
Classification using Spark- enabled Swarm Intelligence Algorithms
North Dakota State University - Universidad de Chile By: Angeles Marin Batana

Abstract

Introduction

Machine learning is a rapidly advancing discipline in computational science due to
the increasing demand for the analysis and interpretation of large amounts of data
from various sources and consequently, many optimization algorithms have been
proposed to enhance performance and accuracy in machine learning models,
particularly classification models.

This study investigates the performance improvements of 2 Bat Algorithm
implementations when parallelized using Apache Spark, measuring efficiency gains
from distributing data across partitions and distributing particles across partitions. The
speedup and scaleup characteristics of these implementations were evaluated across
different core configurations and data sizes, with results indicating diminishing returns
with increasing processors and data sizes for both approaches, highlighting
improvements for optimized strategies to achieve enhanced scalability.

Optimization techniques are crucial in machine learning for minimizing error
functions, tuning model parameters, and finding optimal solutions. Optimization algorithms
like Particle Swarm Optimization (PSO), developed by Russell Eberhart and James Kennedy
in 1995, are widely used nature-inspired algorithms that simulate the behavior of social
animals. These algorithms use exploration and exploitation techniques to find the most
optimal solutions in complex optimization problems in machine learning tasks.

The Bat Algorithm (BA), introduced by Xin-She Yang in 2010, builds on these
principles by incorporating the echolocation behaviors of bats, as shown in Figure 1. In the
BA, each bat represents a potential solution to the optimization problem, and a population
of n bats is used to explore the search space. Initially, bats emit louder pulses at lower rates
to gather information from wider areas. As they get closer to their target, they reduce their
loudness and increase the pulse rate, allowing for a more focused search and convergence
towards the global best solution. If a new solution is better than the current best, it replaces
the current best and becomes the new global best. This process continues until the
maximum number of iterations is reached.

This study focuses on the parallelization of the BA using Apache Spark to handle
large datasets efficiently and improve computational performance.

1. Distributing Data Across Partitions: In this approach, the dataset is read into an RDD
and the RDD is partitioned across multiple cores. Each partition of the RDD contains a
subset of the data and the BA is applied independently to each data partition, leveraging
data parallelism where the algorithm runs concurrently on different subsets of the data.

2. Distributing Particles (Bats) Across Partitions: In this approach, the population of
particles, or bats, is partitioned into sub-populations, and this RDD of sub-populations is
distributed across multiple cores. This strategy focuses on task parallelism, where
different subsets of bat populations run and perform the Bat Algorithm concurrently.

Results
The performance of both parallelization methods across different datasets and core

configurations were evaluated using speedup and scaleup metrics.

Speedup Analysis
Speedup plots were used to measure how the execution time of the programs decreased as
the number of processors increased, achieving ideal parallel efficiency with faster processing
times when more processors are added. Speedup was calculated by dividing the execution
time with 2 processors by the execution time with 𝑁 processors. Ideally, the speedup plot
would approach a linear trend, where doubling the number of processors approximately
halves the execution time.

Distributed Data Plot: Figure 3 demonstrates initial gains for the speedup curves,
showing significant improvements when increasing from 2 to 16 cores. The speedup gains then
plateau, with minimal improvements beyond 24 cores.

Distributed Particles Plot: Figure 4 shows the speedup curves following a similar trend
to the data distribution approach, demonstrating substantial initial improvements up to about
24 cores, then plateauing with diminishing returns.

Conclusion
The experiment evaluated the performance of the bat algorithm when

parallelized using Apache Spark using 2 strategies: parallelizing data and parallelizing
particles. The results indicate that both strategies exhibited initial efficiency gains with
increasing cores used when running the Spark job, showing promising processing times,
and demonstrated plateauing beyond 24 cores for both implementations, resulting in
diminishing returns due to efficiency limitations.

The scaleup analysis demonstrated similar results where both implementations
showed initial promising results in maintaining relatively consistent execution times for
smaller datasets, while displaying increasing execution times for larger datasets,
revealing limitations for larger datasets.

Overall, the study highlights the potential use of parallelization to enhance the
performance of Particle Swarm Optimization techniques while demonstrating the need
for optimizing overhead and resource management strategies to improve the
performance for large- scale datasets to ensure more consistent and scalable parallel
processing capabilities.

