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ABSTRACT: This paper presents a formulation for three-dimensional elasto- 
dynamics with an elliptic crack based on the Laplace and Fourier transforms and 
the convolution theorem. The dynamic stress intensity factor for the crack is deter- 
mined by solving a Fredholm integral equation of the first kind. The results of this 
paper are very close to those given by the two-dimensional dual integral equation 
method. 
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1 I N T R O D U C T I O N  

The three-dimensional elliptic crack under impact loading is one of the important  
problems of dynamic fracture. Due to the complexity of its mathematical treatment,  there 
are few analytic solutions in this respect published. References [1~3] developed a method 
for solving three-dimensional elasto-dynamics, in which some solutions with respect to the 
dynamic contact were given. The fundamental difficulty of the three-dimensional dynamic 
crack problem lies in the solution of two-dimensional dual integral equations. In the present 
work, on the basis of the formulation proposed by Ref.[2] and using the convolution theorem 
of the Fourier transform, the crack problem is reduced to the solution of a Fredholm integral 
equation of the first kind. This method avoids the difficulty in solving the two-dimensional 
dual integral equations, and the results show certain reasonability. 

2 F U N D A M E N T A L  E Q U A T I O N S  

The three-dimensional elasto-dynamic problem is governed by the equations 

102r v2 r  1 0 2 r  
cl or2 (1) 

in which r and ~ are Lam6 scalar potential and vector potential, respectively, defined by 

u = v r  + v x r (2) 
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u denotes displacement vector, V and V x are gradient and curl operators, Cl and c2 are 
the propagating velocities of longitudinal and transverse waves 

cl = [(~ + 2~)/p]~/~ c~ = (~/p)1/2 (~) 

A, # and p the Lamd constants and mass density of the material. 
Reference [2] provided the integral expression of the solution of Eqs.(1) in terms of the 

Laplace transform 

f* (x l , x2 ,xa ,  S) = f ( x l , x 2 , x 3 , t ) e - ' t d t  (4) 

and the double Fourier transform 

]* (~1, ~2, x3, s) ---- f* (x l ,  x2, xz, s)ei(~'+~2X2)dxldx2 (5) 
o o  o o  

in which f ( x l ,  x2, x3, t) represents r x2, x3, t) or any component of r  x2, x3, t), xi 
the spatial coordinate, t the time, s the Laplace transform parameter, ~1, ~2 the Fourior 
transform parameters, i = v/L--1. 

All field variables (e.g. stresses and displacements) can be expressed by the Laplace- 
Fourior transforms of the Lamd potentials through the generalized Hooke's law. We found 
that  there is a very simple relation between the Laplace-Fourior transform of the normal 
stress a33 and the normal displacement u3 at plane x3 = 0 as follows 

~__ ?~* ~;3(~1, ~2, O, $) -- 3 ( ~ 1 , ~ 2 , 0 , 8 ) / f I ; 3 ( ~ 1 , ~ 2 , 8  ) (6) 

where 

~ .  

n;s ( e l ,  ~2, s ) = - 7 1  (~ + eg- ~g)/2~ {~ ( ~ .  e~- eg)(~ +~ +eg)+ 

2 .  [~ (~ + ~ + ~) - 2~1~2 (~1 ~ + ~ ) ] }  (7) 

is one of the components of the so-cMled generalized influence function, and 

( ( 
formulae (6) and (7) are the basis of our following discussion. 

3 T H R E E - D I M E N S I O N A L  E L L I P T I C  C R A C K  U N D E R  I M P A C T  L O A D I N G  

Three-dimensionM elliptic crack under impact loading (see Fig.l) is one of the most 
important configurations of a dynamic three-dimensional embedded crack, in both theory 
and practice. The problem is governed by Eq.(1) coupled with the initial and boundary 
conditions as follows 

u~(zx, z2,  z3,  O) = 0 

Ou~(Zl, z2, z3, t) 
Ot = 0 

t=0 

(9) 
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V/X~ + x22 + x 2 --+ 00: 0.33 = pof(t) other 

