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Abstract

In this work, we propose a novel centrality metric (referred to as
star centrality), which incorporates information from the closed neigh-
borhood of a node, rather than strictly from the node itself, when
calculating its topological importance. More specifically, we focus on
degree centrality and show that in the complex protein-protein interac-
tion networks it is a naive metric that can lead to misclassifying protein
importance. For the extension of degree centrality when considering
stars, we derive its computational complexity, provide a mathematical
formulation, and propose two approximation algorithms. We portray
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the success of the new metric in protein-protein interaction networks
when predicting protein essentiality in several organisms, including
the well-studied Saccharomyces Cerevisiae, Helicobacter Pyloris, and
Homo Sapiens, where star centrality is significantly better at detecting
essential proteins when compared to nodal centrality metrics. We also
analyze the average and worst case performance of the two approxi-
mation algorithms in practice, and show that they are viable options
for computing star centrality in very large-scale protein-protein inter-
action networks, such as the human proteome, where exact method-
ologies are bound to be time consuming.

Keywords. centrality; protein-protein interaction networks; complex
network analysis

1 Introduction

Complex network theory has been a driving force for numerous applications
in recent years. Many disciplines have observed a paradigm shift after in-
corporating complex network analysis and graph theoretic tools to interpret
their results. One such field is computational biology; the use of complex
network analysis has recently enabled researchers with novel tools to detect
protein complexes (Li et al. 2010, Mitra et al. 2013), analyze protein essen-
tiality (Ren et al. 2011), and predict protein functionality (Typas and Sourjik
2015), among others. Moreover, the fact that large-scale databases are read-
ily available (we indicatively mention the curated works by Franceschini et
al. (2013), Szklarczyk et al. (2014), Pagel et al. (2005), and Salwinski et al.
(2004)) has led to significant scientific interest in the field in an attempt to
tackle the computational and biological challenges inherent to the study of
protein-protein interaction networks.

The challenge we focus on in this work can be summarized as follows: does
there exist a network topology metric that captures the importance of a single
protein in the grand scheme of the proteome? This is not a novel question,
as it has attracted numerous researchers and has led to the investigation of
various metrics, ranging from graph modularity (Narayanan et al. 2011) to
centrality (Hahn and Kern 2005). Being able to use such objective metrics
for studying the proteome is of importance, as it can lead us to the detection
of informal groups in the interaction network (Pereira-Leal et al. 2004).

With the term “detection of informal groups” we mean the detection of
unbiased clusters of proteins, based solely on their interactions and topolog-



ical structure. This would enable us with objective methods of measuring
protein importance in the proteome without relying on scientific and exper-
imental biases. In general, topological importance (also broadly referred to
as centrality) is a well-studied topic in complex networks, including protein-
protein interaction networks. In our work, though, we propose a novel cen-
trality metric for each protein in the network. This metric aims to capture
both the individual interactions of the protein, as well as the interactions of
its open neighborhood, when disregarding neighboring nodes that are con-
nected to one another. We refer to this centrality as star centrality.

1.1 Outline

We first provide a literature review on protein-protein interaction networks
and protein essentiality, along with the definition of “party” and “date”
hubs, and centrality. In Section 2, we present the basic notation we will
be using throughout the paper, define the problem, and provide its compu-
tational complexity. Then, Section 3 focuses on our mathematical program-
ming framework; in the same section we propose greedy heuristic approaches
to tackling the problem faster and provide their approximation guarantees.
Section 4 presents our computational study on six protein-protein interac-
tion networks, namely Saccharomyces Cerevisiae (yeast), Helicobacter Py-
loris, Staphylococcus Aureus, Salmonella Enterica CT18, C. Elegans, and
Homo Sapiens (human). The performance of the approximation algorithms
is also contrasted to the exact solution. We conclude this work with our
observations and our insights.

1.2 Protein-protein interaction networks

Protein-protein interaction networks (PPIN) have become, mostly over the
last decade, an important point of discussion for many disciplines in their
quests to better understand and analyze how and why proteins interact with
one another. As proteins are fundamental entities that control numerous
biological activities, information on how they bind and interact to perform
said activities is an important scientific exercise that can bring to light insight
into cell mechanisms.

The first step towards creating a PPIN is to discover pairs of proteins
that interact with each other. This is typically performed experimentally
using two-hybrid screening or yeast two-hybrid (Y2H) (Sardiu and Washburn



2011), or coaffinity purification and mass spectrometry (AP/MS) systems
(Teng et al. 2014). After further analysis on the individual interactions, a
collection of them comprises the overall network that can be used. PPINs
are now readily available from many different databases, such as the ones by
Xenarios et al. (2000), Zanzoni et al. (2002), Pagel et al. (2005), Franceschini
et al. (2013), Chatr-Aryamontri et al. (2013), among others. Even though
it has been observed that such networks are not without errors (Legrain
and Selig 2000, Hart et al. 2006), it is still valuable to analyze them using
complex network analysis as they provide us with interesting information on
how proteins work.

The PPIN that has been most well-studied is the one belonging to C.
Elegans. The reason behind it is mostly the fact that there exist a great deal
of similarity between human and C. Elegans; more than 50% of the genes
present in C. FElegans are also present in their homologue form in the human
genome, as observed by Kamath et al. (2003). Another well-studied PPIN
belongs to the S. Cerevisiae organism; interestingly, this dataset has also
been employed to showcase the effectiveness of node criticality (Veremyev et
al. 2015).

