
Classification using Spark- enabled Swarm Intelligence Algorithms
North Dakota State University   - Universidad de Chile                          By: Angeles Marin Batana

Abstract

Introduction

Machine learning is a rapidly advancing discipline in computational science due to 
the increasing demand for the analysis and interpretation of large amounts of data 
from various sources and consequently, many optimization algorithms have been 
proposed to enhance performance and accuracy in machine learning models, 
particularly classification models.

This study investigates the performance improvements of 2 Bat Algorithm 
implementations when parallelized using Apache Spark, measuring efficiency gains 
from distributing data across partitions and distributing particles across partitions. The 
speedup and scaleup characteristics of these implementations were evaluated across 
different core configurations and data sizes, with results indicating diminishing returns 
with increasing processors and data sizes for both approaches, highlighting 
improvements for optimized strategies to achieve enhanced scalability.

Optimization techniques are crucial in machine learning for minimizing error 
functions, tuning model parameters, and finding optimal solutions. Optimization algorithms 
like Particle Swarm Optimization (PSO), developed by Russell Eberhart and James Kennedy 
in 1995, are widely used nature-inspired algorithms that simulate the behavior of social 
animals. These algorithms use exploration and exploitation techniques to find the most 
optimal solutions in complex optimization problems in machine learning tasks. 

The Bat Algorithm (BA), introduced by Xin-She Yang in 2010, builds on these 
principles by incorporating the echolocation behaviors of bats, as shown in Figure 1. In the 
BA, each bat represents a potential solution to the optimization problem, and a population 
of n bats is used to explore the search space. Initially, bats emit louder pulses at lower rates 
to gather information from wider areas. As they get closer to their target, they reduce their 
loudness and increase the pulse rate, allowing for a more focused search and convergence 
towards the global best solution. If a new solution is better than the current best, it replaces 
the current best and becomes the new global best. This process continues until the 
maximum number of iterations is reached.

This study focuses on the parallelization of the BA using Apache Spark to handle 
large datasets efficiently and improve computational performance.

1. Distributing Data Across Partitions: In this approach, the dataset is read into an RDD 
and the RDD is partitioned across multiple cores. Each partition of the RDD contains a 
subset of the data and the BA is applied independently to each data partition, leveraging 
data parallelism where the algorithm runs concurrently on different subsets of the data. 

2. Distributing Particles (Bats) Across Partitions: In this approach, the population of 
particles, or bats, is partitioned into sub-populations, and this RDD of sub-populations is 
distributed across multiple cores. This strategy focuses on task parallelism, where 
different subsets of bat populations run and perform the Bat Algorithm concurrently.

Results
The performance of both parallelization methods across different datasets and core 

configurations were evaluated using speedup and scaleup metrics. 

Speedup Analysis
Speedup plots were used to measure how the execution time of the programs decreased as 
the number of processors increased, achieving ideal parallel efficiency with faster processing 
times when more processors are added. Speedup was calculated by dividing the execution 
time with 2 processors by the execution time with 𝑁 processors. Ideally, the speedup plot 
would approach a linear trend, where doubling the number of processors approximately 
halves the execution time.

Distributed Data Plot: Figure 3 demonstrates initial gains for the speedup curves, 
showing significant improvements when increasing from 2 to 16 cores. The speedup gains then 
plateau, with minimal improvements beyond 24 cores. 

Distributed Particles Plot: Figure 4 shows the speedup curves following a similar trend 
to the data distribution approach, demonstrating substantial initial improvements up to about 
24 cores, then plateauing with diminishing returns. 

Conclusion
The experiment evaluated the performance of the bat algorithm when 

parallelized using Apache Spark using 2 strategies: parallelizing data and parallelizing 
particles. The results indicate that both strategies exhibited initial efficiency gains with 
increasing cores used when running the Spark job, showing promising processing times, 
and demonstrated plateauing beyond 24 cores for both implementations, resulting in 
diminishing returns due to efficiency limitations.

The scaleup analysis demonstrated similar results where both implementations 
showed initial promising results in maintaining relatively consistent execution times for 
smaller datasets, while displaying increasing execution times for larger datasets, 
revealing limitations for larger datasets.

Overall, the study highlights the potential use of parallelization to enhance the 
performance of Particle Swarm Optimization techniques while demonstrating the need 
for optimizing overhead and resource management strategies to improve the 
performance for large- scale datasets to ensure more consistent and scalable parallel 
processing capabilities.

Scaleup Analysis
The scaleup plot measures how the execution time changes as the size of the dataset 

increases for a given number of processors used. It was calculated by dividing the execution time 
for a given data size by the smallest data size where, ideally, the execution time remains 
consistent as the data size increases, showing that the data size does not significantly impact 
processing time. 

Distributed Data Plot: Figure 5 demonstrates promising scalability for datasets up to about 
1000 repetitions, after which the plot begins to increase significantly, indicating longer processing 
times for larger datasets. 

Distributed Particles Plot: Comparable to the data distribution approach, figure 6 shows 
higher core counts improved scale-up but were still affected by scalability limitations for larger 
datasets.

Figure 1: BA Pseudo Code

Methodology
A dataset containing features and target variables for classification is replicated to 

create 10 different dataset with sizes ranging from 200 to 2000 repetitions, in increments 
of 200. These datasets are tested across 7 different core configurations (2, 4, 8, 16, 24, 
32, 64 cores) to analyze the parallel processing performance of 2 parallelization 
strategies: 

Figure 2: Parallelizing Operations Across Multiple Cores

Figure 3: Speedup Plot for Distributed Data Figure 4: Speedup Plot for Distributed Particles 

Figure 5: Scaleup Plot for Distributed Data Figure 6: Scaleup Plot for Distributed Particles 
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