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Abstract. Auditorium design is a complex task. Various programmatic, functional and 
acoustical parameters have to be resolved in the spatial design of an auditorium. This 
ongoing research project deals with the development of a computer-aided design system 
for the preliminary spatial design of proscenium type auditoriums. The concept of 
“acoustic sculpting” is used to generate the spatial form of the auditorium from 
programmatic, functional and acoustical parameters. These parameters are incorporated 
using a combination of mathematical, empirical and statistical methods. The generation 
of the spatial form of the auditorium is implemented as an algorithm that is executed on 
the computer. The spatial form of the auditorium generated by the system is exported as 
a computer model for design development and acoustical analysis. 

1. Introduction 

Auditorium design is a complex task. Various programmatic, functional and 
acoustical parameters have to be resolved in the spatial design of the 
auditorium. The emergence of sophisticated computational modeling tools has 
now enabled the creation of design systems that treat the design of auditoriums 
as an algorithmic process. In this paper, the design of proscenium-type 
auditoriums is presented as an algorithmic process. This process is implemented 
in a design system where the generator of the spatial form of the auditorium is 
modeled as a “virtual computer.” 

2. Auditorium Design Parameters 

The complexity of auditorium design arises from the need to resolve many 
interacting parameters. Some of the programmatic design parameters of the 
auditorium include the type of performance that is to be presented in the 
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auditorium and the capacity of the auditorium. Programmatic parameters help 
decide the dimensions of stage enclosures and seating areas. Functional 
parameters include anthropometric constraints such as the area per seat, visual 
constraints such as sight lines, and conditions for visual clarity. However, the 
key parameters that influence the generation of the spatial form of the 
auditorium are the acoustical parameters. Acoustical parameters are integrated 
in the auditorium design system using the concept of acoustical sculpting. 

3. Acoustic Sculpting 

Acoustic sculpting is the creation of architectural shapes and forms based 
primarily on acoustical parameters. It can be likened to sculpting, not with a 
chisel, but with abstract entities such as acoustical parameters. Acoustical 
parameters become special abstract tools that shape the environment in their 
own characteristic way, hence the term acoustic sculpting. 

In this context, it will be interesting to introduce the concept of a locus. In 
planar geometry, loci are lines traced by points according to certain rules or 
conditions. A circle is the locus of a point that is always equidistant from a 
given point. An ellipse is the locus of a point whose sum of distances from two 
given points is always equal. From these examples, it can be seen that a 
particular rule or condition can trace a particular locus. The scope of application 
of the concept of a locus can be dramatically widened by realizing that the word 
locus in Latin means place. Architecture involves the creation of places and 
spaces. A question can be posed - What is the locus of an acoustical parameter? 
In answering that question, architecture based on acoustical parameters can be 
created. Acoustics can become a form-giver for architecture. Figure 1 shows 
how the time delay gap, an acoustical parameter, is used to generate a semi-
elliptical spatial field using the concept of the locus. 

Acoustical parameters are often measured to assess the acoustical quality of 
a space or a scaled architectural model. They are indicators of the acoustical 
quality of the space in which they are measured. However, it is important to 
realize certain facts about acoustical parameters. Acoustical parameters are 
location specific. For a given sound source in a room, acoustical parameters 
vary systematically at different locations in the room. Acoustical parameters 
also vary when the sound source is varied. Hence, a set of acoustical parameters 
at a given location, for a specific sound source, can be used only to generate the 
general features of the architectural space around that location. Figure 2 shows 
the source-receiver locations used in the design system. This, to stay within the 
metaphor of sculpting, will result only in a first cut. Different sets of acoustical 
parameters from different locations can further refine the definition of the 
architectural space encompassing those locations. It has been found by 
researchers that at least 10 to 12 sets of acoustical parameters are required to 
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derive the mean values of acoustical parameters in an auditorium (Bradley & 
Halliwell, 1989). If architectural shapes and forms can be created from 
acoustical parameters, then a rational basis can be established for the creation of 
acoustical environments. 

 
 
Figure 1. Concept of locus used to derive a spatial field from an acoustical parameter. 

 
Currently, the creation of acoustical environments is a trial-and-error 

process that tries to match the acoustical parameters of the space being created, 
probably in the form of a physical model, with acoustical parameters that have 
been observed in other well-liked spaces. The manipulations of the space's 
shape and form to achieve the match, are done in an arbitrary fashion, with no 
explicit understanding of the relationships between the shape and form of the 
space and the corresponding acoustical parameters. There has been extensive 
research conducted in the 1960s, 1970s and 1980s by Ando (1985), Barron 
(1988), Barron & Lee (1988), Beranek (1962), Bradley (1986, 1990), Cremer 
(1978), Hawkes (1971) and Sabine (1964) to establish those aspects of the 
auditory experience that are important in the perception of the acoustical quality 
of a space, and how they relate to objectively measured acoustical parameters in 
that space. There has not been much research conducted except by Gade (1986, 
1989) and Chiang (1994) regarding the relationships between acoustical 
parameters and the shapes and forms of the spaces in which they are generated. 

Acoustic sculpting attempts to define the latter relationships and uses them 
to create a system that generates spatial forms of auditoriums based on 
acoustical parameters. This generative system is used as a tool for creating 
preliminary designs of proscenium-type auditoriums. 
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Figure 2. Spatial form of the auditorium showing the source-receiver pair for acoustical 

parameters. 

3.1. METHODS OF ACOUSTIC SCULPTING 

The process of generation of the spatial form of the auditoriums is related to the 
set of acoustical parameters both statistically and theoretically. The acoustical 
parameters for the generative system are drawn from, but are not limited to, the 
set presented in the following section. This set of parameters is used by 
acousticians to study concert hall and lecture room acoustics. These parameters 
are derived from response graphs of sound intensity variations at the receiving 
location. Figure 3 shows a response graph. Though the set is extensive, not all 
of the parameters are used in the spatial form generation stage. 

3.1.1.  Acoustical Parameters 
The acoustical parameters include Reverberation Time, Early Decay Time, 
Room Constant, Overall Loudness or Strength of Sound Source, Initial Time 
Delay Gap, Temporal Energy Ratios: Early/Total Energy Ratio (Deutlichkeit), 
Early/Late Energy Ratio (Clarity), Center Time, Lateral Energy Fraction, 
Spatial Impression, Bass Ratio, Bass Level Balance, Early Decay Time Ratio 
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and Center Time Ratio, Useful/Detrimental Ratio, Speech Transmission Index 
and the Rapid Speech Transmission Index. 

The different acoustical parameters cited above resolve into related groups 
that have corresponding subjective perception characteristics. These subjective 
perception characteristics are classified as Reverberance, Loudness, Clarity, 
Balance and Envelopment. 

A limited set of acoustical parameters related to these subjective perceptions 
are incorporated in the system (using both statistical and theoretical methods) 
that derives architectural parameters from the acoustical parameters. It must be 
remembered that, in the spatial form generation stage, acoustical parameters are 
not the only factors determining the shapes and forms of the auditoriums. Other 
factors like seating requirements, visual constraints and other programmatic 
requirements, along with the acoustical parameters, determine the spatial forms 
of the auditoriums. The values of the acoustical parameters for use in the 
generative system are drawn from a database of objectively measured readings 
in different architectural settings that have been subjectively evaluated as 
desirable. Based on studies done so far, a generative system based on 
macrostatic statistical relationships and some analytical theory has been 
developed by the author. Details of this system are to be found in another paper 
by the author (Mahalingam, 1992). 

 
 

Figure 3. Response graph showing sound intensity variation over time at receiver 
location. 
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4. Spatial Model Of The Auditorium 

The spatial form of the auditorium is modeled as a parametric object. Each 
vertex that makes up the topology of the auditorium is spatially located by a 
function of multiple parameters. These parameters may be directly input by the 
user of the design system or derived from the user input using calculations. The 
various parameters are linked in a spatial form generating algorithm using a 
structure that resembles an ASIC (application specific integrated circuit). Figure 
4 shows this relationship of the various parameters. This structure can also be 
reconfigured as a network or semi-lattice. The connectivity of the vertices that 
establishes the topology of the auditorium is derived from the spatial type of the 
proscenium auditorium. The whole design system is a “virtual computer” that 
outputs spatial designs of proscenium-type auditoriums. 
 

 
 

Figure 4. The relationship of the various parameters of the spatial form generator as an 
ASIC (application specific integrated circuit) 
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5. What Is A Virtual Computer? 

In object-oriented computing, entities are modeled as encapsulations of data, 
and operations that can be performed on that data. Encapsulation is a computer 
abstraction. A collection of data and operations normally performed on the data 
are closely related, so, they are treated as a single entity (rather than separate) 
for purposes of abstraction. Each encapsulation can be thought of as a virtual 
computer that is mapped onto a physical computer (see Figure 5) with its own 
private memory (its data) and instruction set (its operations). The reference to 
objects as computers was made by Alan Kay (1977). He envisaged a host 
computer being broken down into thousands of computers (virtual?), each 
having the capabilities of the whole, and exhibiting a certain behavior when 
sent a message which is a part of its instruction set. He called these (virtual?) 
computers "activities." According to him, object-oriented systems should be 
nothing but dynamically communicating "activities." As such they form an 
interesting model with which to simulate architectural design. Mitchell’s recent 
call (1994) for a “society of design” with a “collection of agents of different 
kinds interacting over a network” echoes the ideas of Alan Kay. In another 
interesting perspective, encapsulations have been likened to integrated circuits 
rather than virtual computers by Ledbetter & Cox (1985) (see Figure 4). 

 
 

Figure 5. The concept of a virtual computer (or computational object) being mapped 
onto a physical computer. 
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6. The Auditorium Design System 

The design system used to generate the preliminary spatial designs of 
proscenium type auditoriums is based on acoustical, functional and 
programmatic parameters. The computational model of the auditorium is 
parametric. The various acoustical, functional and programmatic parameters are 
its data. Procedures that compute the spatial parameters of the auditorium and 
create its graphic representation are its operations. These data and operations, 
when encapsulated, act as a virtual computer that is mapped onto the physical 
computer (see Figure 5). The function of this virtual computer is to output 
auditorium designs. 

The generative system involves an algorithmic procedure for the design of 
the auditoriums based on constants, user input of independent variables and 
derived variables. These constants and variables are used to calculate the spatial 
location of sets of vertices in 3D space that are linked to form wire-frame and 
shaded plane images of the auditoriums. The topology of the auditorium is 
based on the proscenium-type auditorium typology. It is a variant topology with 
the introduction of balconies only when necessary (see Figure 6). The vertices 
are parametrically controlled and change with changing parametric inputs. 

 
 

Figure 6. Topological model of the auditorium showing the variant topology for the 
balconies. 
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The algorithmic procedure is implemented in the SmalltalkTM object-
oriented programming language. The software has a user-friendly menu and 
graphic interface with which to input acoustical, functional and programmatic 
parameters. When any aspect of the model is changed, the spatial form is 
updated. The system provides a dynamic design environment. In the system, the 
spatial form changes in real time with changing input of the parameters. The 
auditorium is depicted in true perspective. Once the spatial form is generated, it 
can be viewed from any angle and from any distance. The systems can be used 
to rapidly generate alternate designs based on the various parameters. 

To limit the scope of the software design to manageable limits, the initial 
version of the generative system has a limited set of 21 independent variables. 
However, the total number of variables (both independent and derived) in the 
system is large, indicating a complex system. An interface has been developed 
that can transfer the computer model generated by this system in a format 
readily acceptable by commercial CAD packages (the DXF format) for design 
development. An interface has also been developed to link this system to 
acoustical simulation software (EASE and EARS) to predict what the 
auditorium will sound like if it is built. The view of the computer screen when 
running the software is shown in Figure 7. 

 

 
 

Figure 7. View of the screen of the design system software for auditoriums. 
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The Algorithmic Auditorium: Automating Auditorium Design 
 
Ganapathy Mahalingam, Ph.D. 
North Dakota State University 
 
Abstract 
 
The goal of this ongoing research project is the development of an algorithm for the process of auditorium design. A 
version of this algorithm has been implemented in a computer-based design system for the preliminary spatial 
design of proscenium-type auditoriums. The spatial form of the auditorium is derived from acoustical, functional 
and programmatic parameters. Each of these parameters implies an appropriate spatial form for the auditorium. The 
algorithm resolves the spatial implications of these multiple parameters to arrive at an "optimized" form of the 
auditorium. The design system is to be used by architects as a performance-based preliminary design tool. The 
process of generating the spatial form of the auditorium from architectural acoustical parameters is called acoustic 
sculpting. Acoustic sculpting is a type of performance-based design. Performance loci of the various parameters 
drive the form generation. This concept can be extended to include lighting and HVAC parameters as well in spatial 
form generation. This approach will eventually lead to the generation of various architectural spaces based on 
environmental performance criteria. The design of architectural spaces will then be based on tracing the loci of 
programmatic, functional and environmental performance parameters in addition to visual considerations. Current 
research work is focused on developing algorithms to derive acoustical parameters from the spatial forms generated 
by the design system. This will complete the cycle of inquiry to see if the forms that are generated yield the 
acoustical parameters on which they were based. Since similar measurements of acoustical parameters can be made 
in different spaces, this research will most likely not yield a deterministic design system but an effective design 
system. The successful implementation of an algorithmic process to design auditoriums also addresses the issue of 
the computability of architectural design. If auditorium design can be automated, then there is hope yet for the 
computability of architectural design. 
 