1.3 Essential proteins and hubs

A fundamental question in the analysis of PPINs (as well as in general biolog-
ical networks) is whether there exist proteins (nodes) that significantly alter
its functionality (or, even result in lethality). A protein is said to be essential
or lethal when, if absent, it causes the biological cell to die (Kamath et al.
2003) or prevents it from reproducing properly. The study of essential pro-
teins was and still is performed experimentally; however, those experiments
tend to be expensive, both resource- and time-wise. An example of such a
technique is conditional gene knockout, a technique in which a specific gene
is removed from a tissue (Skarnes et al. 2011).

It has been observed that the study of protein essentiality can be tar-
geted to only a select number of proteins (or, equivalently, proteins can be
discarded from contention) using quantitative methods on the rapidly in-
creasing, available data. The interested reader is referred to the excellent
work by Zotenko et al. (2008) as well as the centrality-lethality rule, which
was one of the first attempts to study essentiality as a function of network
topology (Jeong et al. 2001). Nowadays, with the availability of vast amounts
of proteomic data, information on essentiality of proteins is also increasing;:
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date hub

Figure 1: An example of how “party” and “date” hubs would appear as in
a PPIN. The nodes of blue, red, and green color represent three different
structures/complexes in a generated PPIN. The “party” hubs are marked
with a square, while the “date” hub is annotated on the Figure. Observe that
the “date” hub in the middle has a smaller number of interactions (smaller
degree) than some of the “party” hubs in this example.

for instance, we refer the reader to the curated Database of Essential Genes,
or DEG (Zhang et al. 2004, Zhang and Lin 2009, Luo et al. 2013).

A hub is defined as a protein with many interactions. Seeing as this
definition is open-ended, some researchers use different threshold values for
the number of interactions. For instance, in the fundamental contribution
by Han et al. (2004), a hub is defined as a protein with more than 5 in-
teractions. Therein, the authors also investigate another, very important
protein characterization, one between proteins that interact with all their
neighbors simultaneously and proteins that interact with their partners in
different times and/or locations, also referred to informally as “party” and
“date” hubs, respectively. More formally stated, “party” hubs show high co-
expression with their partners, while “date” hubs the opposite. An example
of how the definition of “party” and “date” hubs would look like in a toy
network is shown in Figure 1.

This computational discovery has been met with scrutiny by the scientific
community and has led to a general debate on whether this classification of
proteins actually helps us decode the proteome (Mirzarezaee et al. 2010). In



general, though, this hypothesis has led to significant interest in connecting
graph theoretic notions to PPIN analysis (e.g., the works by Agarwal et al.
(2010) and Gursoy et al. (2008), among others).

1.4 Centrality

Centrality is a fundamental concept in network analysis, typically tied to the
topological “importance” of a network element. As such, it is also a well-
studied topic, starting from the contributions of Bavelas (1948, 1950), Leavitt
(1951), Sabidussi (1966), and Freeman (1979) earlier, and reaching out to
more recent contributions (e.g., Borgatti and Everett (2006), Koschiitzki
et al. (2005), Boldi and Vigna (2013) for an extensive review of centrality
indices). This list is by no means exhaustive, as it is a topic that has attracted
scientific interest from multiple and diverse groups of researchers.

Basic centrality measures that have been proposed over the years can be
categorized based on their local or global considerations. For example, node
degree centrality, which represents the number of nodes adjacent to a given
node i, is a local metric as it only considers the neighborhood of the node
at hand. On the other hand, node betweenness centrality, a metric that can
be defined as the fraction of the shortest paths from any two nodes in the
network that use a node ¢ as an intermediary, is global.

Indicatively, we present some basic centrality measures that have ap-
peared in the literature over the years.

e Degree centrality: given a node 4, its degree centrality is the number of
nodes adjacent to ¢;

o (loseness centrality: given a node i, its closeness centrality is the max-
imum/average path length to every other node;

e Betweenness centrality: for any node ¢, it captures the fraction of the
shortest paths connecting two other nodes in the network and use 7. It
is typically further divided into probabilistic (considering all geodesic
paths), optimistic (considering only the geodesic path passing through
i), and pessimistic (considering only the geodesic paths that do not use
i);

e Figenvector centrality: the main idea here is that the centrality of
any node i is higher if they are connected to other highly centralized



nodes. PageRank (Page et al. 1999) can be viewed as a special case of
eigenvector centrality.

A specific extension that is of interest to us has to do with group central-
ity. Recently, we have seen more work that focuses on extending centrality
notions to a group of nodes in the network (Everett and Borgatti 1999, 2005,
Borgatti 2006). This extension enables us with notions of endogenous and
exogenous centrality (Everett and Borgatti 2010), where a network property
is taken and measured after node/edge deletion, and also provides us with a
tool to consider clusters of nodes and figure out their topological importance.
An integer programming formulation for detecting informal, cohesive groups
with high and low centrality was presented by Vogiatzis et al. (2015).

