Dry Matter (100 °C)

<u>Materials:</u>

Drying oven set at 100 °C Electronic balance (accurate to 0.0001 g) Aluminum pans, 5.5 cm Spatula or scoopula Trays (to hold pans) Desiccator

Procedure:

- 1. Label bottom of pans with sample ID, your initials and/or project name, and date on ALL aluminum pans.
- 2. Tare balance before placing pans on balance.
- 3. Weigh and record exact pan weight (with glass doors of balance shut).
- 4. Mix sample well, then place 1-5 g of sample into pan (usually 2 g is sufficient for most samples). Duplicates or triplicates of the sample must be run to insure accuracy. Include at least one "inhouse" standard daily.
- 5. Weigh pan and sample, recording exact weight. Place pans on tray.
- 6. Place trays with samples into drying oven (100 °C) for 12-24 hours (usually overnight).
- 7. Remove the samples and place into desiccator. Allow to cool, generally 20 to 60 min.
- 8. After samples are cool, remove one tray at a time and weigh each sample, recording the exact weight using the same balance that was used for the initial weighing.

Calculations:

	А	В	С	D	Е	F	G
Sample	Empty Pan	Wet Sample + Pan	Dry Sample + Pan	DM %	DM % Mean	Sd	% CV
#50	1.3311 1.3172	3.3292 3.1955	3.1420 3.0178	90.63 90.54	90.59	0.065	0.07
	$D = \left[\frac{C-A}{B-A}\right] \times 100$			$90.63 = \left[\frac{3.1420 - 1.3311}{3.3292 - 1.3311}\right] \times 100$			

To calculate E, F, and G see section on statistical analysis

Reference

AOAC method # 934.01, Association of Official Analytical chemists, 18^h Ed., Revision 3, 2010.