Introduction 
 
The algorithmic auditorium project (Mahalingam, 1998) started with two main premises. One was that you could 
automate auditorium design by developing an algorithmic process to generate the spatial form of the auditorium. 
The other was that you could generate spatial forms based on acoustical, functional and programmatic parameters. 
Both these premises were realized in the development of a design system for the preliminary spatial design of 
proscenium-type auditoriums (Mahalingam, 1995). 
 
The characterization of the system as a design system can be called into question. To resolve the issue of whether 
computers, or more appropriately, computer-based systems, can design, an Architectural Turing Test should be used. 
Take this scenario in an architect's office. The principal walks into the studio and gives a staff architect the task of 
generating the initial spatial form of a proscenium-type auditorium. The architect is given general requirements such 
as the seating capacity, area per seat, the performance type, and acoustical parameters such as reverberation time. 
The principal walks away. The architect sets to work. After 12 hours, she has drawn a perspective drawing of the 
initial spatial form of the auditorium, after resolving issues such as volume, seating areas, sight lines, seating slopes 
and sound reflection panels. Has she designed the auditorium? If she has, then a computer-based system that does 
what she has done is also designing. This is the basis of an Architectural Turing Test. Given the same input, if a 
computer-based system produces the same output as a human designer, and the human is considered to be designing, 
then the computer-based system can be said to be designing as well. 
 
In the design system, non-spatial information is converted to spatial form by an algorithm. This can be said to be the 
essence of computer-based architectural design, or for that matter, any process of designing material artifacts. This 
system proves that certain non-trivial design tasks can be automated, therefore, other non-trivial design tasks can 
also be automated if they are computationally articulated. The auditorium design system is based on performance 
criteria and their translation into spatial form. It was possible to create this system, because it was possible to 
computationally articulate the decision making in auditorium design. Rather than focus on the design behavior of the 
architect in the auditorium design process, the focus was placed on design decision making. This approach 
acknowledges that designs are created by a sequence of explicit decisions.  Design behavior is a larger rubric that 
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surrounds design decision-making.  Protocol analyses of design behavior often lead to unresolvable complexity in 
the articulation of design because they do not focus on the decision-making process. Protocol analyses can lead to 
computational articulation if they focus on the design decisions that are actually made. 
 
Main Concepts 
 
The single main concept used in the design system is acoustic sculpting (Mahalingam, 1992). Acoustic sculpting is 
the process by which spatial form is generated from architectural acoustical parameters. The sculpting analogy was 
used because the use of a particular tool for sculpting yields characteristic results. Sculptors use stone chisels, wood 
carving implements, blowtorches and lasers to sculpt material. What if sculptors working in digital media use 
abstract mathematical tools to sculpt forms? What if the sculptor's material was architectural space and the abstract 
mathematical tools were environmental performance criteria?  

 
 
Figure 1. Two performance loci, an elliptical field for the initial time delay gap and an isocandle envelope. 
 
Each acoustical parameter has its performance locus, a spatial form in which the acoustical parameter is generated. 
For example, the performance locus of the initial time delay gap (an acoustical parameter) is an elliptical spatial 
field. The initial time delay gap is the difference in time between the time taken by the first reflected ray to arrive at 
a receiver location and the time taken by the direct ray from the sound source. The initial time delay gap's 
performance locus is an elliptical field because an ellipse is the locus of a point that moves such that the sum of its 
distances from two fixed points is constant. The two fixed points are the source and the receiver locations. Similarly, 
the performance locus of an area of seating that minimizes distances from a point source is a segment of a circle. 
Deriving the performance locus of a parameter can be based on geometrical, mathematical or statistical analysis. For 
example, in the design system, some of the spatial implications of acoustical parameters were established by 
performing regression analysis between architectural dimensions and acoustical parameters recorded in various 
spaces. The use of performance loci to generate spatial form is a powerful concept. Performance loci of many 
environmental performance criteria including lighting and HVAC parameters can become form-givers for 
architectural spaces. Performance loci are a means to derive spatial form from non-spatial information. Multiple 
performance loci can be resolved into an optimal spatial form using Boolean operations such as intersection (see 
Figs. 1 & 2). The common space occupied by various performance loci becomes the optimal architectural space. 
This is similar to the constraint envelopes used in three-dimensional constraint-based reasoning. 
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Figure 2. The common optimal space between the two performance loci obtained through the Boolean operation of 
intersection 
 
Gyorgy Doczi (1981) wrote an important book on the power of limits in which he showed how many forms found in 
nature and in cultural artifacts were the results of "dinergy" patterns. Doczi showed that the intersection of "dinergy" 
patterns and their limiting conditions generated various forms of flowers, leaves, shells and fish. Doczi described 
these patterns as the creative energy of organic growth. Performance loci are like "dinergy" patterns that can be used 
to generate a new breed of organic architectural spaces. Greg Lynn (1999) uses the concept of animate form, but 
primarily deals with the transformation (or more accurately, deformation) of architectural forms based on external 
contextual forces using the "affector" technology available in special effects systems. Lynn's forms accommodate 
functions in unique and innovative ways, but the form generation process itself is not governed by environmental 
performance criteria. Animate forms will acquire more power if the transformation or deformation of the form being 
designed is being done by programmatic, functional and environmental performance criteria. Rather than being a 
pliant form acted on by external forces, architectural space should unfold as a response to performance criteria. 
 
Implementation 
 
The initial version of the auditorium design system (see Fig. 3) was implemented in 1991 using the object-oriented 
software development environment ObjectWorksTM. The programming language used was Smalltalk. The current 
version was developed using the VisualWorksTM software development environment, which is also based on 
Smalltalk (see Fig. 4). The system runs on the VisualWorksTM virtual machine and is platform independent. It can 
run on PCs, Macintoshes and Unix machines. The design system is modeled as a virtual computer. The various 
parameters are its input, the spatial form of the auditorium is its output, and the algorithmic process is like an 
integrated circuit in the processing unit. 
 
The spatial form of the auditorium is a collection of vertices. Each vertex is spatially located by a function of 
acoustical, functional and programmatic parameters. The vertices are connected based on the typology of the 
proscenium-type auditorium. The topology of the spatial form is provided by the typology. This topology generates 
the coupled space configuration of the stage house and the auditorium. The topology is not a fixed topology. For 
instance, balconies are embedded in the initial topology only to be activated when the parameters warrant it. The 
whole spatial form of the auditorium collapses to a point, a singularity, when the various parameters are set to zero. 
The embedded topology of the balcony collapses into the initial topology when not needed. Connecting appropriate 
vertices creates the different surfaces of the auditorium. Currently an algorithm is being developed (Mahalingam, 
1999) that models sound propagation in the auditorium as radiation from surface to surface. This model of diffuse 
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sound propagation allows for a quick assessment of the acoustical parameters of the computer model of the 
auditorium. 
 
The spatial form of the auditorium generated by the design system can be exported in file formats accepted by 
commercial CAD (AutoCADTM) and acoustical analysis (EASE/EARSTM) software. This allows an architect using 
the system to further develop and articulate the spatial form of the auditorium generated by the design system. In the 
design development stage, the spatial form generated by the design system will be the constraining envelope because 
it is based on the various performance criteria. 
 

 
Figure 3. Initial version of the auditorium design system from 1991. 
 

 
Figure 4. Current version of the auditorium design system. 
 
Concluding Thoughts 
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Acoustic sculpting addresses the generation of spatial forms from acoustical parameters. Similar spatial form 
generation techniques can be applied to lighting and HVAC parameters. Just as we can ask what the performance 
locus or spatial form of an acoustical parameter is, so we can ask what the performance locus or spatial form of a 
lighting or HVAC parameter is! Architectural space generation will become a supple manipulation and visual (?) 
resolution of the elliptical spatial fields of time delay gaps, isocandle envelopes and isothermal bubbles! Generating 
optimal forms from performance loci will be the challenge. One can begin the design process with performance loci, 
yet the final optimization of the spatial form can still be visual, which however, may now be difficult to justify with 
the spatial articulation of other performance criteria. 
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Abstract. The technology of nanoblock-based circuits is enabling the 
creation of ultra-small sensors that can transmit their location and 
readings using radio frequencies. This technology has the potential to 
enhance the optimization of environmental performance criteria in 
spatial enclosures, using a wide range of actuators that function at 
different scales. The combination of such ultra-small sensors with 
actuators will enable the creation of spatial enclosures that are 
complex adaptive systems, which dynamically optimize the various 
environmental performance criteria for the enclosures. Defining a 
model for the optimization process in these systems presents 
significant challenges. This paper will set out a model for the use of 
ultra-small sensor systems in optimizing environmental performance 
criteria in spatial enclosures, especially acoustical performance 
criteria. 

1. Introduction 

The technology of nanoblock-based circuits is enabling the creation of ultra-
small sensors that can transmit their location and readings using radio 
frequencies. This technology has the potential to enhance the optimization of 
environmental performance criteria in spatial enclosures, using a wide range 
of actuators that function at different scales. These actuators range from 
material modifiers that use piezoelectric effects to micro-electrical 
mechanical systems to motors that move large panels. The combination of 
such ultra-small sensors with actuators will enable the creation of spatial 
enclosures that are complex adaptive systems, which dynamically optimize 
the various environmental performance criteria for the enclosures. Defining a 
model for the optimization process in these systems presents significant 
challenges. This paper will set out a model and relevant challenges for the 
use of ultra-small sensor systems that are combined with actuators to 
optimize environmental performance criteria in spatial enclosures. This 
model will enable the consideration of architectural space as a dynamic, 
adaptive entity rather than as a static entity, which has been the traditional 
approach. This model also has the potential to serve a broader range of 
optimization problems in other contexts as well. 
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2. Sensors and Effectors 

2.1 NANOBLOCKS AND ULTRA-SMALL SENSORS 

Nanoblocks are substrates for circuit components at the scale of nanometers. 
These nanoblocks are the size of pepper flakes. These blocks are combined 
into ultra-small circuits that can function as a sensor or be part of an 
actuator. A sensor measures some environmental criterion. An actuator takes 
the measurement or reading of a sensor and performs an action through 
electrical and mechanically driven devices. An actuator may have a digital 
signal processor as part of its configuration. These nanoblock-based ultra-
small sensors can be so ubiquitous as to form a coat of ‘sensor paint’ on 
surfaces of spatial enclosures. 

2.2 SENSOR ARRAYS AND NETWORKS 

Since the ultra-small sensors are so small that thousands could be placed in 
one square inch, their individual readings may be so close to each other that 
they are not significantly different from each other. This allows the 
combination of many sensors into sensor arrays using statistical techniques 
such as cluster analysis. Cluster analysis is a statistical technique that groups 
entities together such that the within-group variation is minimized and 
between-group variation is maximized. These sensor arrays can be 
dynamically defined based on a cyclic sampling of the sensor readings, 
performing the cluster analysis, and grouping sensors into sensor arrays. In 
the case of steady-state criteria, these sensor arrays are fairly stable in terms 
of their boundaries, but in dynamic criteria, the boundaries of the sensor 
arrays may vary in time. The same process can also be used for the actuators 
if the actuators are at the same scale as the sensors. 

These sensor arrays or ‘zones’ can communicate with each other using 
radio frequency waves, exchange information, and create ad-hoc networks of 
measurements. Optimization of environmental performance criteria in the 
spatial enclosures is modeled as an optimization based on this network of 
measurements. 

2.3 EFFECTORS 

An effector is a complex entity that produces an effect on another entity or 
on the environment. An effector is a sensor-actuator pairing. It combines, at 
a minimum, one sensor with one actuator. Other configurations that are 
possible are the coupling of one sensor with many actuators, many sensors 
with one actuator, and many sensors with many actuators. The actuator 
performs its action based on the readings from one or more sensors. This 
actuation process can utilize computation or other forms of processing of the 
sensor data. The optimization, both spatial and temporal, of readings from 
multiple sensors requires sophisticated techniques. The sensor can simply be 
a measuring instrument that record measurements of different kinds. Sensors 
are available that can measure temperature, humidity, mass airflow, position, 
etc. An actuator can range in scale from one that does molecular 
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manipulation to micro electro-mechanical systems to large scale motor-based 
kinetic systems. 