Centrality has been a recurring theme in the study of biological networks,
and, more specifically, PPINs. It is generally assumed that “important” areas
of a network will also prove to be more centralized. The goal of using cen-
trality metrics in this context is to find what the relationship is between the
topology and the functionality of PPINs. As mentioned before, an attempt
to draw conclusions for protein essentiality and centrality dates back to the
contribution by Jeong et al. (2001). More recently, Yu et al. (2007) investi-
gated the importance of bottleneck proteins in PPINs. Their results seem to
support the idea that bottlenecks are indeed very important in recognizing
essential proteins as well as “date” hubs. Numerous studies have proposed
relationships between nodal centrality metrics and essentiality in PPINs (Joy
et al. 2005, Hahn and Kern 2005, He and Zhang 2006). In our work, we in-
vestigate these claims and contrast the performance of said centrality metrics
to our proposed methodology.

While centrality has indeed proven an important characteristic of PPINs,
there are some caveats with the approaches currently in practice. First,
assigning importance to a single protein (resp. interaction), instead of a set
of proteins (resp. interactions) tends to favor those proteins that participate
in large complexes. Secondly, PPINs are still not error-free (Hart et al.
2006); assuming complete information can lead to significant misattributions
of importance. Last, some proteins that present low co-expression with their
interacting partners would be disregarded by such metrics even though they
might have a significant role in coordinating different complexes (e.g., “date”
hubs). We will show that our proposed approach alleviates all three of these
issues. We can now proceed to formally state the notation and the definition
of the problem in the next section.



2 Fundamentals

Let G(V, E) represent a simple, undirected graph with a nodeset V' of size
|V| = n nodes and an edgeset £ C V x V of size |E| = m. We say that
two nodes 7,5 € V are connected by an edge if the adjacency matrix entry
a;; = 1; otherwise we have that a;; = 0. Seeing as the graphs considered
here are undirected, the adjacency matrix is symmetric. We further consider
a positive weight parameter on the edges of the graph, w. : £ — R, Ve =
(i,7) € E. Furthermore, the open neighborhood of a node ¢ € V' is defined
as N(i) = {j € V : (i,j) € E}; similarly, the closed neighborhood of a
node i is defined as N|[i] = N (i) U{i}. The notion of (open) neighborhood
is sometimes generalized to include nodes that are reachable within at most
k hops. This neighborhood is represented here by N*(i): for example, the
complete set of nodes reachable by ¢ € V within at most 2 hops would be
denoted as N?(i). Using the above definitions, node degree centrality can be
easily represented as
C(i) = [N (i)l

We also define the subgraph induced by a set of nodes S, G[S] as the
subgraph of G with a vertex set V[G[S]] = S and an edge set E[G[S]] =
{(i,7) € E : 1,5 € S}. We further say that a set of nodes S forms an induced
star if the induced subgraph of S has exactly one node of degree |S| — 1 and
|S| — 1 nodes of degree 1.

2.1 Problem definition

In this work, we define a centrality measure that incorporates information
from the centrality of the open neighborhood, instead of relying solely on the
considered node. More specifically, we focus on degree centrality:

Definition 1. The star degree centrality of a node i is the degree centrality of
the induced star S centered at i that produces the mazimum open neighborhood
size of S.

Formally, this can be expressed as in (1).

C*(i) = max{|N(S)| : S CV forms an induced star centered ati € V} (1)



As an example, let us return to the graph of Figure 1. Consider first the
portrayed date hub in the middle. The induced star, centered at the date
hub, that produces the maximum open size neighborhood would be either
the set S consisting of the date hub, and the blue and red party hubs (with
a value of 9 nodes adjacent to S), or it could also include the green node
in the lower right connection of the date hub (this set would also have a
star centrality value of 9). In contrast, consider the blue party hub, which
originally has the biggest degree (along with the red party hub). Its star
centrality now can be shown to be found when considering the induced star
formed by the blue party hub and the date hub itself (having a value of 6).
Last, let us consider the green party hub. For that node, we can easily verify
that its degree and star centrality match (and are equal to 3).

2.2 Complexity

In this subsection, we provide the computational complexity of the problem
of detecting the node of maximum star degree centrality. We first give the
decision version of the problem at hand.

Definition 2 (STAR DEGREE CENTRALITY). Given a graph G(V, E)
and an integer k, does there exist an induced star S centered at any node
i €V such that [IN(S)| > k?

We proceed to derive the complexity of the problem using the well-known
NP-complete problem, INDEPENDENT SET.

Definition 3 (INDEPENDENT SET). Given a graph G(V, E) and an inte-
ger k, does there exist a set S CV such that |S| > k and for any two nodes
i,j €S, (i,j) ¢ EY

Theorem 1. STAR DEGREE CENTRALITY is N'P-complete.

Proof. First of all, it is easy to verify that the problem is in NP. Given a set
of nodes S C V, we can verify that S forms an induced star (one center with
degree of |S| — 1 and no connections between leafs) and that |[N(S)| > k in
polynomial time.

Now, consider an instance of INDEPENDENT SET < G,k >. We con-
struct an instance of STAR DEGREE CENTRALITY < G, ¢ > as follows.
The graph G is defined as:
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The above imply that graph G has the nodes from G with their connec-
tions, a newly added node s that is connected to every other node in V/,
n = |V| nodes for every node i € V (sg-l), for j =1,...,n) that are connected

to i, and n? nodes (s§s), for j = 1,...,n?) that are only connected to s. In
total the new graph has 2n? +n + 1 nodes and 2n% + m + n edges. Further-
more, let £ = k-n. An example of the reduction from INDEPENDENT SET
to STAR DEGREE CENTRALITY can be found in Figure 2.

