40.80	24
9	1.60	3.40	54.40	32

A standard curve using standards 1-5 is usually sufficient for most samples.

Procedure:

- 1. Centrifuge rumen fluid for 10 minutes at 13,800 x g at 4 °C. Save supernatant. There is no need for centrifugation with rumen fluid prepared for VFA analysis.
- 2. Rumen fluid and working standards should be diluted by a factor of 10. For example, 0.100 ml sample or standard + 0.900 ml dd water.
- 3. Pipette 100 ul diluted sample or standard into 16 x 125 mm borosilicate tubes, in duplicate.
- 4. Prepare blanks (100 ul dd water) in duplicate.
- 5. To each tube, add the following reagents in the order listed:
 - a. 1.0 ml phenol nitroprusside solution, vortex.
 - b. 1.0 ml alkaline hypochlorite solution, vortex.
 - c. 5.0 ml dd water, vortex.
- 6. Allow samples to react with reagents for 30 minutes at room temperature. Begin timing after step 5b.
- 7. Read absorbency at 570 nm on spectrophotometer. Color is stable for 1-3 hours.

Calculations:

Read absorbencies of standards and samples, and use a linear regression of the standards to calculate sample concentrations.

References

- Sigma Technical Bulletin #640. The colorimetric determination of urea nitrogen. Sigma Diagnostics, St. Louis, MO 63178.
- Chaney, A. L., Marback, E. P., Modified reagents for determination of urea and ammonia. Clin. Chem., 8:130, 1962.
- Horn, D. B., Squire, C. R., An improved method for the estimation of ammonia in blood plasma. Clin. Chem. Acta, 17:99, 1967.
- Weichselbaum, T. E., Hagerty, J. C., Mark, H. B. Jr. A reaction rate method for ammonia and blood urea nitrogen utilizing a pentacyanonitrosyloferrate catalyzed Berthelot reaction. Anal. Chem., 41:848, 1969.