3.  Environmental Performance 

3.1 ENVIRONMENTAL PERFORMANCE CRITERIA 

The environmental performance criteria of interest to designers of spatial 
enclosures for various purposes are illumination levels, sound frequencies, 
sound amplitude, sound intensities, temperature and humidity. These 
performance criteria correspond to the human senses of sight, hearing and 
touch respectively. Being able to optimize these criteria in complex spatial 
enclosures will enhance human activities in those enclosures in transparent 
and subtle ways. 

For example, patrons sitting in a library carrel and reading books will not 
notice that these ultra-small sensors have recorded the illumination levels on 
their desktops and signaled the lights overhead to increase their brightness. 
Concert goers in a concert hall will not notice the detection of an echo 
condition and its cancellation by a network of actuators controlled by 
sensors on the surfaces of the spatial enclosure of the auditorium. A 
homeless man will not realize that the park bench he is approaching is being 
warmed up for him to curl on as he approaches the bench. 

3.2 STEADY-STATE AND DYNAMIC ENVIRONMENTAL PERFORMANCE 
CRITERIA 

A steady-state environmental performance criterion is one that does not vary 
significantly over time, unless a change is made to one of its causal agents. 
A dynamic environmental performance criterion is one which varies in time. 
The time cycles can range from mere milliseconds or seconds in the case of 
sound, to a year in the case of temperature. Illumination levels in a spatial 
enclosure are steady-state phenomena. Unless the light sources are changed, 
the illumination levels stabilize in a very short duration after the light 
sources are turned on. The only exception to this is daylight which causes 
illumination levels to vary over a time cycle. Temperature variation is 
similarly a steady-state phenomenon, especially in interior spatial 
enclosures. Temperature variation can be a dynamic phenomenon if the 
spatial enclosure has a membrane exposed to the exterior, which has a 
dynamic temperature range over a time cycle. 
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4.  Optimization 

4.1 OPTIMIZATION OF ENVIRONMENTAL PERFORMANCE CRITERIA 

Optimization can be simply defined as the maximizing or minimizing a 
particular quantity, in this case, the measurements of various environmental 
performance criteria recorded by the various sensors. 

The spatial distribution of sensors makes it necessary to consider the 
spatial effect of the optimization. A local optimization has global effects, and 
global optimization has local effects. This spatial effect can be resolved 
using relatively simple techniques in the case of steady-state criteria. The 
optimization becomes very complex when the criteria are dynamic and 
change over different time cycles. For example, sound changes over time 
cycles measured in millisecond intervals and temperature varies over time 
cycles measured in hours. 

Optimization of environmental performance criteria is complicated by the 
fact that human preferences are often based on aggregate measurements of 
the environmental performance criteria rather than instantaneous 
measurements. For example, human preferences for acoustical conditions are 
based on the ratio of sound energy summations over time intervals, rather 
than the instantaneous sound energy variation in time, as would be indicated 
by an energy response graph. 
 

4.2 RESOLVING THE SPATIAL EFFECTS OF SOURCES AND EFFECTORS 

 
The optimization of the environmental performance criteria depends to a 
large extent on the resolution of the spatial effects caused by the sources 
(light fixtures, sound sources, heat sources, etc.) and the spatial effects 
caused by the surfaces that make up the enclosure. The measurement at a 
particular sensor at a particular time can be modeled as a vector of the spatial 
effects of the various sources and surfaces that are part of the spatial 
enclosure. All the vectors are convolved in time to produce the dynamic 
variation of criteria at a particular sensor location. 
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Figure 1. Diagram of a system showing a single source, a set of effectors (sensor-actuator 
pairs) and a performance sensor. This system is called an optimaton. 

 
An optimization network that links a single source, effectors and a single 

performance sensor is called an optimaton. An optimaton behaves like a 
neural network in that the source acts as an input, the network of effectors 
optimizes the effect of the source or “transforms” the source and the 
performance sensor receives the output of the transformation. Multiple 
optimatons can be linked to form meta-networks by networking the sources 
or the performance sensors. 

The mathematical model for the spatial effect of multiple sources in a 
spatial enclosure made up of a finite number of surfaces can be modeled as 
follows: 
1) Let us say there are m sources S1.…..Sm.  
2) Let us also say that there are n surfaces E1.…..En  such that each functions 
as an effector (sensor-actuator pair), and 
3) Let us measure performance characteristics at one performance sensor R. 
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Figure 2. Diagram showing the form factor between two components 

 
The spatial relationship between any two components of an optimization 

network is called its form factor. Form factors establish the spatial effect 
between a source and an effector, or between an effector and another 
effector, between a source and a performance sensor, and an effector and a 
performance sensor. Figure 2 shows the form factor relationships between 
any two components in the model. 

In Figure 2, ABCD and EFGH are two components. MN and OP are the 
normals to the two components at their centroids. NP is the distance between 
the two components. The angle between the two components is the angle 
between the normals. To derive the form factor between the two 
components, the following relations are taken into account: 
1. The radiation between the components is directly proportional to the ratio 
of their areas. This can also be modeled as being proportional to the solid 
angle subtended by the two components. 
2. The radiation between the two components is inversely proportional to the 
square of the distance between the components. 
3. The radiation between the two components is proportional to the cosine of 
the angle between the two components. 
The form factor for the two components will then be: (Aabcd/Aefgh) * 
(1/Dnp

2)*(cosθ) 
For a situation where there is a single source, n effectors and one 

performance sensor, there are the following form factors: 
1) Source to performance sensor (SR) 
2) Source to all effectors (SE1.…..SEn) 
3) Each effector to all other effectors (E1E2.…..E1En) 
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4) Each effector to the performance sensor (E1R……EnR) 
These form factors can be written as a sum of vectors: V(SR) +  V(∑1 to n 

SEn) +  V(∑1 to n En∑1 to n-1 (En+1)) +  V(∑1 to n EnR). These form factors add up 
to a total of (1) + (n) + n(n-1) + (n) = n2 + n + 1 form factors. 

The radiation sequence from the sources to the effectors to the 
performance sensor can be modeled. In this model, 
1) Energy is radiated from the source to the performance sensor 
2) Energy is radiated from the source to all the effectors in the spatial 
enclosure 
3) Energy is radiated from all the effectors to the performance sensor 
4) Energy is radiated from each effector to all other effectors 
5) Energy is radiated from all effectors to the performance sensor 
6) Steps 4 and 5 are repeated till the energy is dissipated 
 Steps 1-5 are defined as constituting the primary propagation. This 
propagation engages all form factors once. The energy is therefore 
multiplied by (n2 + n + 1) form factors for this primary propagation. After 
this propagation, the secondary propagation is a repetition of the radiation 
from each effector to all other effectors, and from all effectors to the 
performance sensor (steps 4 and 5). This represents n(n - 1) + n = n2 form 
factor calculations per cycle. This propagation cycle is repeated at the 
required frequency f. Therefore the total number of form factor computations 
for energy propagation is ((n2  +  n + 1)+(n2)f) if there are no form factor 
updates required by changes in effectors. For m sources there are m((n2 + n + 
1)+(n2)f) form factor computations for the propagation. This is a polynomial 
and can be computed in polynomial time. 

This process is complicated by the fact that any change at an effector will 
affect the subsequent propagation. If an effector changes in a single 
propagation cycle, then the following form factors change: 
1) That effector to all other effectors 
2) That effector to the performance sensor 
3) That effector to the source 

This represents an update of (n-1) + (1) + (1) = (n + 1) form factors for 
the next propagation cycle. If all effectors change in one cycle, then the 
following form factors will change: 
1) All effectors to each other 
2) All effectors to performance sensor 
3) Source to all effectors 

This represents an update of n(n - 1) + (n) + (n) = (n2 + n) or n(n + 1)form 
factors for the next propagation cycle. The algorithm for energy propagation 
will be as follows: 
1) Start with energy Q 
2) Multiply Q by vectors of a total of (n2 + n + 1) form factors 
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3) Record energy and time of arrival at the performance sensor, after 
multiplication by vectors that end in performance sensor 
4) Update n(n + 1) form factors, where n is the number of effectors that have 
changed 
5) Multiply Q by vectors of a total of (n2) form factors 
6) Update/record energy and time of arrival at the performance sensor, after 
multiplication by vectors that end in performance sensor 
7) Repeat updates of form factors 
8) Repeat multiplication by vectors of a total of (n2) form factors 
9) Update/record energy and time of arrival at the performance sensor, after 
multiplication by vectors that end in performance sensor 
10) Plot energy response graph 
11) Sum energy for time intervals of interest 
12) Compute parameters based on relations between energy at different time 
intervals 

4.3 OPTIMIZATION FUNCTIONS 

Optimization in this system will be the optimization of form factors based on 
changes made by effectors. Each effector can be changed based on an 
objective function, the form factors can be updated, new vectors of form 
factors can be computed, and the propagation cycle can be repeated. 

The objective function of a form factor between two components can be 
based on three terms, the area, the distance between components and the 
angle between the components. It will take the form: f(a, d, θ) 

Each of the variables in the objective function has a range of values. The 
ranges are as follows: 
1) The area (a) can vary from 0 to ∞ 
2) The distance (d) can vary from 0 to ∞, but a practical upper limit is 
√(initial energy ⁄ perception threshold) 
3) The angle between components (θ) can vary from 0 to π 

The objective function for a spatial enclosure is a function of a maximum 
of (n2 + n + 1) form factors. It will take on the form: f (ff1……ffn

2
 + n + 1). An 

objective function used in the optimization of environmental performance 
criteria can have up to (n2 + n + 1) terms. This is a large number of terms in 
an objective function. However, these terms can be grouped into four sets 
that behave in a concerted way. These four sets are: 
1) Term associated with direct transfer of energy from source to receiver. 
2) Terms associated with transfer of energy from a source to all other 
effectors. 
3) Terms associated with transfer of energy from an effector to all other 
effectors. 
4) Terms associated with the transfer of energy from all effectors to the 
receiver. 

4.4 COMMON FRAMEWORK 

The complex process of optimizing the various environmental performance 
criteria can be resolved by adopting a common framework for the spatial 
propagation of the various types of energy. One such framework is the 
general model of radiation (Mahalingam, 2000). Radiation is simply 
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considered as the transfer of energy between spatially separated surfaces. For 
the modeling of temperature variation in a spatial enclosure, this technique 
can be applied directly. The radiosity based modeling of light propagation in 
spatial enclosures provides a theoretical framework for modeling 
illumination levels in the spatial enclosure based on radiation. The radiation-
based modeling of sound propagation provides a theoretical framework for 
the modeling of sound intensity levels in the spatial enclosure (Mahalingam, 
1999). 

The triple integral form of the radiation equation, that measures radiation 
from a source to a surface, integrates intensities based the variation of the 
surface orientation (the cosine or Lambertian component), the area of the 
surface, the solid angle subtended by the surface at the source, and time. 
This may provide the common framework that may simplify the 
optimization process. 

This relationship is given by: 

Qe = ∫∫∫ LecosθdAdΩdt (Woan, 2000) 

Qe = energy at a surface 
Le = rate of transfer of energy per unit area per steradian 
cosθ = angle between surface where energy is being measured and the source 
A = area of surface where energy is being measured 
Ω = solid angle in steradians subtended by surface where energy is being 
measured 
t = time in seconds 

5.  Conclusion 

This paper has introduced a model for the optimization of environmental 
performance criteria in spatial enclosures using a system of effectors (sensor-
actuator pairs). This model uses a common radiation-based propagation 
framework for different kinds of energy, namely thermal, luminous and 
acoustical energy. The effectors that regulate the various environmental 
performance criteria are shown to form optimization networks or 
optimatons. These optimatons behave in a manner that is similar to other 
well-known computational networks such as neural networks. 
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Enhanced Boundary Representation: A lingua franca for 
computer-based building performance simulation? 

Ganapathy Mahalingam, Ph.D. 