Let S be an independent set of size k in G. Then, consider the set of nodes
S=SuU {s}. Tt is easily verified that S forms an induced star by construction
and because S is an independent set. Furthermore, it is straightforward to
see that |N(S)| > k- n+ n2.

Now, assume that there exists no independent set of size k£ in G. For a
contradiction, we assume that there exists an induced star S C V such that
IN(S)| > k-n+mn2. First of all, we note that s € S: if not, then there can be
no star using nodes from V \ {s} with an open neighborhood of size at least
equal to n%. Further, there exist at least k nodes from V in the star: once
more, if that is not the case, then n? < |N(S)| < n? 4 k - n. Last, observe
that S is centered in s: assume for a contradiction that the star is instead
centered at a node ¢ € V. Then, one of the two following cases has to hold:

(a) S contains s. This implies that no other node j € V' can be in the star,
s (s,J) € E;

(b) S contains at least k nodes in V. This implies that s cannot belong in
S, for the same reason as above.

In both cases, we observe that we reach a contradiction, hence S has to
be an induced star centered at s. By construction, and since S forms an
induced star with £ nodes in V, there exists no edge connecting any two
nodes in S\ {s}, which shows that it actually forms an independent set of
size k in GG. This contradiction finishes the proof. O
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Figure 2: An example of the reduction for a graph G. Above, it is easy to
see that the selected nodes form an INDEPENDENT SET of size 2. Below,
there exists an induced star S such that |[N(S)| > n?+k-n =25+ 10 = 35.
The star represents the new added node, the squares are the n nodes in G
connecting to every node in V, while the diamonds the n? nodes connected
to the newly added star node.
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2.3 Extensions

2.4 Extensions

It can also be shown that the star centrality function is submodular.

Theorem 2. The function f(S) = {|N(S)| : S forms an induced star} is
submodular.

Proof. Let Sy, S3 be two induced stars such that S; C S;. Also, consider a
node u € V'\ Sy. Then, we have that:

fS1U{uy) = f(S1) = =1+ [N(w)] = [N(u) N N[Sy]|
f(S2U{uy) = f(S2) = =1+ [N(u)] — [N(u) N N[S]|

It is clear that |N(u) N N[Si] < |N(u) N N[Ss]|, as N[S1] C N[Ss], and
hence, f(S1U{u}) — f(S1) = f(S2U {u}) — f(S2). O

Unfortunately though, the star centrality function is not monotone; con-
sider a node with no neighbors other than to a designated “center”. Then,
that node can be used as a leaf to a star, however it would increase its open
neighborhood size by 1. An indicative counterexample is presented in Fig-
ure 3. This implies that we cannot easily use a simple greedy approach to
approximate the optimal solution. We do though provide a different greedy
mechanism study in a subsequent section.

3 Mathematical Formulation and Approxima-
tion Algorithms

In this section, we provide a mathematical formulation for our problem,
followed by two approximation algorithms. First, let us define the following
decision variables:

12



Figure 3: A counterexample of the monotonicity of the star centrality func-
tion. As can be easily seen, the open neighborhood size of the star S is
decreased by 1 when considering the star S U {i}.

if node ¢ € V is the center of the star
otherwise.

if node 1 € V is in the star
otherwise.

Il
—N—

O = O = O =

Yi

if node 7 € V' is adjacent to a node in the star
otherwise.

3.1 Mathematical Formulation

The integer programming formulation for detecting the induced star of max-
imum degree centrality is presented in (2)—(7).

13



IP: max Zzi

i€V
sty + 2 < 1, VieV

z < Yj, VieV
JEN(4)

Yi < Z T, VieV
JENT]

i ty; < 1+ a3 + 2y, V(i,j) € E

in =1,

i€V

T Ui, 2 € {0, 1}, VieV.

(8)

Clearly, our objective is to maximize the size of the open neighborhood
of the star, as shown in (2). Then, (3) ensures that no node is allowed to be
both in the star and in its open neighborhood. Constraint families (4) and
(5) are similar in nature and enforce which nodes are adjacent to the star,
and which nodes are adjacent to the center and, as such, can be considered
for addition to the star. Moreover, no two leafs are allowed to be connected,
as per constraint (6). Last, we are only looking for one star, enforced with

(7), and all of our decision variables are binary.

We can also consider the problem of detecting the star centrality of a

given node u € V, as shown in (9)—(14).

i€V
sty + 2z < 1, VieV
Vi < i, Vie V\ {u}
2z < Z Yi, VieV
VHOSAIS D)
v +y; <1, V(i,j) e E:i#u,j#u
yi, 2 € {0,1}, VieV.