X 3 --: 0 (X l ,Z2)  E ~ : 0.33 = 0.31 = 0.32 = 0 

x3=0 (zl,z2)~t~: u3=0 0.31=032=0 

0.ij = 0 

2002 

(10) 

where 

s 1 6 3  U~3(Xl, ~2, 0, 8) : U~ (~1, ~2, 0, s)e-i(~lXl+~2X2)d~ld~2 

in which/2 represents the region occupied by the crack, aij the stress tensor, P0 a constant, 
pof(t) denotes remote tensile loading, f ( t )  a function of time. The boundary conditions (1O) 
can be replaced by the following equivalent conditions (they are equivalent to each other in 
the sense of Griffith theory) 

V/x1 ~ + xg + ~g - ,  ~ :  0.,~ = 0 

x3 = 0 (Xl, x2) e /2 : 0.33 -: -pof(t) 0.31 = 0.32 :- 0 (11) 

X 3 • 0  (Xl ,X2)  ~ ~ : U3 -- :0  O"31 = 0"32 --=0 

Because (9), (11) are equivalent with (9), (10), and are easy to be solved, we use (9), (11) 
in the following discussion. 

t i l t  t 

Fig.l, Three-dimensional elliptic crack under impact loading 

4 C O N V O L U T I O N  A N D  T H E  F I R S T  K I N D  F R E D H O L M  I N T E G R A L  
E Q U A T I O N  

Performing the inversion of the double Fourier transform, we get 

* "* 0 S ~* aaa(xl,x2,0,s)=- {u3(~1,~2, ,  )/H~a(~l,~2,s)}e-i(~lxl+~'X')d~ld~2 (12) 

With the convolution theorem of the Fourier transform, it is rewritten as 

C f ?  �9 0.~3(z~, ~2, 0, s ) =  {u3(f~, f2, 0, , )h33(~  - m, x2 - ,2,  ~)} dmd,2 (13) 
oo oo 
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f/? h;3(xl, x2,0, 8) = (1//~3(~1, ~2, s))e-i(~lxl+~2Z2)d~ld~2 
o o  

Substituting the Laplace transform into the second formula of the boundary condition 
(11) yields 

  3(Xl, x2,0, 8) = -po f*  (8) 

where f* (s) is the Laplace transform of function f (t): Comparing this formula with formula 
(13), we have 

/_~o /_~o {u;(rh,r12,0, s)h~3(xl-rh,X2-~72, s))drlldr12=-Pof*(8) (14) 
o o  o o  

and from the third formula of (11),we know that 

u3(Xl,X2,0, t) = 0 (xl,x2) • 

Then formula (14) is simplified as 

f /r { u; Oh ' ~72' O' s ) h;3 ( x l - ~h , x2 - ~/2, s)} d~hd~/~ =-pof*(8) (14') 

This is a two-dimensional Fredholm integral equation of the first kind in which u~(~h, 
Y2,0, s) is unknown. From this equation, we can determine displacement u~ (x~, x2, 0, s)((xl, 
x2) E $2), i.e., the crack opening displacement in the Laplace transform domain is deter- 
mined, so is the corresponding dynamic stress intensity factor. 

5 T H E  S O L U T I O N  OF T H E  I N T E G R A L  E Q U A T I O N  (14') 

The unknown function U~(?~I , ?']2,0, 8) can be expressed by the following series 

o o  

u~(~h,7}2,0, s) = E C.~,,~(s)J,,~(a~h)Jn(b~}2) (15) 
m~--~-0 

where Cm,n(s) are the coefficients to be determined, J.~(x) and J~(x) the Bessel functions 
of the first kind with order m and n. Substituting (15) into (14'), we obtain the algebraic 
equation system for the unknown coefficients. The solution of the algebraic equation sys- 
tem determines the coefficients Cm,., and the crack opening displacement at the Laplace 
transform domain. 