Abstract 
With the realistic visual representation of buildings on the computer having reached maturity, the emphasis 
has now shifted to the performance simulation of buildings on the computer. The challenge of performance 
simulation in computer-based models of buildings lies in the integration of various simulation techniques 
that require different kinds of building representations. Traditional simulation techniques for luminous, 
acoustic and thermal environments require different building representations. The paper proposes that an 
enhanced boundary representation is a viable, common building representation format for performance 
simulation of illumination levels, acoustical parameters and thermal comfort, thereby providing a building 
representation format for multi-domain performance simulation on the computer. Simulation techniques 
that have been developed for radiosity-based modeling of illumination in buildings, radiation-based 
modeling of sound propagation in spatial enclosures, and the modeling of thermal comfort based on mean 
radiant temperatures, point to a convergence of techniques. These techniques can all work based on an 
enhanced boundary or surface representation of buildings. The paper suggests that an enhanced boundary 
representation format, and integrated performance simulation techniques based on radiation, can together 
serve as a core model for developers of computer-aided design analysis systems. 

1 Introduction 
In the four decades of its rapid development, the field of computer-aided architectural 
design (CAAD) has successfully focused on the visual synthesis and representation of 
architectural designs. The visualization of built things has been achieved at 
unprecedented levels of realism in both static and animated forms. As architects, we 
cannot be satisfied, dealing with built things on a purely visual level. Architectural 
creations engage us and affect us in many other ways that have to be understood and 
computationally modeled to augment our design capabilities. The key benefit of the 
computational modeling of architecture, which is yet to be fully realized, is that it makes 
evaluation of designs possible before they are built. 

Extensive research has been conducted in the computational modeling of the natural 
environment. The visual modeling of the natural and the built environment has been 
pursued rigorously with excellent results. However, the computational modeling of the 
built environment in its multiple aspects is still in its infancy. The research challenge of 
the next decade is the computational modeling of the built environment at all scales, from 
individual buildings to large cities, that focuses on aspects other than visualization. This 
computational modeling of architectural entities and architectural design processes 
should emphasize performance simulation over the visualization of the product. This will 
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enable architects to computationally evaluate their designs based on various aspects of 
performance. The performance of designs for buildings should now become the center of 
attention for researchers engaged in the computational modeling of the built environment. 
Though this task presents many challenges, the development of computer-aided design 
analysis systems (CADAS) is the logical next step in the evolution of computer-aided 
architectural design. The various issues in the multi-domain simulation of building 
performance in computer-based models of buildings have to be systematically addressed 
if progress is to be made. 

2 Performance Simulation 
The challenge of performance simulation in computer-based models of buildings lies in 
the integration of various simulation techniques that require different kinds of building 
representations. This has been called the "integration problem." Traditional simulation 
techniques for luminous, acoustic and thermal performance require different building 
representations or data models that contain both geometric and attribute data. Initial data 
models for the representation of buildings on computers were directed towards visual 
representation. The boundary representation of building forms enabled surface 
characteristics of buildings to be successfully modeled and rendered. The use of color and 
texture for the representation of materials by applying texture, transparency and bump 
maps onto surfaces enabled the realistic visual representation of buildings. When the 
material properties of forms, such as mass, needed to be addressed in structural analysis, 
constructive solid geometry (CSG) was used as the representational model. Mass 
properties could be easily calculated from the CSG representational model. The CSG 
representational model, however, did not serve the needs of performance simulation in 
other domains well, and was useful only in a narrow domain. This has restricted the use 
of CSG mainly in computer-aided design systems used by mechanical and structural 
engineers. This may not be the case with boundary representation.  

2.1 Domains of Performance Simulation 

While there is a wide range of performance measures used in the design of buildings, the 
performance of buildings needs to be evaluated in the domains of the five senses of 
human beings to test the quality of a building's habitability. The five human senses are 
sight, hearing, touch, smell and taste. Of these, sight, hearing and touch (felt as 
kinesthetics or tectonics, though these may be argued to be muscular senses) are the 
critical senses that architects have traditionally addressed while designing buildings. 
Architecture has long reigned primarily as a visual art, with the visual manipulation of 
virtual material being the predominant mode for designing buildings. Architects using 
traditional techniques have evaluated the performance of buildings only in the domains of 
the three critical senses mentioned earlier. To evaluate computer-based architectural 
designs in the domains of the human senses, computer-based models of designs for 
buildings should have a representational structure that allows the simulation of the 
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buildings in various sensory modes, or alternatively, provide indices for the sensory 
modes. 

2.2 Integration of Performance Domains 

Since human sensory domains primarily involve the processing of radiation information 
(with the exception of taste and smell), simulation techniques based on radiation models 
become a natural choice when trying to integrate performance simulation techniques. 
Simulation techniques that have been developed for the radiosity-based modeling of 
illumination in buildings, radiation-based modeling of sound propagation in spatial 
enclosures, and the modeling of thermal comfort based on mean radiant temperatures, 
point to a convergence of simulation techniques. These techniques can all be used with an 
enhanced boundary or surface representation of buildings. The enhanced boundary 
representation format, and integrated performance simulation techniques based on 
radiation, can now serve as the core model for developers of computer-aided design 
analysis systems. 

3 Integrated Performance Simulation 
A significant research effort in integrated performance simulation in computer-based 
models of buildings is the SEMPER system being developed at Carnegie Mellon 
University. The SEMPER system uses a variety of building representations for various 
performance simulations. In the SEMPER system, energy flows are simulated using cell 
nodes for walls and spaces. Airflow is simulated using multiple zones of differing 
pressures. HVAC systems are modeled as components linked in a distribution network. 
Lighting is simulated using a radiosity-based method. Sound propagation is modeled as 
the generation and emission of "virtual phonons" generating an excitance pattern for the 
room enclosures (Mahdavi 1999). In the SEMPER system, the building representations 
needed for the various performance simulations are derived from a shared object model 
and a topology kernel. To solve the "integration problem," the developers of SEMPER 
have taken the approach of creating a lowest common denominator building 
representation for the shared object model and the topology kernel, from which other 
building representations are derived. These complex derivations create domain models 
and domain kernels for performance simulation in the various domains. 

Enhanced boundary representation is an alternate, common building representation 
format that can enable performance simulation of multiple aspects of a building's 
performance. Performance simulation of illumination levels, acoustics and thermal 
comfort can be achieved using an enhanced boundary representation format without a 
complex process to derive different building representations for different performance 
simulations. 

The enhanced boundary representation method for representing architectural forms 
promises to be a strong candidate for a common representational format for the multi-
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domain evaluation of building performance for many reasons. The radiosity-based 
simulation of light propagation in spaces enables visual simulation, and the evaluation of 
computer-based building models for illumination levels (Greenberg 1995). The success 
of modeling and rendering software such as form.ZTM, which uses boundary 
representation predominantly, is a testimony to this fact. The virtual light meter provided 
in the LightscapeTM software, is an example of how illumination levels can be measured 
in computer models of buildings created with a boundary representation format. The 
radiation-based model for the propagation of sound in computer-based building models 
enables acoustical parameters related to the perception of speech and music to be 
computed and evaluated (Mahalingam 1999). The radiation-based indicator, mean radiant 
temperature (MRT) allows thermal comfort to be evaluated in computer-based models of 
buildings. Though the mean radiant temperature is not a complete measure of thermal 
comfort (researchers suggest that air temperature be averaged with it to derive what is 
called the operative temperature), it is a good general indicator (Stein and Reynolds 
2000). In these three examples, enhanced boundary representation is shown to be 
sufficient for the performance simulations in three human sensory domains, sight, hearing 
and touch (touch can be represented by thermal comfort, since the skin is the sensory 
organ for the perception of thermal comfort). The various performance indicators and the 
simulation techniques used for these three performance simulations are also related 
because they are all based on radiation models. 

3.1 Enhanced Boundary Representation Format 

To serve as a common representational format for various types of performance 
simulations, enhanced boundary representation of buildings should have the following 
specifications: 

• All the forms that make up the building should be constructed out of well-formed 
surfaces. 

• It should be possible to compute the center of each surface. 

• It should be possible to compute the area of each surface. 

• It should be possible to compute the surface normal at the center and vertices of 
each surface. 

• It should be possible to compute the form-factor for a pair of surfaces (form-
factor is a relationship between two surfaces, including orientation, to simulate a 
radiation exchange between them) 

• It should be possible to define the material properties related to the various 
performance domains for each surface. 

These specifications will enable the various performance simulation techniques to be 
used effectively based on what is essentially a common representational format. Because 
the surface components are the same for the performance simulations, and form-factors 
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between pairs of surface components are the same, it is also possible to represent the 
surfaces computationally using object-oriented modeling techniques and modeling the 
radiation interaction between the surfaces as computations in a network. 

3.2 Limitations 

The use of an enhanced boundary representation format for computer-based building 
models has some limitations. All surfaces should preferably be planar to reduce 
computational complexity. Curved surfaces must be faceted into planar surfaces. This 
needs to be done so that the surface normals for the surfaces (especially at the center of 
the surfaces) can be effectively computed. The occlusion of surfaces by other surfaces 
also needs to be computed efficiently. The size of the surfaces should also be at the 
appropriate level of resolution for efficiency in computations. Having many tiny surfaces 
in the building model will greatly increase the computational resources required for the 
simulations. Because of the nature of the model, boundary representation and radiation 
models will be more successful in the performance simulation of global, diffuse effects 
rather than directional and specular effects. 

4 Conclusions 
The performance simulation of computer-based designs of buildings in various 
performance domains has been difficult because of what has been called the 'integration 
problem." Researchers trying to use performance simulation techniques with building 
representations that are not compatible with the simulation techniques have augmented 
this problem. In this paper, an approach has been suggested that takes a building 
representation format that is currently being used in computer-aided architectural design 
systems, and using an enhanced version of that representation format as a basis for an 
integrated set of performance simulation techniques based on a common radiation model. 
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POCHÉ 
Polyhedral Objects Controlled by Heteromorphic Effectors 

Ganapathy Mahalingam 
North Dakota State University 

Key words: Effectors, abstract machines, design as interface 

Abstract: This paper takes the architectural concept of poché and uses it to explore new 
possibilities in transforming polyhedra with effectors. In many computer-aided 
design systems, architectural entities are represented as well-formed 
polyhedra. Parameters and functions can be used to modify the forms of these 
polyhedra. For example, a cuboid can be transformed by changing its length, 
breadth and height, which are its parameters. In a more complex example, a 
polyhedron can be transformed by a set of user-defined functions, which 
control its vertices, edges and faces. These parameters and functions can 
further be embodied as effectors that control and transform the polyhedra in 
extremely complex ways. An effector is an entity, which has a transforming 
effect on another entity or system. An effector is more complex than a 
parameter or function. An effector can be a modelled as a virtual computer. 
Effectors can take on many roles that range from geometric transformation 
agents and constraints to performance criteria. The concept of the poché, made 
famous by Venturi is familiar to architects. The poché is a device to mediate 
the differences between an interior and an exterior condition or between two 
interior conditions. In a poché, the role of the effector changes from being an 
agent that acts on a polyhedron from the outside, to an agent that acts as a 
mediator between an interior polyhedron and an exterior polyhedron, which 
represent interior and exterior environments respectively. This bi-
directionality in the role of the effector allows a wide range of architectural 
responses to be modelled. The effector then becomes an interface in the true 
sense of the word. This concept will work best in a three-dimensional or four-
dimensional representational world but can be used effectively in a two-
dimensional representational world as well. The application of this concept in 
design systems is explored with examples drawn from the work of the author, 
and practitioners who are using the concept of effectors in their work. A brief 
discussion of how this technique can evolve in the future is presented. 
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1. ARCHITECTURAL ENTITIES AS POLYHEDRAL 

OBJECTS 

 
Architectural entities can be classified as physical or conceptual. Physical 

architectural entities are made of building materials and have geometric 
form. Physical architectural entities comprise building materials, 
components and assemblies. Conceptual architectural entities may have 
geometric form but are not made up of any material. Conceptual 
architectural entities comprise entities such as ordering systems and 
circulation systems. Both physical and conceptual architectural entities have 
spatial location. Conceptual architectural entities can influence the geometric 
form and spatial location of physical architectural entities. Conceptual 
architectural entities, in turn, can be defined by physical architectural 
entities. Architectural design can be considered as the definition and 
integration of physical and conceptual entities and fixing their location in 
space. 

In computer-aided design systems, physical architectural entities are 
represented as well-formed polyhedra. Polyhedra, as their name implies, are 
volumes defined by a closed boundary of faces. The representation of 
architectural entities as well-formed polyhedra is called boundary 
representation. By their definition polyhedra are finite and can be fabricated 
with material. In their computer-based representation, polyhedra are defined 
as hierarchical collections of vertices, edges and faces. Of these, the actual 
variables are the values for the tuples that define each of the vertices of a 
polyhedron. These variables, in turn, determine the variations in the 
dimensions and spatial locations of the edges and faces of the polyhedron. 
Controlling the variables allows a designer to control the various forms that 
the polyhedra can take. The manipulation of form, which is one of the 
principal activities of the designer, can be enhanced by creating armatures 
for the manipulation and transformation of architectural entities represented 
as polyhedra. The concept of effectors provides one such armature. 