(13)
(14)

The objective function (shown at (9)), as well as constraint families (10),
(12) and the variable restrictions at (14) are identical to the previous model.
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However, note that we no longer need to consider a decision variable for
the center of the star, as it is known to be node u € V. Hence, we can
add constraints (11) that only consider the nodes that are adjacent to u as
candidates to be in the star, and modify constraint (13) to only consider the
connections that do not include the star center. As a reminder, a;; is the
adjacency matrix entry that represents the connection between nodes ¢ and

Ve

3.2 Greedy algorithms

As shown earlier, we cannot unfortunately claim monotonicity for the star
centrality function. Hence, deriving an approximation ratio from simply
applying a greedy algorithm scheme is not straightforward. However, we
can still show that the greedy algorithm, presented in Algorithm 1 has an
approximation guarantee of O(A), where A is the maximum degree in the
network. First, let us introduce for simplicity a function f;(S, k) to capture
the “gain” of adding a node k to a star S, assuming of course that S U
{k} remains an induced star. We note that for this function we have that

fl(S7 k) Z —1.

f1(S k) = IN(S U{E}] = [N(5)]

Theorem 3. Let i € V', with a degree of 6, be the node whose star centrality
we are interested in finding. Then, the simple greedy algorithm has an an
approximation ratio of O(J).

Proof. At each iteration of the while loop, the greedy algorithm looks at the
candidate nodes (set {j € N(i)\ S : (k,j) ¢ E,Vk € S}), and selects to
add the one that is adjacent to the maximum number of not already covered
nodes. In the worst case, the greedy algorithm terminates after the first
iteration, and that only happens when the greedily selected node u € N(i)
which adds o = |N(u) \ NJi]| is connected to every other node in N (7). Let
OPT be the optimal value and zyceqy the value obtained by applying the
simple greedy approach. Then, we have that

OPT<(0—-1)-(a=1)+1<(0—-1) -« (15)
Zgreedy > @ +0—1>« (16)
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Algorithm 1: Simple Greedy.

1 function SimpleGreedy (i);
Input : AnodeieV
Output: An induced star S centered at ¢

2 candidates < N(i);

3 S« {i};

4 while candidates # () do

5 for k£ € candidates do

6 if £1(S, k) <=0 then

7 | candidates < candidates \ {k};
8 end

9 end

10 if candidates # () then

11 j < arg m]?x{fl(S, k) : k € candidates};
12 S+ Su{j};
13 candidates < candidates \ {N[j]}
14 end
15 end

16 return S

From (15) and (16), we obtain the approximation guarantee as

OPT _(6—1)-a
<

Zgreedy a «

—5-1=0(). (17)

]

Figure 4 shows an example of the worst-case performance. Let us now
propose a different greedy-based heuristic algorithm and show its approxima-
tion ratio. Let S? be again an induced star centered at i and define function

f2(S%, k) as:

R(STR) = Y [(N(STU{}) \ N(S)].

J(i.5)€E, (k,j)EE

This function captures the potential increase in the size of the open neigh-
borhood that we would be losing since nodes j and k cannot belong to the

16



Figure 4: An example of the worst-case behavior guarantee of the Simple
Greedy approach. In this case adding u to the star centered at 7 results in
a star centrality of a + ¢ — 1, while adding every other neighbor of i to the

star would result in (6 — 1) - (v — 1) + 1.
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star simultaneously. Note here that fy(S% k) = 0 implies either that node k
is connected to no other potential leaf of the star, or that all other candi-
dates connected to k add no uncovered nodes to the star. Now, consider the
greedy approach shown in Algorithm 2. We show its approximation ratio in
Theorem 4; to do that, we first provide two lemmata.

Algorithm 2: Ratio-based Greedy.

1 function RatioGreedy (7);
Input : AnodeieV
Output: An induced star S centered at ¢
2 S"« {i};
3 candidates; < {k € N (i) : fo(S", k) =0};
4 candidatesy < N(1) \ candidatesy;
5 while candidates, # () or candidates, # () do

6 if candidates; # () then

7 J < arg ml?X{ﬁ(Si, k) : k € candidates,, f1(S, k) > 0};
St STu{j};
candidates; < candidates; \ {j};

10 else

11 J + arg mgx{ ;;g:g : k € candidatess, f1(S", k) > 0};

12 St STu{j};

13 candidatess < candidatess \ N[j];

14 end

15 for k € candidatesy do

16 if fo(S% k) =0 then

17 candidatess < candidatess \ {k};

18 candidates; < candidates; U {k};

19 end

20 end

21 end

22 return S

Lemma 1. Let i € V, with a degree of 6, be the node whose star centrality
we are interested in finding. Further, assume that for all nodes k € N(i), we
have that fo(S', k) = 0, that is there exists no connection between any two

18



of them. Then, greedily selecting the node with mazimum fi(S% k) has an
approzimation ratio of O(Ind).

