
CLASSIFICATION USING SPARK-ENABLED SWARM INTELLIGENCE ALGORITHMS

Kendrick Dahlin
North Dakota State University

CLASSIFICATION USING SPARK-ENABLED SWARM INTELLIGENCE ALGORITHMS

Kendrick Dahlin
North Dakota State University

Firefly Algorithm

Swarm intelligence (SI) describes a collection of models that imitate the behav-
ior of natural phenomena such as birds or ants. Individual entities all act upon
the same principles within a group, responding to others in the group and their
environment to swarm to a best solution. This behavior is de-centralized and self-
organized.
The Firefly Algorithm (FA) [2] is a swarm intelligence algorithm modeled after the
flashing light emitted by fireflies. A firefly is most attracted to the most intense
light they observe. An intensity of another firefly is inversely proportional to the
distance, and proportional to the brightness of the firefly.

Fig. 1: Big fancy graphic.

Apache Spark

On large scales, many methods of processing data are either computationally
expensive or insufficient. Apache Spark is a “multi-language engine for executing
data engineering, data science, and machine learning on single-node machines
or clusters."[Spark] Spark utilizes parallel processing to segment programs into
sub-tasks, and run these sub-tasks simultaneously.
A key feature of Spark is the Resilient Distributed Dataset (RDD). An RDD is a
“collection of elements partitioned across the nodes of the cluster than can be
operated on in parallel." An RDD can be created by parallelizing data in the driver
function. In our experiments we utilize an RDD to parallelize elements of the FA.

Fig. 2: Apache Spark Framework [1]

Implementation

We implemented four variations of driver programs that ran the Firefly Algorithm in parallel
using Apache Spark. Each program measures time from the beginning of the driver program
to the end, including pre-processing data and measuring accuracy.

1. Parallel Data Python program that creates RDD from data.

2. Parallel Particles Python program that creates RDD from particles initialized outside
of FA.

3. Measured Execution Time Instead of measuring time of entire driver function, only
measures parallel parts.

4. Java Identical to program 1, but in Java.

Fig. 3: Driver Program Pseudo Code

Results

The two metrics we utilized to measure scalability were speedup and scaleup. [Gramma].
Speedup measures the difference in time of as the number of nodes are increased.

speedup =
T1
Tn

(1)

where T1 is the time it takes for an algorithm to be run using one node, and Tn is the time it
takes for an algorithm to be run using n nodes.
Scaleup measures the simultaneous increase in data size and nodes by the same ratio.

scaleup =
Tsn
TRsn

(2)

where Tsn is the running time for data size s with n nodes and TRsn is the running time for
data size R ∗ n and R ∗ n nodes.

Fig. 4: Run Time [1]

Results Cont.

Fig. 5: Speedup

Fig. 6: Scaleup

Acknowledgements

I would like to thank my research advisor Dr. Simone Ludwig, and mentor for
this project, Aaron Misquith.

References

[1] Apache Spark. Spark Overview. Accessed: 2024-07-25. 2024. URL: https : / / spark .
apache.org/docs/2.1.0/.

[2] Xin-She Yang. “Firefly Algorithms for Multimodal Optimization”. In: 2010.