6 D Y N A M I C  S T R E S S  I N T E N S I T Y  F A C T O R  

We rewrite the normal displacement u~(xl, x2, O, s) at the vicinity of the crack tip with 
distance ~ measured from the tip as u~(e,~o,O,s), where ~p =- tg-l(x2/xl). Because the 
stress state at the crack tip is in a plane strain condition, we have the formula 

2(1 - 
u~(r -E--x~ ~ (2e)l/2K~(b/a,~,8) (16) 

where E and u are Young's modulus and Poisson's ratio, K{ denotes the dynamic stress 
intensity factor of model I in the Laplace transform domain. Carrying out extrapolation 
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with  the formula  (16) (let e --> 0), we can calculates KI* f rom u~, which is a function of  

the geomet ry  parameters  b/a, ~v and the Laplace t rans form parameters .  Then  taking the 

inversion of  Laplace t ransform,  we find tha t  

Ki(b/a, ~, t) --- L- l (K~(b /a ,  ~, s)) (17) 

This is the dynamic  stress intensity factor  in the physical t ime-space. The  numerical  inver- 

sion of  the Laplace t rans form was systematical ly  studied by  one of the au thors  In) . 

We adopt  the normalized dynamic  stress intensity factor  

K (t)/KF (18) 

versus the  normalized t ime c2t/a, in which 

= E(k)  (a2 sin2 ~ + b2 c~ V) (19) 

is the  s tat ic  stress intensi ty factor  (i.e., is the well-known Green-Sneddon solution[5]), E(k)  

is the completely  elliptic integral of the second kind E(k)  = fo/2 ( 1 -  k2 sin2 9)1/2 dO, k 

represents the  module  k = [(a 2 - b  2) /a  2] 1/2 of the ellipse. 

7 N U M E R I C A L  E X A M P L E S  

Suppose 
I "  

f( t)  = H(t) = { 
0 t < 0 
1 t > O  

is the  Heaviside function, we deal with two kinds of  materials  with Poisson's  ratio v = 

0.29, 0.34, and  the geometry  parameter  b/a -- 0.25, 0.5, respectively. The  calculated results 

are shown in Fig.2. 
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Fig.2 The normalized dynamic stress intensity factor versus time 
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Fig.2 The normalized dynamic stress intensity factor versus time (continued) 

8 C O N C L U S I O N S  A N D  D I S C U S S I O N S  

The results given in Fig.2 show that  the dynamic stress intensity factors for different 

materials exhibit some similarity, in their time dependence. Therefore, the results can be 

used to describe the dynamic fracture behaviour of common structural materials. 

Previously, dynamic solutions available are only for two-dimensional cracks or penny- 

shaped crack under axi-symmetrical impact loading[ 5'6], which may be regarded as special 

cases of the present work, i.e., the cases for b/a -+ 0 or b/a --+ 1. The comparison shows 

that  the time variation of dynamic stress intensity factors for different configuration cracks 

has certain common characters. Of course, the effects of parameters b/a and ~ are given in 

the present paper. 

The present paper is mainly concerned with the impact fracture dynamics for a general 

three-dimensional crack. The aim of this study is to find out the early time behaviours of 

dynamic response of the material with crack or crack-like defect. Although we are still lack 

experimental results for dynamic behavior of three-dimensional elliptic crack, the comparison 

of our theoretical results with the well-known two-dimensional dynamic crack experiments 

indicates that the early time behaviour of the elliptic crack is reasonable. Secondly, the 

results given in Fig.2 also demonstrate that  the transient dynamic trend approaches the 

static state with the increase of time. 

The effect of the Poisson ratio of materials on the dynamic stress intensity factor is 

examined. It is well known that  the Poisson ratio may vary considerably in some cases, and 

the influence of such variation is not so significant in general. But in certain special cases, e.g. 

in the earthquake, the variation of Poisson's ratio (which describes the variation of c2/cl) 
is quite important [6]. It can be regarded as a precursor parameter of earthquakes [7]. As a 

matter  of fact, earthquake is a dynamic fracture process of the earth crust. The connection 

between fracture dynamics and earthquake rupture dynamics is important. 
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