2. EFFECTORS 

 
An effector is an entity, which has a transforming effect on another entity 

or system. An effector is more complex than a constraint, parameter or 
function. An effector can be a computational entity in its own right. It can 
accept different kinds of input, perform computations and cause an effect in 
another entity as part of its output. An effector can be modelled as a virtual 
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computer that can embody both state and behavior (Mahalingam, 1998). 
Effectors can take on many roles that range from geometric transformation 
agents and constraints to performance criteria. Multiple effectors can be 
integrated as a network of effectors that act in a concerted manner to 
function as a meta-effector. A hierarchical system of effectors and meta-
effectors can also be developed that may or may not be concerted in their 
transforming effects. The overall effect of a hierarchy of effectors, that do 
not act in a concerted manner, needs to be controlled by a meta-effector. 

Effectors change other entities based on computations. Effectors are 
different from constraints or parameters. Constraints specify an acceptable 
range of values for a variable, or relationships between variables. When a 
constraint specifies a maximal or minimal value for a variable, then it is 
considered a "limit." If the constraint specifies a range of values for a 
variable that straddles a certain value, then it is considered a "tolerance." The 
acceptable values for a variable specified by a constraint can be simply 
declared, or computed based on a function of that variable or other 
associated variables. 

A parameter specifies values for a variable indirectly. The actual values 
of the variables are computed using the parameter. For example, the 
parameters for a cuboid are length, breadth and height. Changing these 
parameters changes the values for the vertices of the cuboid. The values of 
the vertices are computed using the parameters. A parameter needs an origin 
in order to compute its effect unambiguously. For example, changing the 
length of a cuboid can change only four or all eight of its vertices, depending 
on whether a vertex or the centroid of the cuboid is used as the origin. 

A function can also be used to determine the value of a variable, which is 
usually called the dependent variable. A function can be any mathematical 
relation and may not require an origin to compute its effect. A function is 
defined in terms of one or more independent variables. The function may 
sometimes be recursive and use the variable it is determining in its 
computation. Effectors subsume constraints, parameters and functions when 
they are modelled as virtual computers. 

When an effector is modeled as a virtual computer, a network of effectors 
becomes a network of computers. Polyhedra controlled by bi-directional 
effectors become a multi-layered network. Mathematical models used to 
model neural networks, parallel systems and 3D graphs are all viable tools to 
model networks of effectors. In its most abstract and general form, an 
effector is a relation between two virtual computers. Each virtual computer 
can change the state and behaviour of the other virtual computer. This 
relationship can be realised through one or several computational processes. 
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2.1 Homomorphic and heteromorphic effectors 

 
If the component of a polyhedron being controlled by an effector is the 

same kind as the effector, then the effector is homomorphic. If the effector is 
not the same kind as the component it is transforming, then the effector is 
heteromorphic. To determine if an effector is the same kind as the 
component it is transforming, it should correspond in form or type. 
Geometric transformation effectors transforming the geometry of a 
polyhedron are homomorphic effectors. This is type correspondence. Since 
effectors are not geometric entities, the issue of form correspondence arises 
only if there are connected effectors. For example, two effectors joined to 
form a straight line that transform the edges of a polyhedron are considered 
homomorphic effectors. Also, a polyhedral network of effectors 
transforming a polyhedron is considered a homomorphic effector. 

3. POCHÉ 

 
The concept of the poché, made famous by the architect Robert Venturi, 

is familiar to architects. The poché is a device to mediate the differences 
between an interior and an exterior condition or between two interior 
conditions. It is usually used to resolve two conflicting requirements or 
conditions. 

In his influential book, Complexity and Contradiction in Architecture, 
Venturi explains the wide ranging implication of the concept of poché by 
quoting Gyorgy Kepes, "Every phenomenon - a physical object, an organic 
form, a feeling, a thought, our group life - owes its shape and character to the 
duel between opposing tendencies; a physical configuration is a product of 
the duel between native constitution and outside environment." (Venturi, 
1966). Venturi also states that designing from the outside in, as well as the 
inside out, creates necessary tensions, which help make architecture. He goes 
on to make a significant and influential statement, "Since the inside is 
different from the outside, the wall - the point of change - becomes an 
architectural event." The concept of bi-directional effectors takes the 
condition of poché described by Venturi and provides a computational 
framework to implement the design processes that he describes. For 
example, the "native constitution" of an entity can be governed by uni-
directional effectors, and "duel" with the "outside environment" can be 
mediated by bi-directional effectors. 
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Figure 1. A simple poché condition with four bi-directional effectors in a two-dimensional 
representational world 

In Figure 1, an example of a poché condition in a two-dimensional 
representational world is shown. This figure is not a literal diagram but 
represents an abstract machine in the Deleuzian sense (Deleuze and Guattari, 
1987). ABCD is an exterior polygon and EFGH is an interior polygon. The 
states of A, B, C and D are determined by exterior contextual criteria. The 
states of E, F, G and H are determined by interior performance criteria. The 
four bi-directional effectors are e1 (AE), e2 (BF), e3 (CG) and e4 (DH). The 
bi-directional effectors e1, e2, e3 and e4 can be parameters, constraints, 
functions or virtual computers (Mahalingam, 1998). The role of the bi-
directional effectors is to mediate and determine the states of the 
interior/exterior variable pairs that they link. The four bi-directional effectors 
can be linked to form a polygon of effectors thereby defining a meta-effector 
that is homomorphic. A meta-effector is a network of effectors. The role of 
the meta-effector in this case is to co-ordinate the effects of the four bi-
directional effectors. Meta-effectors can be constraining agents. If, for 
example, the above condition represents a single-room structure, then the 
meta-effector can ensure that a minimum wall thickness is maintained. 
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Figure 2. A more complex poché condition with bi-directional effectors in a two-dimensional 
representational world 

In Figure 2, a more complex, multicellular poché condition is shown in a 
two-dimensional representational world. This figure is also not a literal 
diagram but represents an abstract machine in the Deleuzian sense (Deleuze 
and Guattari, 1987). There are five interior polygons and an exterior 
polygon. There are eight peripheral bi-directional effectors and there are four 
clusters of bi-directional effectors in the interior, each cluster forming a 
nexus of effectors affecting four variables. In each nexus the state of each 
one of the four variables needs to be resolved based on the simultaneous 
effects of the individual effectors. Each nexus can be modeled as a meta-
effector. The four clusters that each forms a nexus can be networked as a 
polygon to create another meta-effector that is one step higher in a hierarchy 
of effectors. One role of the "nexus" meta-efffectors is conflict resolution at 
each nexus, to resolve conditions such as spatial overlap. A "nexus" meta-
effector can also be used to maintain a minimum separation distance between 
the variables. Alternatively, a "nexus" meta-effector can collapse into a 
simple bi-directional effector, suggesting a merging of some of the cells in 
the multicellular configuration. 
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bi-directional effector

 

Figure 3. A simple poché condition with bi-directional effectors in a three-dimensional 
representational world 

In Figure 3, a model consisting of three nested polyhedra is shown. If the 
polyhedron in the middle (shown in the dash-dot line) is a network of 
effectors, and the polyhedra on the inside and outside represent interior and 
exterior environments, then the whole system represents the condition of 
poche' in a three-dimensional representational world. The role of the effector 
changes from being an agent that acts on a polyhedron from the outside, to 
an agent that acts as a mediator between an interior polyhedron and an 
exterior polyhedron, which represent interior and exterior conditions 
respectively. This bi-directionality in the role of the effector allows a wide 
range of architectural responses to be modelled, especially simultaneous 
responses to interior performance criteria and external contextual conditions. 



8 CAAD Futures 2001
 
The bi-directional effector can be a mediating channel through which 
conflicting conditions between interior and exterior environments are 
resolved (mediated?). The bi-directional effector then becomes an interface 
in the true sense of the word. 

3.1 Application of effectors in architectural design 

 
The application of effectors in digital design processes for architecture 

holds a lot of potential. Since architectural entities are usually represented as 
polyhedra, the transformation of the polyhedra by effectors becomes a 
central part of design processes that shape forms and space. 

 

 

Figure 4. View of auditorium design system developed by the author 

The author has developed an auditorium design system (see Fig. 4) where 
the polyhedral form of a proscenium-type auditorium is generated based on 
multiple functions of acoustical, programmatic and functional parameters 
(Mahalingam, 1996). The functions that locate the vertices of the polyhedra 
that make up the auditorium can be likened to uni-directional effectors. 
These effectors take the role of functions. The model in the auditorium 
design system that was developed was inwardly oriented. The design system 
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can now be extended with bi-directional effectors to control an exterior 
polyhedral form that responds to external site conditions. 
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Figure 5. A conceptual diagram of the integration of the concept of effectors in the 
auditorium design system 

In Figure 5, the spatial form of an auditorium seating enclosure is shown. 
The vertices of the polyhedron that make up the seating enclosure is 
determined by a set of twelve uni-directional effectors (e1…e6 represent one 
half of a symmetrical set of twelve effectors). The exterior polyhedron of the 
auditorium is governed by eight bi-directional effectors (e7…e14). Based on 
the mediating action of the bi-directional effectors, the exterior polyhedron 
can respond to site and other contextual conditions, while at the same time 
responding to the interior polyhedron that is generated by the interior 
performance criteria. This is just a conceptual example. The complexity of 
the exterior polyhedron can be increased to address the complexity that a 
particular contextual condition demands. 
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3.2 Application of effectors in architectural practice 

 
Recently, a number of projects have been published that have used 

dynamic and non-linear computational processes to generate architectural 
designs. A recent issue of Architectural Design focusing on contemporary 
processes in architecture features two projects that can be examined for their 
relationship to the concept of poche'. 

An outstanding project featured in the issue (Architectural Design, 2000), 
Embryologic Houses by Greg Lynn, uses the concept of effectors, but in a 
limited way. Lynn describes the underlying concept of his Embryologic 
Houses thus, "the variations in specific house designs are sponsored by the 
subsistence of a generic envelope of potential shape, alignment, adjacency 
and size between a fixed collection of elements." This generic envelope that 
is subject to mutation is composed of 2048 panels, 9 steel frames and 72 
aluminium struts defining a shell. The form and space of the houses are 
modified within the predefined limits of the components. This is analogous 
to a polyhedron with a fixed set of vertices, edge, faces and constraints. All 
the effectors (transforming agents or control points) in Lynn's project act on 
the generic envelope from the outside and do not mediate between an 
"interior" and an "exterior" requirement. In fact, the variations in the houses 
are described as an adaptation to "contingencies" of lifestyle, site, climate, 
construction methods, materials, spatial effects, functional needs and special 
aesthetic effects. In the prototyping stage, six houses were developed 
exhibiting a unique range of domestic, spatial, functional, aesthetic and 
lifestyle "constraints." How these "contingencies" and "constraints" affect 
the generic envelope is not clearly articulated, so their role in generating the 
design cannot be determined. The transforming agents that mutate the 
generic envelope are causal agents and not mediating agents. 

In another project featured in the same issue, Ali Rahim describes the 
operational principles in the generation of his competition winning entry for 
a Steel Museum in South Asia thus, "This (abstract machine) was comprised 
of vectors, fields, pressures and constraints in combination with inverse 
kinematics, particles and surfaces, embedded within the confluence of virtual 
matrices." Rahim's abstract machine, or machinic phylum as he prefers to 
call it, involves the causal transforming effect of particles and vectors (the 
flock of contaminants) on virtual matrices (the unactivated field) and vice 
versa. The interaction between the two enables the design. Though there is 
an exchange between the particles and the virtual matrices, again there is no 
mediation between an "interior" an "exterior" requirement. The actual spaces 
for the accommodation of program elements emerge from fluctuating 
intensities that indicate spatial potential. These intensities result from the 
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indeterminate interaction between the particles and the matrices. The process 
is akin to crystallisation and annealing, or an act of congealing or 
solidification. Duration and temporal evolution determine space. There are 
no desiring, inhabiting forces that create spatial potential, like the need for a 
pleasant acoustical environment, thermal delight, or a view to the outside. 
There is a significant absence of interiority in the design generation 
processes that both these projects use, even though there is a creation of 
interiors in both of them. The forms and spaces created provide 
"opportunities" for occupancy, but there are no active occupying or dwelling 
forces that generate the forms and spaces. The concept of poché forces 
attention on this "interiority." 

