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classes). The random forest algorithm performed the best with
scores in the mid to high 0.90s across every task except the
nineteen class recall for which it scored ~0.89 thus bringing
down the F1 score for that task to ~0.91.
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this model and the other models we created and received the same
mixed explainability results on, the Xplique results do not provide a
clear understanding of how the model is making its predictions.
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