Proof. 1t can be seen that the above setup results in greedily solving a
set cover problem with ¢ sets. The universe of elements to be covered is
all nodes reachable within 1 or 2 hops from i, N?(i). Each set consists
of the neighbors of i and their neighbors which belong to N?(i), that is
C; = {j,N(j) N N2(i)},Vj € N(i). Since applying the greedy algorithm
results in an O(Inn) approximation for the set cover and we have at most
0 candidate nodes/sets, all of which can be selected at any point, as there
exist no connections between them, the greedy algorithm would result in an
O(In¢) approximation ratio, as far as the number of nodes added to the star
is concerned. Let OPTsc represent the optimal solution to the set cover
problem above and zgc the solution using the greedy algorithm. We then
have that:

OPT = |N*(i)| — OPTsc (18)
Zgreedy = |N2(Z)| — ZsC Z |N2(Z)| — 1H5 . OPTSC (19)

Combining (18) and (19), we obtain that:

OPT _ _N*(i)| — OPTsc
Zgreedy - |N2(Z)’ —Ind- OPTSC

1
> m = Zgreedy <Ind-OPT. (20)

The last inequality proves the Lemma.
O

Lemma 2. Let i € V', with a degree of 0, be the node whose star centrality
we are interested in finding. Further, assume that for all nodes k € N (i),
we have that fo(S', k) > 0, that is each node is connected to at least one

other in N(i). Then, greedily selecting the node with mazimum Egzg has

an approzimation ratio of O(\/5).

Proof. Similarly to the case in Theorem 3, the worst case behavior is observed
when the algorithm terminates after adding only one node in the star. This
can happen when the selected node is indeed adjacent to all other nodes in
N (7). Let f5; be the nodes adjacent to j that are not already in S or covered
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by S. Furthermore, let node u be connected to all other candidate nodes.
We then have that:

_ f1(87u) Bu
fQ(S’U) Z /Bk,

kEN (i), k#u

while, for the remaining nodes, j # u, we would have that:

< B
=B

In the worst case, the remaining nodes can all be part of the same star
(i.e., there exist no connections between them). Hence, to select node u
using the ratio-based greedy approach we must have a, > a;, for all j, and
assuming v is the nodes with maximum ratio when excluding u, we have that
a, > a,. This implies:

/Bu /B’U /BU /6'1)
Wz = Sy 2 T 5-1) 8, " B
kEN (i),k#u
B

— £>0-1)-8 = B, <

) 21
51 (21)
Hence, in the worst case, the greedy algorithm results in a solution of

By + 6 — 1, while the optimal solution can be as big as (6 — 1) - \/&— +1. We
finally get:

OPT _ (5—1)-¢§%1+1<\/5—1-5u
Zgreedy o /Bu+5_1 - 6u

= O(V9). (22)

]

Theorem 4. Let i € V', with a degree of 6, be the node whose star centrality
we are interested in finding. Then, the ratio-based greedy algorithm has an
approzimation ratio of O(vV/9).

Proof. The algorithm is divided into two phases: in the first phase, the node
with the maximum ratio is selected, while in the latter one, we choose the
node with the maximum number of uncovered neighbors.
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Let OPT; and OPT; represent the optimal solutions obtained from each
phase. Then, OPT < OPT;+OPT5. Similarly, let z; and z5 be the solutions
obtained from each phase of the greedy algorithm; it is easy to see that
Zgreedy = #1 + 7. From the previous lemmata, we have that:

OPT, < O(V4) - % (23)
OPT; < O(Iné) - 2. (24)

Combining, we get that

OPT _ OPTy +OPT, _ O(V8) - 21 +O(Ind) - z _

Zgreedy a Zgreedy 21+ 2o

OW0) (21 +2) _ 0(V9). (25)

21+ZQ

<

4 Computational results

In this section, we present our experimental setup, the data used, and analyze
and interpret the results obtained. Our goal is to portray how star centrality
behaves and performs when put to the test against other popular centrality
metrics in PPIN analysis.

4.1 Experimental setup

All numerical experiments were performed on a quad-core Intel i7 at 2.8
GHz with 16 GB of RAM. The codes were written in Python and C++ and,
where needed, the Gurobi 6.50 solver (Gurobi Optimization 2015) was used
to solve the optimization problems. Data on protein interactions for different
organisms was obtained by STRING v. 10.0 (Szklarczyk et al. 2014). More
specifically, we used the datasets of Saccharomyces Cerevisiae, Helicobacter
Pyloris, Staphylococcus Aureus, Salmonella Enterica CT18, Caenorhabditis
Elegans, and Homo Sapiens. Essentiality for proteins was found using the
databases for the above organisms as curated in DEG 10 (Luo et al. 2013).
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The PPINs for all organisms were created as follows. For each protein in
the database, a node was created and was connected to all other proteins-
nodes that they shared an interaction. Then, all interactions-edges with an
interaction score that was below a threshold were removed. Seeing as the
maximum interaction score was 1000, the threshold score selected for pre-
sentation in this study was 600 (60% interaction score). In this fashion, we
were able to create a network where all known centrality metrics can be cap-
tured given the computational power. The network was further broken down
into its connected components with each component being independently
analyzed, without loss of generality.

Last, nodal metrics of centrality (degree, closeness, betweenness, eigen-
vector) were computed with a Python implementation, using NetworkX 1.9
(Hagberg et al. 2008). On the other hand, star centrality calculations were
performed on the same networks with a C+4 implementation. For smaller
scale networks an exact solution was found for every node; however, for large-
scale PPINs, such as the Homo Sapiens proteomic data, obtaining an exact
solution proved too difficult a feat given the memory restrictions. In such
cases, an approximate solution was obtained using greedy Algorithm 2.