3.3 Future directions 

 
With growing attention being focused on digital processes for 

architectural design, a well-defined mechanism, or an abstract machine that 
triumphs over mechanisms (Deleuze, 1988), needs to be developed to 
generate the process space for these design processes. The concept of 
effectors provides one such mechanism/machine. Effectors can be 
configured into various abstract machines that generate architectural designs.  
The concept of effectors can be the unifying concept that allows the 
computational modelling of all architectural entities as active agents. 

In the editorial to the issue of Architectural Design (Architectural 
Design, 2000) devoted to contemporary architectural processes, an emerging 
field is defined that optimises the state of the "in-between" as process and 
"systemic delay" as a major source of creativity. The concept of "in-
between", as used in some of the projects featured in the issue, is based on 
the concept of "tweening" used in animation systems and not on the concept 
of poché. The concept of poché provides a different "in-between" paradigm. 
Systemic delay is defined as conceptual development in the time lag between 
an initial idea and its material form. This can also be related to the concept of 
poché, if the space-time of poché (in its extreme characterisation, a poché 
can be a space-time continuum), is considered a systemic delay between an 
idea and its realisation in material form. 

As such, the concept of effectors and poché can provide the means to 
mediate between idea and material form, between inside and outside, 
between performance criteria and space, in short, any condition that involves 
the mediation between two (or more) active principles. Though polyhedra 
are used in the examples in this paper, effectors can be used with completely 
curvilinear surfaces as well. Also, the polygons and polyhedra are not literal 
but represent networks of effectors that may constitute abstract machines. 
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Representing Architectural Design Using a Connections-based Paradigm 

Ganapathy Mahalingam, Ph.D. 

Abstract 
Any making, including a work of architecture, is synthetic in nature and is made by making 
connections. To base the core of a computational representation of architectural design on 
connections is to base it on the very core of making. The articulation of the core of architecture, 
its architectonics, should be based on articulating its connections. This paper probes how 
connections can serve to represent architectural design. A paradigm consists of a core cluster of 
concepts that, for a time period, provides a framework to articulate the issues and problems 
facing a field and to generate solutions. This paper offers a connections-based paradigm to 
represent architectural design computationally. A number of connections-based strategies for the 
representation of architectural design have emerged. Modeling frameworks that have been 
identified include dendograms, bipartite graphs, adjacency graphs, plan graphs, planar graphs, 
Hasse diagrams, Boolean lattices and Bayesian networks. These modeling frameworks have 
enabled the representation of many aspects of architectural design. Is it possible to extract a 
uniform modeling framework from all these frameworks that enables the computation of 
architectural design in all its aspects? Using biological analogies, will an integration of these 
modeling frameworks provide the ‘molecular’ structure of a ‘DNA’ that makes up the 
architectural ‘genome’? This paper will attempt to answer these questions. 

1 Introduction 
Resolving the computability of design has been a longstanding quest among researchers in 
computer-aided architectural design. One does not question whether design, as a cognitive 
activity, is possible, but one does question whether design is computable. Remarkable advances 
are being made in cognitive modeling using computer-based systems. The key to making design 
truly computable may lie in these advances in cognitive modeling. Researchers, who conclude 
that design is not computable, or is not computable in its creative aspect, invariably point out a 
computer-based system’s inability to generate radically new forms. When you carefully examine 
what constitutes a radically new form, the answer that emerges is new connections at various 
topological levels. 

Articulating the synthesis of forms or the generation of spatial organization has a long tradition 
spanning four decades. Beginning with Christopher Alexander’s Notes on the Synthesis of Form 
(1964), the design profession has wrestled with the articulation of architecture. Lionel March and 
Philip Steadman’s pioneering work on the geometry of the environment (March & Steadman 
1971), followed by Lionel March’s work on the architecture of form (March 1976) have set the 
precedent decades ago for what may now form the core for representing architectural design. 
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Articulating spatial organization found new energy in Hillier and Hanson’s work on the social 
logic of space (Hillier & Hanson 1984). Hillier and his team have recently expanded their 
research to the broader framework of space as a machine (Hillier 1996). In doing so, they have 
begun to make the case for a non-discursive, analytical theory of architecture based on 
‘configurations.’ 

In his seminal work from the early 60s, Alexander attempted to get at the core process in the 
synthesis of forms, an issue central to architecture. In the preface to a later edition of his book on 
the subject (Alexander 1964), he carefully articulated his quest and its significance. He wrote: 

“In this book I presented the diagrams as the end results of a long process; I put the 
accent on the process, and gave the diagrams themselves only a few pages of discussion. 
But once the book was finished, and I began to explore the process which I had 
described, I found that the diagrams themselves had immense power, and that, in fact, 
most of the power of what I had written lay in the power of these diagrams. The idea of a 
diagram, or pattern, is very simple. It is an abstract pattern of physical relationships 
which resolves a small system of interacting and conflicting forces, and is independent of 
all other forces, and of all other possible diagrams. The idea that it is possible to create 
such abstract relationships one at a time, and to create designs which are whole by fusing 
these relationships—this amazingly simple idea is, for me, the most important discovery 
of the book.” 

This book led to the widespread use of diagrams or patterns as the basis for designs, especially 
architectural designs. The subsequent search for diagrams and patterns extended the scale 
attempted by Alexander in his book, the scale of a village in India. The thought that diagrams 
could form the basis of designs took firm root. This paper is about an attempt to extend the 
tradition that began with Alexander’s work into a new realm made possible by advanced 
computing techniques. 

2 Connections-based Representations 
A connections-based representation is quite simply one that uses connections as an organizing 
framework for the representation. In this paper, the term “connections-based” is deliberately used 
rather than “connectionist,” which has its own connotations. The connectionist model is a subset 
of the broader category of connections-based representations. 

The term “connectionist” is widely used to describe a computational technique used to model the 
human brain, especially its neural network. A connectionist model is made up of a network of 
many simple processing units that act in parallel to produce “emergent” behavior. These simple 
processing units have been described as intuitive, sub conceptual and sub symbolic entities that 
are linked in a dynamic system that does not allow a precise conceptual level description. There 
is a healthy and ongoing debate about the effectiveness of the “connectionist” model to represent 
the working of the human brain. 

A connections-based representation, on the other hand, is a diagram made up of multiple nodes 
that are linked in various ways. The word “diagram” is based on its Greek roots dia and 



graphein, which mean “through” and “write” respectively. The Greek verb diagraphein means to 
“mark out by lines” from which the noun diagramma is derived. Originally the word diagram 
referred to a geometrical figure, and for a brief period even to a written list or register, which is 
very curious. Based on its etymology, the word “diagram” refers to an intrinsic structure, 
something that is drawn “through” an entity, like a skeletal framework. When coupled with the 
etymology of the word “understanding,” diagrams provide intrinsic knowledge of entities. One 
of the goals of connections-based representations is to help acquire this intrinsic knowledge of 
architecture. Architecture like connections must be made and is not given (Rajchman 2000). The 
primary architectural act can be considered as the linking of two nodes. This is the beginning of 
synthesis and a plurality. Starting with this primary connection-based representation (Figure 1), a 
hierarchy of connections-based representations can be articulated. Connections-based 
representations that have emerged in research can be organized based on increasing complexity. 
Some of the representations that have emerged include the ones described in the following 
sections. 

Node Node
Link

the primary architectural act  

Figure 1.  The architecture of connections. 

2.1 Dendograms 
A dendogram is a diagram that has a branch-like structure (Figure 2). Starting from a single 
node, branches or links lead to successive nodes. Examples of dendograms are parse trees, 
decision trees and binary trees. Each terminal node of a ‘tree’ representation is appropriately 
called a leaf. In representations such as decision trees, the leaves represent outcomes that are a 
result of decisions made at the nodes. Parse trees can be used to verify if a particular architectural 
composition has been created using a particular architectural language. Decision trees can be 
used to represent a design process as a hierarchical sequence of design decisions, where each 
design decision leads to subsequent design decisions. Because of their architecture, dendograms 
are useful in representing hierarchical procedures or processes. A dendogram or tree of (n) nodes 
has (n-1) links. Figure 3 illustrates this rule. 
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a dendogram an outcome  

Figure 2.  A dendogram. 

 

Figure 3.  Dendograms of increasing order, i.e., number of nodes (image courtesy 
Weisstein, 1999-2003). 
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Figure 4.  Molecular structures as dendograms (image courtesy Weisstein, 1999-2003). 
 

Dendograms are especially useful in the modeling of molecular structures (Figure 4) and by 
analogy the relationships between spaces in a building. When the nodes of the dendogram are 
used as the insertion points or instantiation points of polyhedra representing spaces, dendograms 
can form the skeletal generating framework of the complex spatial form of a building. 
Dendograms can also be used to model the load-transfer action in structural assemblies. Each 
node represents a structural component and each link a load transfer path. 

When dendograms are used to represent design processes, they become the representation of 
time. In this case, the dendogram is used as a state-transition graph. Each node of the dendogram 
represents the state of a design at a particular time. Though the state-transition graph extends in 
space, the spatial boundaries of the entity whose evolution is being described by the state–
transition graph can be fixed. When used as a decision tree, dendograms become design decision 
paths in action space that are traversed in time. 

A more general case of the dendogram, which is not a hierarchical tree, called a permeability 
map, was developed by Hillier and Hanson (1984) to represent the privacy gradient in a set of 
spaces. 

2.2 Bipartite Graphs 
A bipartite graph is a connections-based representation whose nodes can be partitioned into two 
sets such that no two nodes in any set are adjacent (Figure 5). In a complete bipartite graph, in 
addition, every node in one set is connected to every node in the other set. A tree is also a 
bipartite graph. Bipartite graphs are useful when the representation has two distinct set of 
elements that are related to each other but not amongst themselves. Bipartite graphs are also used 
to model a type of representation called a Petri Net, especially the channel-agency form of the 
Petri Net. Petri Nets are used to model hardware devices, communication protocols, parallel 
programs and distributed databases. 
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Figure 5.  Bipartite graphs K 3,2 and K 2,5 (image courtesy Weisstein, 1999-2003). 
 

The bipartite graph can be used to model a situation where a set of environmental sensors 
interacts with a set of architectural elements. A complete bipartite graph exhausts all the relations 
between the components in such as system. 

 

 

Figure 6.  A 3-partite graph K 2,3,5 - an example of a k-partite graph (image courtesy 
Weisstein, 1999-2003). 

 

The model of the environmental performance of an architectural space where there is a set of 
sources that generate environmental performance criteria, a set of receivers, that is, inhabitants 
who experience these environmental performance criteria, and a set of architectural elements, 
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can be represented by a complete 3-partite graph (Figure 6) that exhausts all the relations 
between the various components. 

Bipartite graphs can also be used as armatures for architectural designs. A notable example of the 
use of bipartite graphs in the arts is the use of a K18,18 bipartite graph (Figure 7) in Umberto 
Eco’s Foucault’s Pendulum. 

 

 

Figure 7.  Umberto Eco’s K 18,18 bipartite graph armature in Foucault’s Pendulum (image 
courtesy Weisstein, 1999-2003). 
 

2.3 Adjacency Graphs 
In an adjacency graph, each separate space is represented as a node. Spaces that are in contact 
with another, that is, they are adjacent, are connected by links. In this representation, spaces that 
are connected only at corner points are not considered adjacent. The general exterior space is 
also represented as a node. All the ‘interior’ nodes connect to this general ‘exterior’ node. 
Adjacency graphs and their alternate form of representation, adjacency matrices, have been used 
in architectural design to establish proximal relations between spaces. When the duals of planar 
adjacency graphs are drawn, the ‘wireframe’ plan of a set of spaces can be generated. In a recent 
project (Hwang & Choi 2002), adjacency graphs were used as metadata for information retrieval 
in a spatial information storage system. 

In an interesting analysis performed by Steadman (March & Steadman 1971), different designs 
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by the architect Frank Lloyd Wright for different clients and sites were shown to have the same 
adjacency graph as the basis for the organization of spaces. 

 

nodes and link
of a plan graph

nodes and link
of an adjacency graph

nodes and link
of an embedded
egress graph  

Figure 8.  Plan graphs, adjacency graphs and embedded graphs. 
 

2.4 Plan Graphs and Planar Graphs 
In a plan graph (Figure 8), the junctions between walls in an architectural plan are represented as 
nodes and the walls themselves are represented as links. In this representation, the representation 
of “walls” is not restricted to physical barriers alone, but includes other divisions of space as 
well. A plan graph of a set of spaces is related to its adjacency graph. One is called the dual of 
the other. 