Scaleup Analysis
The scaleup plot measures how the execution time changes as the size of the dataset

increases for a given number of processors used. It was calculated by dividing the execution time
for a given data size by the smallest data size where, ideally, the execution time remains
consistent as the data size increases, showing that the data size does not significantly impact
processing time.

Distributed Data Plot: Figure 5 demonstrates promising scalability for datasets up to about
1000 repetitions, after which the plot begins to increase significantly, indicating longer processing
times for larger datasets.

Distributed Particles Plot: Comparable to the data distribution approach, figure 6 shows
higher core counts improved scale-up but were still affected by scalability limitations for larger
datasets.

Figure 1: BA Pseudo Code

Methodology
A dataset containing features and target variables for classification is replicated to

create 10 different dataset with sizes ranging from 200 to 2000 repetitions, in increments
of 200. These datasets are tested across 7 different core configurations (2, 4, 8, 16, 24,
32, 64 cores) to analyze the parallel processing performance of 2 parallelization
strategies:

Figure 2: Parallelizing Operations Across Multiple Cores

Figure 3: Speedup Plot for Distributed Data Figure 4: Speedup Plot for Distributed Particles

Figure 5: Scaleup Plot for Distributed Data Figure 6: Scaleup Plot for Distributed Particles

Acknowledgements
The authors acknowledge the support of
the NDSU Department of Computer
Science sponsored by NSF Directorate for
Engineering and EPSCoR Co-Funding
through NSF grant EEC2050175. Any
opinions, findings, and conclusions or
recommendations expressed in this
material are those of the
author(s) and do not necessarily reflect the
views of the National Science Foundation.

References
[1] X.-S. Yang, “Nature-Inspired Algorithms in Optimization: Introduction, Hybridization and Insights,” arXiv.org, 2023.
https://arxiv.org/abs/2401.00976#:~:text=Nature%2Dinspired%20algorithms%20are%20a (accessed Jul. 24, 2024).

[2] “Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. Proceedings of the IEEE International
Conference on Neural Networks, 4, 1942-1948. - References - Scientific Research Publishing,” www.scirp.org.
https://www.scirp.org/reference/referencespapers?referenceid=1847917 (accessed Jul. 24, 2024).

[3] X.-S. Yang, “A New Metaheuristic Bat-Inspired Algorithm,” arXiv:1004.4170 [physics], Apr. 2010, Available:
https://arxiv.org/abs/1004.4170

[4] N. A. of S. Medicine Engineering, and, I. of Medicine, B. on H. C. Services, and C. on D. E. in H. Care, Improving
Diagnosis in Health Care. National Academies Press, 2015. Accessed: Jul. 24, 2024. [Online]. Available:
https://books.google.cl/books?hl=en&lr=&id=9vu9DwAAQBAJ&oi=fnd&pg=PR1&dq=example+healthcare

[5] “Towards an Integrative Big Data Analysis Framework for Data-Driven Risk Management in Industry 4.0,”
ieeexplore.ieee.org. https://ieeexplore.ieee.org/abstract/document/7427814

[6] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimisation for feature selection in classification: Novel
initialisation and updating mechanisms,” Applied Soft Computing, vol. 18, pp. 261–276, May 2014, doi:
https://doi.org/10.1016/j.asoc.2013.09.018.

[7] M. G. Omran, A. P. Engelbrecht, and A. Salman, “IMAGE CLASSIFICATION USING PARTICLE SWARM
OPTIMIZATION,” Advances in natural computation, pp. 347–365, Aug. 2004, doi:
https://doi.org/10.1142/9789812561794_0019.

[8] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data analytics on Apache Spark,” International
Journal of Data Science and Analytics, vol. 1, no. 3–4, pp. 145–164, Oct. 2016, doi: https://doi.org/10.1007/s41060-016-
0027-9.

[9] H. Karau and R. Warren, High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark.
“O’Reilly Media, Inc.,” 2017. Accessed: Jul. 24, 2024. [Online]. Available:
https://books.google.cl/books?hl=en&lr=&id=90glDwAAQBAJ&oi=fnd&pg=PP1&dq=apache+spark+&ots=FB4RN-
Xixd&sig=U1cmaDYpXa6l_dEa44fW0pgGiI8&redir_esc=y#v=onepage&q=apache%20spark&f=false

