
S.L.I.C.E. M.E.D.
Segmenting Lesions for Improved Care, Enhanced Management, and Exact Diagnosis
By Chase Guenther

Introduction

What is the Problem?

Multiple Sclerosis (MS) is a debilitating neuroinflammatory disease 
characterized by demyelination, or damage to the protective sheath surrounding 
nerve fibers in the brain and spinal cord. Magnetic Resonance Imaging (MRI) 
plays a vital role in diagnosing and monitoring MS by visualizing lesions, areas of 
abnormal signal intensity, within the brain. Accurate segmentation of these 
lesions is crucial for several reasons. It can:
• Improve diagnostic accuracy and efficiency: Automated segmentation can 
reduce the time radiologists spend on manual segmentation, allowing them to 
focus on interpretation and diagnosis.
• Increase objectivity and consistency: Manual segmentation can be 
subjective and prone to variability between readers. Automated methods 
provide more consistent results.
• Quantify disease burden: Accurate segmentation allows for measurement 
of lesion volume, a valuable biomarker for tracking disease progression and 
treatment response.

Currently, although results are promising for image segmentation of brain 
lesions, they are still lacking. For most algorithms dice scores do not achieve 
numbers above .7, and even the best is only barely surpassing that on benchmark 
datasets. A more accurate and robust algorithm would allow for better diagnosis 
and tracking of MS.

Figure 2. Example output using LST-AI base models on our dataset.

Our Methodology and Approach
Hardware. The Training and results of the tests will be obtained using North 
Dakota State University’s supercomputer, “CCAST”. To be able to run the 
program within a reasonable time, due to some of the more computationally 
intensive tasks of image segmentation techniques, we had to choose a powerful 
machine. WE are using 16 CPU cores and 1 a100 Nvidia GPU for my current 
testing efforts. It was found that even with these powerful numbers, more 
memory would be needed on the GPU to be able to contain the model if we 
wanted to make it any larger.

Dataset. The training data is made up of 56 Patients at a total of 93 time points. 
At each time point, there is a T1 weighted (T1w), T2 weighted (T2w), Fluid 
attenuated inversion recovery (FLAIR) MRI scan, and ground truth segmentation 
mask. Normally, MRI scans start out in DICOM format (Digital Imaging and 
Communications in Medicine), but these images have already been partially 
preprocessed. The extra DICOM information was discarded, and the images were 
converted to NIfTI (Neuroimaging Informatics Technology Initiative), a 3D image 
file format. Each image was also skull-stripped, removing the skull and leaving 
the brain tissue. Each 3D is in the shape 182 x 218 x 182 (Width x Height x Depth). 
To briefly explain the difference between the types of MRI scans, The T1w 
images darken lesions and both T2w and FLAIR images brighten lesions, however 
FLAIR will suppress cerebrospinal fluid (CSF), which appears bright in T2 images.
The testing data, although similar to the training data, does not contain time 
points or masks. Instead, there is only one time point for each of the 22 patients. 
Each patient file still contains a T1w, T2w, and FLAIR image of the NifTI format.

Conclusion
After working through our approach, the outcome turned out to be a failure for 
now. However, though this internship is over I plan to continue my effort, 
learning from the mistakes of this project and starting again. As I continue the 
research, I will work to not only fix and receive proper experimental results for 
the current algorithm, but also try more changes to the inner architecture of the 
3D U-Nets, such as implementing residual connections to assist in solving the 
vanishing/exploding gradient problem and theoretically achieve superior results.
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In our implementation, we address the computational complexity of the U-Net 
architecture by replacing the standard Conv3D layers in both the contracting and 
expanding paths with depthwise separable convolution (DSC) layers. A DSC 
consists of two separate steps: a depthwise convolution and a pointwise 
convolution ([Chollet, 2017]).
• Depthwise Convolution: In the depthwise convolution, separate filters are 
applied to each input channel, extracting features independently. This 
significantly reduces the number of computations compared to a standard 
convolution, as it avoids learning redundant filters for capturing spatial 
correlations across channels
• Pointwise Convolution: The pointwise convolution then uses 1x1x1 filters 
to project the outputs from the depthwise convolution layer into a new feature 
space, introducing the non-linearity and combining features across channels. We 
use a 1x1x1 conv3D layer to fulfill this purpose.

Method. The foundation of our approach is an ensemble of 3D U-Net architectures. The 
U-Net is a convolutional neural network architecture specifically designed for medical 
image segmentation tasks. It consists of a contracting (encoder) path and an expanding 
(decoder) path.
• Contracting Path: These convolutional layers progressively reduce the spatial 
dimensions (width, height, and depth) of the feature maps while increasing the number 
of feature channels to learn complex representations of the input. It typically consists of 
several repeated blocks, each containing two or three 3D convolutional layers (Conv3D) 
followed by a non-linear activation function (e.g., Leaky ReLU) and batch normalization. 
• Expanding Path: The expanding path upsamples the captured features and 
integrates them with high-resolution features from the contracting path to produce a 
segmentation map with high spatial resolution. It utilizes transposed convolution 
(Conv3DTranspose) layers to increase the spatial dimensions and concatenate feature 
maps from the corresponding contracting path block at each level.

Figure 3. Example image data from our dataset.

Experimental Results
Results. Extensive training attempts on our model and consistent troubleshooting has 
led to a failure to achieve valid results. Although the program is capable of training and 
only outputs a few warnings, it does not achieve proper learning. Statistics that are 
output by the validation dataset achieve results that at first look like nonsense but begin 
to make more sense as you view the predicted images and see they are solely predicting 
that there is never a lesion (black images).

After 62 epochs, this is the resulting statistical output of one model:
Overall loss (including deep supervision layers): 1.0036 
Output loss: 1.0000 
Output accuracy: 0.9999 
Output precision: 0.0000e+00 
Output recall: 0.0000e+00
Output dice coefficient: 9.4029e-20
Output intersection-over-union: 4.7015e-20 
Output f1 score: 8.1508e-28

As can be seen, the losses are not improving at all during training. Accuracy shows as 
near perfect, but this is due to the minimal number of lesion pixels in the images, 
meaning that guessing the entire image is black is already near perfect accuracy, so it is 
a poor way of measuring the capability of the model. All other methods of measuring 
the model capabilities are close to 0, making this output near useless. 
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Figure 1. LST-AI program design concept.

Figure 4. Base Unet architecture before replacing layers.
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