A planar graph (Figure 8) is quite distinct from a plan graph and it is easy to be confused by the 
similar sounding terms. A planar graph is a graph that can be drawn on a plane without any of 
the links crossing each other. A completely connected planar graph (Figure 9), that is, a graph in 
which each node is connected to every other node, cannot have more than 4 nodes. This implies 
that to maintain a complete set of relations between more than four components in a connections-
based representation requires three-dimensional spatial thought. 

Because of the way in which a plan graph is constructed, it is always planar. Plan graphs and 
adjacency graphs can be integrated with other graphs, which can be embedded in them. The 
example shown in Figure 8 represents the modeling of an egress pattern in the floor plan of a 
building. Each egress element, a door or a window, is represented as a node. This node is 
embedded in the link between nodes that represent spaces in an adjacency graph of the plan. The 
egress node is also embedded in the plan graph of the floor plan. If this representation is used to 
simulate egress from a building during an emergency such as a fire, then traversing the graph can 
establish whether there is a safe egress path to the exterior of the building. 
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a completely connected planar graph
of the highest order (4 nodes)  

Figure 9.  A completely connected planar graph. 

2.5 Hasse Diagrams 
According to March (1976), a Hasse diagram (Figure 10) is a diagram of connected nodes such 
that you can move from one node to another through a set of one or more “upward” links. As 
such it can be used to model “directional” synthesis of any set of entities. The Hasse diagram 
defines a progression from a null set to a full set of entities, where each intermediate set is a 
cover (a mathematical relation) of the immediately preceding set or sets. The directional buildup 
of an architectural design or a conceptual map that defines an architectural design as it evolves 
incrementally can be represented by a Hasse diagram. 

 

 

Figure 10.  Hasse diagrams of sets with 2, 3, 4 and 5 entities (image courtesy Weisstein, 
1999-2003). 
 

2.6 Boolean Lattice 
According to March (1976), a Boolean lattice is a representation of Boolean algebra as a 
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complemented, distributive lattice. A Boolean algebra b(A) of a set A is the subsets of A that can 
be obtained by a finite number of the set theoretic operations of OR (union), AND (intersection) 
and NOT (complementation). Each element of b(A) is called a Boolean function. The number of 
Boolean functions of a set of 2 entities (say 1 and 0 as in a binary system) is 16. Computing 
circuitry is based on a Boolean algebra of 2 entities. The abstract structure of the Boolean 
algebra is isomorphic to specific algebras used in set theory, the algebra of events, symbolic 
logic, switching algebra and automated process control. If the sequence of design operations that 
generates an architectural design can be represented by Boolean lattice, then it can be automated. 

2.7 Bayesian Networks 
A Bayesian network (Figure 11) has been described as a “belief’ network. Each node in a 
Bayesian network represents the probability of a variable (a Bayesian variable) in a system. 
Nodes are linked to each other based on conditional dependence. The network is based on a 
probability model and distribution. The connections are causal connections and are directional. 
The direction is always from cause to effect. The dependent node is called a ‘child’ and the 
influencing node is called the ‘parent.’ Time is also introduced into the model as a parent is the 
temporal antecedent of a child. In a complex Bayesian network, many cycles of dependencies 
can be set up. Once a Bayesian network has been set up, a variable is given a value based on 
observation. Calculations are then performed to find the values of all other variables based on 
their probability of occurring. Once all variables are established, the network defines the 
probable state of the system. 

A Bayesian network can be used to create a predictive model of environmental performance 
criteria in the design of an architectural space. Such environmental performance criteria can 
include temperature, illumination and sound intensity. 

 

a Bayesian network

probability of
a variable
conditional
dependence  

Figure 11.  A Bayesian network. 
 

Table 1: Connections-based representations and their use in the representation of 
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architectural design 
Connections-based 

Representation 
Architectural Representation 

Dendogram Relationship of spaces, Load-transfer in structures 

Bipartite Graph Environmental control using sensors, Modeling of 
environmental performance 

Adjacency Graph Relationship of spaces, Relationship of surfaces in a 
space 

Plan/Planar Graph Architectural floor plans, Surface distribution in spaces 

Hasse Diagram Architectural design generation using a kit of parts 

Boolean Lattice Automated architectural design generation 

Bayesian Network Prediction models for environmental performance 

 

3 Modeling Architectural Design Using Networks 
In the past, the computational representation of architecture, both as a product and as a process, 
has utilized a wide range of representational frameworks. Architecture has been represented as 
data structures, databases, procedures, algorithms and virtual computers. A connections-based 
representational framework now extends this range of representations to include networks (Table 
1). 

3.1 Elements of a Network 
A network has only two basic elements, nodes and links. The complexity of networks is based on 
the number of nodes and their interconnections or links. When used as a representational 
framework, networks provide the following opportunities: 

• Nodes: the representation of state (properties, variables, parameters, probability elements) 

• Links: the representation of relations (constraints, semantics, physical connections, causal 
connections, transformations, transfer functions, dependencies) 

• Networks: the representation of state, the representation of a process, the representation 
of probabilities of outcomes 

• Network of networks: the representation of complex spatial systems 
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A Connections-based Representation
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Figure 12.  Properties of networks. 

3.2 Properties of a Network 
The various properties of networks (Figure 12) lend themselves to various representations of 
architecture. Some of the properties include: 

Hamilton Path/Hamiltoninan Cycle or Circuit: A path in a network that starts at a starting node, 
goes through each node only once, is not obligated to traverse each link and ends at the starting 
node. It describes a circuit (Figure 13). 

Euler Path/Eulerian Cycle or Circuit: A path that traverses each link of the network once, with no 
restrictions on the number of times it goes through a node. An Euler path is possible in a network 
only if the network is connected and no more than two nodes have an odd valence. 

Order of the Network: The order of a network is the total number of nodes in the network. 

Valence: The number of separate links to a node. 

Konig Number of a Node: It is the maximum number of links in the shortest path to connect a 
particular node in the network to any other node in the network. The Konig number is used to 
establish the ‘centrality’ of node in a network. 
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Beta Index: It is a measure derived by dividing the number of links in a network by the number 
of nodes in the network. A network with a beta index of less than 1.0 is a tree, a network with a 
beta index of 1.0 has only one circuit and a network with a beta index of greater than 1.0 is a 
complex network. 

  

 
Figure 13.  Hamiltonian circuits in graphs of Platonic solids (image courtesy Weisstein, 
1999-2003). 

4 Advantages of a Connections-based Representation of Architecture 
The proposal for a non-discursive, analytical theory of architecture (Hillier 1996), may on the 
surface look like an erosion of a much-fought-for-and-gained political freedom in architectural 
expression, but in the end, may turn out to be more liberating than political freedom. 

The single major advantage of using connections-based representations is the potential for 
distributed representation. Artificial intelligence researchers modeling the working of the brain 
distinguish between two kinds of representations, symbolic representations and distributed 
representations. 

Symbolic representations use symbols such as words and numbers. These symbolic units have 
meanings associated with them. These units are combined into propositions in a language using 
the grammar(s) of that language. For example, words are combined into sentences (propositions) 
using the grammar of the English language. Similarly, numbers can be combined into 
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mathematical propositions using a mathematical grammar. The main disadvantages of symbolic 
representations are that they are language-based and propositional; they are “brittle” and not 
fault-tolerant. Symbolic representations are considered “brittle” because symbolic units either 
exist or do not. A word is there in a sentence or it is not. Symbolic representations are not 
considered fault-tolerant because minor damage to a symbolic conceptual structure can cause the 
loss of the entire concept. 

Distributed representations are ones in which meaning is not captured in a single symbolic unit, 
but arises from the interaction of a network of units. The common example that is given to 
illustrate this is that the concept “grandmother” is not stored in a single “grandmother cell” in the 
brain, but in a pattern or network of interacting neurons (brain cells). Distributed representations 
now provide the foundation for realistic computational models of human cognition related to 
visual, olfactory, auditory and tactile perception. Connections-based representations combine the 
features of symbolic representations (their structural sensitiveness) and distributed 
representations (their sensitiveness to statistical distributions of low-level perceptions) making 
them the ideal representational framework. 

5 The Future of the Paradigm 
The future of this paradigm lies in its ability to uncover the core of architecture, its 
architectonics. The architectonics of architecture may well be the architectonics of human 
thought. Rather than architecture being a theater of memory, through this paradigm architecture 
stands to be revealed as the theater of thought. 

Stephen Grand OBE, a researcher from the UK and the developer of the computer game 
Creatures, has been developing an intelligent robot called Lucy. His goal is ensure that Lucy 
graduates from nursery school. Based on his research, Grand believes that the crucial element for 
intelligence is a particular circuit of neurons in the cerebral cortex of the brain that enables 
learning. Grand’s goal is to unravel this circuit and use it to create an alternative to the digital 
computer that is similar to a living system. Since architecture is created by some of the most 
exacting neural processing known to humans, the key to this neural circuit could conceivably lie 
in a work of architecture. A connections-based coding, hence understanding, of this work of 
architecture, can lead to the discovery of this “learning” circuit. 

On the other hand, Douglas Hofstadter, in his seminal book, Gödel Escher Bach, points out that 
the neural substrate of humans may pose barriers to certain processes of thought. He describes 
the problem encountered when someone tries to make “sense” of the Epimenides paradox thus: 

“Now my feeling is that the Tarski transformation of the Epimenides paradox teaches us to 
look for a substrate in the English-language version. In the arithmetical version, the upper 
level of meaning is supported by the lower arithmetical level. Perhaps analogously, the 
self-referential sentence which we perceive (“This sentence is false”) is only the top level 
of a dual-level entity. What would be the lower level, then? Well, what is the mechanism 
that language rides on? The brain. Therefore one ought to look for a neural substrate to the 
Epimenides paradox—a lower level of physical events which clash with each other. That 
is, two events which by their nature cannot occur simultaneously. If this physical substrate 
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exists, then the reason we cannot make heads or tails of the Epimenides sentence is that our 
brains are trying to do an impossible task.” 

Hoftstadter proposes that when confronted with a situation such as making “sense” of the 
Epimenides paradox, the brain encodes the paradox in the neural substrate using “symbols” and 
processes it using “symbolic processing.” He writes: 

“Now what would be the nature of the conflicting physical events? Presumably when you 
hear the Epimenides sentence, your brain sets up some “coding” of the sentence—an 
internal configuration of interacting symbols. Then it tries to classify the sentence as “true” 
or “false”. This classifying act must involve an attempt to force several symbols to interact 
in a particular way. (Presumably this happens when any sentence is processed.) Now if it 
happens that the act of classification would physically disrupt the coding of the sentence—
something which would ordinarily never happen—then one is in trouble, for it is 
tantamount to trying to force a record player to play its self-breaking record. We have 
described the conflict in physical terms, but not in neural terms. If this analysis is right so 
far, then presumably the rest of the discussion could be carried on when we know 
something about the constitution of the “symbols” in the brain out of neurons and their 
firings, as well as about the way that sentences become converted into “codings.” 

Such limits in neural processing may be why architecture is intrinsically homeostatic, that is, it 
does not change in its inherent structure. It may also be why all works of architecture can be 
created with a simple programming language. This paradigm will reveal such limitations in 
architecture, if they exist. Though this sounds pessimistic, there is hope for this paradigm as 
revealed by Alexander. In describing the creative potential of abstract diagrams, Alexander 
points out that these diagrams can evolve: 

“I have discovered, since, that these abstract diagrams not only allow you to create a single 
whole from them, by fusion, but also have other even more important powers. Because the 
diagrams are independent of one another, you can study them and improve them one at a 
time, so that their evolution can be gradual and cumulative. More important still, because 
they are abstract and independent, you can use them to create not just one design, but an 
infinite variety of designs, all of them free combinations of the same set of patterns.” 

Rather than use traditional genetic algorithms (Holland 1975) for the evolution of forms, which 
are used to transform one population of genetic characteristics (chromosomes) into another 
through processes of crossover (recombination), mutation and inversion, connections-based 
representation lend themselves to modeling based on biological analogies such as protein 
synthesis and morphogenesis (from developmental biology). Just as the molecular structure of 
DNA “instructs” protein synthesis, connections-based representations “instruct” the creation of 
works of architecture. A collection of connections-based representations (architectural DNA 
molecules – see analogy in Figure 4) then defines the “genome” of the field of architecture. 
Classifying this collection of connections-based representations, thereby defining the 
architectural genome, is a work on the scale of Durand’s Précis. Unlike the process followed by 
Durand who focused on lines and delineation, mapping the architectural genome will focus on 
the underlying structure or architectonics of architecture. These underlying connections-based 
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representations are distinguished by the fact that they do not belong to the measurement-based 
“metric” space of architectural modulation and variation but the “invariant” space of 
relationships. 