4.2 Analysis

After obtaining all the metrics for the PPIN in consideration, we calculated
the ratio of essential proteins found in the top & and the bottom k& proteins (as
ranked by each centrality metric). The bounds for each analysis are shown
in Table 1 and were based on the total number of essential proteins present
in the PPIN for each organism. As an example, for Helicobacter Pyloris,
the number of essential proteins found in the PPIN was 435, and hence the
top 500 proteins were investigated. Observe that the closer a metric gets to
100%, the more accurately it detects essential proteins.

Organism | 1V] |E| Essential Proteins Top k Bottom k
Saccharomyces Cerevisiae 5414 84407 1221 1000 500
Helicobacter Pyloris 1521 17792 431 500 500
Staphylococcus Aureus 2521 16857 314 400 400
Salmonella Enterica CT18 4274 40165 543 500 500
Caenorhabditis Elegans 7608 93028 492 500 500
Homo Sapiens 12466 236631 1435 1500 1000

Table 1: Details of the PPIN and the bounds selected for each organism
analysis.

For each organism then, we provide two Figures: one representing the
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Figure 5: The ratio of essential Figure 6: The ratio of essential
proteins detected in the ranked top  proteins detected in the ranked
k proteins according to each metric ~ bottom k proteins according to
for the Saccharomyces cerevisiae each metric for the Saccharomyces
organism (yeast). cerevisiae organism (yeast).

performance over the top k proteins, and a second one over the bottom k
proteins. Note that for the first representation, the higher the ratio is then
the better that metric is said to perform. The opposite is true for the second
representation as a metric is said to perform better if the ratio is smaller. For
example, consider Figures 5 and 6 that show our results for Saccharomyces
Cerevisiae: the star centrality metric is impressively outperforming every
other considered nodal centrality metric with a final performance of having
50.1% of all essential proteins within the top 1000. Note that the maximum
that could be achieved here would be 81.9%, making the effective detection
rate equal to 61.17%. On the contrary, the other centrality metrics are almost
indistinguishable and achieve a final performance of 22.11%, 22.03%, 22.52%,
and 23.01% for degree, closeness, betweenness, and eigenvector centrality,
respectively. In the bottom 500 proteins, star centrality is still performing
better, albeit less impressively, achieving a final score of 9.17%, as compared
to the final scores of 10.4%, 10.24%, 9.91%, and 9.91%.

In the case of the Helicobacter Pyloris organism, shown in Figures 7 and
8, the situation is similar. Star centrality achieves a final score of detecting
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Figure 8: The ratio of essential
proteins detected in the ranked
bottom k proteins according to
each metric for the Helicobacter
Pyloris organism.

Figure 7: The ratio of essential
proteins detected in the ranked top
k proteins according to each metric
for the Helicobacter Pyloris organ-
ism.

55.65% within the top 500 proteins, as opposed to 38.6% for degree cen-
trality, 47.63% for closeness centrality, 34.09% for betweenness centrality,
and 40.63% for eigenvector centrality. Considering the performance over the
least well ranked proteins, it is easier to see that star centrality is best at
not ranking highly non-essential proteins, achieving a final score of 19.49%,
while the scores for the other centrality metrics are significantly higher at
37.82%, 32.51%, 41.31%, and 32.51%.

Continuing with the Staphylococcus Aureus organism (Figures 9 and 10),
the same pattern is again seen. Star centrality consistently outperforms the
other nodal metrics, and its accuracy is much higher at any given step in
the analysis. Overall, the final star centrality score is 65.61%, which easily
outperforms the final scores of the other centrality metrics, 40.21%, 38.14%,
39.18%, and 34.02%, respectively. Similarly, when considering the bottom
400 proteins, we obtain a final score of 7.96% for star centrality, as compared
to the very high 38.14%, 45.36%, 37.11%, and 29.90% for the remaining
centrality metrics.

Next, we continue our analysis with the Salmonella Enterica subspecies
CT 18 organism where the star centrality metric performs almost twice as
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Figure 9: The ratio of essential Figure 10: The ratio of essential
proteins detected in the ranked top proteins detected in the ranked
k proteins according to each metric  bottom k proteins according to
for the Staphylococcus aureus or- each metric for the Staphylococcus
ganism. aureus organism.

well than any other centrality metric, with a final score of 42.09%, as can
be seen in Figure 11. As a comparison, the score that is closest is the one
of degree centrality (22.84%), while closeness, betweenness, and eigenvector
centrality are at 15.65%, 20.63%, and 17.5%, respectively. When considering
the bottom 500 proteins in Figure 12, once more star centrality with a score
of 9.18% misclassifies less essential proteins than the other centrality metrics
at 17.68%, 16.43%, 18.78%, and 19.71%.

As mentioned in the introduction, the C. Elegans organism is of particular
interest as it shares common or homologue proteome to humans. Interest-
ingly, for both organisms, star centrality and closeness centrality perform
similarly. First, let us focus on Figures 13 and 14. As can be seen, star
centrality barely outperforms closeness centrality (behaving similarly) with
a final score of 47.29% compared to 41.58%. The other three metrics are far
behind with scores of 32.19%, 30.98%, and 19.10% for degree, betweenness,
and eigenvector centrality. As far as the bottom 500 ranked proteins are
concerned, the corresponding scores are low and we note that a similarly low
score is observed for the human proteome too. The scores are 3.38%, 5.40%,
4.35%, 4.89%, and 5.28% for the centrality metrics in the order presented in
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Figure 11: The ratio of essential
proteins detected in the ranked top
k proteins according to each metric
for the Salmonella enterica CT18
organism.

the Figure legends.

Last, we turn our attention to the biggest dataset available in this study.
The Homo Sapiens proteome is very large-scale, and as such, it is more diffi-
cult to exactly calculate the star centrality metric for each available protein.
Instead, we employ the ratio-based greedy algorithm (shown in Algorithm
2). Despite this fact, the star centrality ranking continues to perform best in
both the top (Figure 15) and the bottom k proteins (Figure 16). The final
scores are at 35.96% for star centrality, 21.05% for degree centrality, 30.24%
for closeness centrality, 27.74% for betweenness centrality, and 21.11% for
eigenvector centrality. When considering the bottom 1000 proteins, star cen-
trality performs as well, misclassifying only 2.09% of essential proteins, as
compared to the similarly low 3.9%, 2.79%, 3.83%, and 3% for the other
centrality metrics.

4.3 Greedy Algorithm Analysis

In this subsection, we compare the performance of the two approximation
algorithms in practice, using the same PPINs. The results are summarized
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ganism.

in Tables 2 and 3. Note that for Homo Sapiens, the exact optimal solution
was not found (see previous subsection), and hence the approximation ratios
are not reported. We make the following observations. First, Algorithm 2
provides a better solution for every protein in every PPIN when compared
to Algorithm 1. On average though, as can be seen in Table 2, both algo-
rithms perform similarly well, finding the optimal solution in the majority of

proteins.

Average Approximation Minimum Approximation Optimal Found
Organism Simple Ratio-based Simple Ratio-based Simple Ratio-based
Saccharomyces Cerevisiae 0.979 0.985 0.024 0.560 0.757 0.767
Helicobacter Pyloris 0.964 0.967 0.371 0.543 0.588 0.609
Staphylococcus Aureus 0.963 0.980 0.290 0.565 0.660 0.724
Salmonella Enterica CT18 0.966 0.969 0.241 0.559 0.628 0.644
Caenorhabditis Elegans 0.978 0.987 0.051 0.578 0.782 0.790

Table 2: Approximation ratio analysis for both Algorithms 1 and 2 for dif-
ferent PPINs. The last columns show the ratio of optimal solutions found.

More specifically, we note that in all organisms, Ratio-based Greedy al-
ways found a solution that was at least half as good as the optimal. On the
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other hand, we note that there are occasions where the Simple Greedy fails to
get a high quality solution and behaves close to its approximation guarantee.
However, we can also observe that both approximation algorithms are able
to find solutions that are very close to the optimal. In all organisms the
solution obtained by either algorithm was on average as good as 96.3% of
the optimal solution. This means that, even though in some cases the exact
optimal is not found, the optimality gap is very small.

Average Time Maximum Time
Organism Simple Ratio-based Solver Simple Ratio-based Solver
Saccharomyces Cerevisiae 0.074 0.122 0.151 18.841 174.160 438.155
Helicobacter Pyloris 0.025 0.036 0.049 0.498 2.476 4.176
Staphylococcus Aureus 0.026 0.038 0.047 1.303 3.188 3.924
Salmonella Enterica CT18 0.073 0.259 0.762 4.626 16.095 48.496
Caenorhabditis Elegans 0.131 0.853 1.781 21.147 194.716 1960.218

Table 3: Average and maximum computational times (in seconds) observed
for the approximation algorithms and the Gurobi solver for different PPINs.

As far as our time study, shown in Table 3, is concerned, the main result
is that, as expected, Simple Greedy outperforms both the more refined Ratio-
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based Greedy and the Gurobi solver. This performance extends to both the
average and the worst-case behavior of the three approaches.

5 Conclusions

In this work, we propose a new centrality metric, called star centrality, which
aims to consider the connections of the “best” induced star centered at a
node i. The problem was shown to be NP-hard, however two approximation
algorithms that perform efficiently, both as far as execution time and solution
quality are concerned, were devised and implemented. The metric was then
compared to traditional nodal centrality metrics in real-life protein-protein
interaction networks, outperforming them in all instances; often significantly.

The implications from our work are two-fold. From a biological aspect,
this metric provides researchers with a new and improved scoring scheme
for ranking proteins and their interactions based on not only the proteins
themselves, but also after considering their interacting partners. While our
study is focusing on a specific type of clusters (induced stars), understanding
how the new score works can prove valuable for developing other, group-based
scoring/ranking schemes. Another important aspect of our contribution is
that we were able to show that by considering groups of proteins we mitigate
known problems with current large-scale proteome databases, improving the
quality and robustness of the obtained scores.

We finally observe that the proposed metric does indeed take care of
the three caveats mentioned earlier. First, this extension does not favor
proteins that participate in a large number of interactions; instead it merely
favors proteins that are located in “strategic”, as far as the network topology
is concerned, locations in the proteome. Secondly, if an error exists and
an interaction is missing (or present, when it should not be), the effect it
has in the metric is alleviated as a set of proteins is considered, instead of
singleton proteins. Lastly, proteins with low co-expression that however serve
to connect otherwise disconnected protein complexes will have a higher star
centrality metric, helping in their identification, contrary to other centrality
metrics in use for PPINs.
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