6 Conclusions 
One can conclude with a quote from Alexander that captures the spirit of a connections-based 
representation of design: 

“The shapes of mathematics are abstract, of course, and the shapes of architecture concrete 
and human. But that difference is inessential. The crucial quality of shape, no matter of 
what kind, lies in its organization, and when we think of it this way we call it form. Man’s 
feeling for mathematical form was able to develop only from his feeling for the processes 
of proof. I believe that our feeling for architectural form can never reach a comparable 
order of development, until we too have first learned a comparable feeling for the process 
of design.” 

This paper offers making connections as a process of design which will allow that comparable 
order of development. The computational representation of architecture started with the 
representation of architectural entities as data structures and architectural design processes as 
procedures. It evolved into the representation of architectural entities and processes as virtual 
computers. The next stage in the evolution of the computational representation of architecture is 
the representation of architectural entities and processes as networks of virtual computers or 
computational entities. The examples of connections-based representations presented in this 
paper suggest that various aspects of architectural design from spatial synthesis to environmental 
performance control can be successfully represented using the techniques. Recent work by 
Wolfram (Wolfram, 2002) suggests that it is possible to go even further and model the evolution 
of networks, which can then be used as an overarching representational framework. 
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IMPROVING ‘OBJECTIVE’ DIGITAL IMAGES WITH 
NEURONAL PROCESSING 

A Computational Approach 
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North Dakota State University, USA 

Abstract. This paper describes an experiment where an image 
recorded with a digital camera is processed using an electro-
physiological model of a neuron. The luminosity level of each pixel of 
the source image is treated as the stimulus for an individual neuron, 
and the source image is transformed into a response image based on 
the processing behavior of the Hodgkin-Huxley neuronal model. It is 
seen that transformation of the image through neuronal processing 
yields (i) more evenly balanced levels of luminosity compared to the 
image directly recorded by the digital camera and (ii) a more 
`subjective' rendering of the environment than what was photographed 
with the digital camera. The CCD (charge coupled device) - based 
digital camera reveals its limitation as a linear recording device that 
does not have a balanced dynamic range. The neuronal processing of 
the image adds non-linearity and a balanced range to the luminosity 
levels in the image, rendering it closer to a 'subjective' perception of 
the scene. 

1. Introduction 

The use of digital media by design professionals has become widespread. 
Design professionals such as architects and interior designers are using 
digital images to make design decisions about built environments at different 
scales. Many of these design decisions are based on the luminosity levels in 
the images, and the levels of contrasts between the luminosity levels. If these 
levels, and their differences, are based on what a CCD sensor 'sees' rather 
than a 'eye-brain' perceptual mechanism, then the design decisions made 
using objective digital representations of images may lead to unanticipated 
and unintended subjective experiences of the built environment. These 
objective digital images are generated based on computational models that 
are physics-based. They provide an accurate rendering of the built 
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environment based on objective measurements of luminosity levels. In that 
sense, they represent 'ideal' mathematical visions of the environments they 
portray. These renderings do not reflect the subjective processing of the 
scene that occurs when the neuronal cells in the brain process the 'raw' 
sensory data. 

A common problem that occurs when one takes a grayscale photograph 
(commonly referred to as a black and white photograph) with a digital 
camera is that the image produced by the digital camera does not reflect our 
perception of the scene. This is because the digital camera uses a CCD 
sensor that records luminosity levels in an objective manner. In keeping with 
the scientific method, these levels are objective measures that are recorded 
by the instrument without any subjective interference. 

One cannot predict if one is going to get a balanced image when one 
takes a grayscale photograph with a digital camera by just surveying the 
scene. The skills of photographers like Ansel Adams lay predominantly in 
their ability to survey a scene and deduce that the scene would indeed 
produce a brilliantly balanced grayscale photograph. One of the challenges 
we addressed in our experiments was to see if we can account for this 
discrepancy between an 'objective seeing' and a 'subjective seeing,' at least in 
the narrow realm of luminosity levels of digital representations of images. 

In our experiments we took digital images and processed those using 
electro-physiological models of neurons to see what emerges when a 
digitally encoded image is processed ‘neuronally.’ Our results revealed that 
the neuronal 'adjustment' to the objective luminosity levels in the source 
image presented a much more balanced and clearer image that was in tune 
with subjective perceptions. 

2. Methodology 

The methodology we employed is illustrated in Fig. 1. It is a multi-stage 
process that is implemented in the software package MATLAB. 
 

 

FIGURE 1. Model of method used in the experiment. 

The original picture with N × N pixels is denoted as P = p(i,j), i,j = 1…N 
where p(i,j) represents the luminosity level of the pixel (i,j). Next, we regard 
the luminosity of each pixel as the stimulus to a neuron so that its effect may 
be represented by an input current Iinp(i,j). The current Iinp(i,j) is then fed as a 
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steady input current to a neuron represented by the Hodgkin-Huxley model 
(Hodgkin and Huxley, 1954). The neuron responds to this input current by 
producing an action potential with a frequency f(i,j) which depends on the 
strength of the input current.  The ability of excitable neurons to encode the 
strength of the input in to a firing rate is used as a preliminary attempt to 
capture the input-output transduction process in visually responsive neurons. 
The firing rates f(i,j) are then mapped back to the range of luminosity levels 
contained in the original image to obtain the neuronally processed image PHH 
= p'(i,j) ,i,j = 1… N. 

2.1. NEURONAL MODEL 

The biophysical model proposed by Hodgkin and Huxley (1954) has been 
one of the most important models in computational neuroscience. The 
Hodgkin-Huxley (HH) model is described by the time evolution of four 
variables (v,m,n,h) which represent membrane potential, activation of a 
sodium current, activation of a potassium current and inactivation of the 
sodium current respectively. The dynamical system for the model can be 
then described by: 
 
 C dv/dt = -gl(v-vl) – gKn4 (v – vK) + gNahm3(v – vNa) + Iinp 
 τx dx/dt = x ∞ (v) – x 
 
where x ∈ {m,n,h}. When the input current Iinp exceeds a certain threshold, 
the neuron is capable of displaying sustained oscillatory behavior. From a 
dynamical point of view, the bifurcation that determines the transition from a 
quiescent to oscillatory state determines the type of neural excitability in a 
given model (Izhikevich, 1999). Accordingly, we have two types of 
excitability (Rinzel and Ermentrout, 1989) namely, 
 

Type I: neural excitability occurs when the rest potential (quiescent state) 
disappears after a saddle node bifurcation on a limit cycle. 

 
Type II: neural excitability results when the quiescent state undergoes an 

Andronov-Hopf bifurcation.  
 

The HH neuronal model employed here displays Type-II neural 
excitability where the frequency of oscillations at the onset of neural 
excitability is distinctly non-zero. In our case, the transition from rest state to 
repetitive firing is seen to occur through a supercritical Hopf bifurcation at 
Iinp = 6.265 mA corresponding to a frequency of f = 52.5 Hz. As the input 
current is gradually increased, the frequency of oscillations increases as 
shown in Fig. 2. When Iext = 86.35  mA, the upper limit of the frequency of 
oscillations is reached, which is 140 Hz. It follows that when the input 
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current is in the range of [6.26 - 86.35] mA, the neuron fires with a 
corresponding frequency in the range of [52.5 – 140] Hz. The relation 
between firing frequency f and input current Iinp in the model employed is 
shown in Fig. 2. Regarding the current Iinp as the input and the firing 
frequency f as the output enables us to represent the input-output 
transduction of the neuron by the characteristics shown in Fig. 2. Thus we 
have attempted to capture the selectivity of the response of a neuron to 
different luminosity levels in a given image by the mapping process 
explained. Fig. 2 also shows (in dashed line) the mapping of a stimulus to a 
response based on the Weber-Fechner law, which maps psychophysical 
responses. 

 

FIGURE 2. Mapping of the stimulus current to the response firing frequency based 
on the Hodgkin-Huxley neuronal model and the Weber-Fechner Law 

3.  Results 

The proposed scheme was tested by processing four images acquired 
through a NIKON digital camera. The images were processed using the 
transformation model outlined in Section 1. The original and processed 
images are shown in Figures 3 - 10. Histograms of luminosity levels (see 
Figures 11, 12, 13 and 14) in the four sets of images were constructed. A 
summary of the mean luminosity levels for the four sets of images is shown 
in Table 1. 
 

Image Mean 
Luminosity of 
Original Image 

Mean 
Luminosity of 
Processed 
Image 

Ratio of Mean 
Luminosity 
Levels 

1 93.75 142.84 1.5236 
2 59.81 100.34 1.6772 
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3 86.98 139.73 1.6063 
4 60.21 102.55 1.7032 

 

TABLE 1. Mean luminosity levels of 4 sets of original and processed images. 

 

 
 
Figure 3. Photograph of a studio environment taken with a digital camera (Image 1) 
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Figure 4. Image 1 that has been processed neuronally 

 

 
 
Figure 5. Another photograph of the studio environment taken with a digital camera 

(Image 2) 
 

 
 

Figure 6. Image 2 that has been processed neuronally 
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Figure 7. Another photograph of the studio environment taken with a digital camera 

(Image 3) 
 

 
 

Figure 8. Image 3 that has been processed neuronally 
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Figure 9. Another photograph of the studio environment taken with a digital camera 

(Image 4) 
 

 
 

Figure 10. Image 4 that has been processed neuronally 
 

 



 PAPER TITLE 9 

 
 
Figure 11. Histograms of luminosity levels of original and processed Image 1 
 

 
 
Figure 12. Histograms of luminosity levels of original and processed Image 2 
 

 
 
Figure 13. Histograms of luminosity levels of original and processed Image 3 
 

 
 
Figure 14. Histograms of luminosity levels of original and processed Image 4 
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It can be noted from Figures 4, 6, 8 and 10 that the neuronal processing 

improves the visual appearance of the images. From Table 1, we note that 
the average luminosity level of the original image is increased by a 
minimum of 50 % upon neuronal processing. The histogram of the original 
Image 1 shows a concentration of luminosity levels in the “darker” ranges 
and a gradual waning as luminosities in the brighter range are approached. 
On the other hand, the processed image has a fair distribution of luminosities 
both in the lower and higher ranges. The histogram of the original Image 2 
shows a strong concentration of luminosities from the low to midrange, and 
luminosities in the higher range are virtually absent. The histogram of the 
processed Image 2 however shows a fair concentration of luminosity levels 
in the entire range. A similar feature is observed from the histogram plots of 
the original and processed Images 3 and 4. Therefore, it is reasonable to say 
that the distribution of the luminosity levels is more balanced in the 
processed images compared to the original images. Thus, the neuronal 
processing model is seen to offer a marked improvement in the visual appeal 
of images by virtue of a balanced range of luminosities. 

When we compare neuronal processing and the psychophysical response 
to a stimulus as predicted by the Weber-Fechner law, which is given by the 
relation: 

 
S = klogI 
 

where S = subjective response level, k is a constant and I is the stimulus 
intensity level, some interesting results are produced. 

We see that the results produced by the neuronal processing are superior 
to the ones predicted by the Weber-Fechner law (Fig. 15). In order to 
compare the stimulus-response (input-output) mapping curve of the Weber-
Fechner law with the stimulus-response mapping curve defined by the 
Hodgkin-Huxley neuronal model, we used a value for k = 70. Though the 
mapping curves seem to match rather closely (Fig. 2), the image produced 
by the neuronal processing is distinctly superior to the image produced by a 
stimulus-response mapping based on the Weber-Fechner law. This can be 
attributed to the difference between the continuous smooth curvature of the 
Weber-Fechner mapping curve and the stepped transitions in the Hodgkin-
Huxley curve. 
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Figure 15. Comparison of processed Image 1, processed according to the Weber-
Fechner law (above) and the Hodgkin-Huxley neuronal model (below) 

 
4.  Conclusions 
 
We have shown that the neuronal processing of digital images of 
environments produces adjustments to the images that reflect our perception 
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of the environments more closely. This approach would be a good post 
processing strategy for digital images generated by digital cameras and 
computer-based modeling and rendering software. In our approach, images 
that are 'objective,' and are generated by physics-based computational 
models are modified into images that are 'subjective' and generated by 
processing with electro-physiological neuron models. This type of 
processing enables design professionals, who use digital images, to make 
design decisions based on images that are closer to subjective perceptions. 
One of the assumptions that we made in this process was that the individual 
luminosity levels in the source images were connected in exactly the same 
way (as a grid) in the neuronal processing model. This need not be the case. 
A study of the variations in connectivity in the neuronal processing model 
based on the neuronal firing frequencies of individual luminosity levels or 
'cells' can reveal other intricacies in the neuronal processing of the images, 
thereby revealing a more sophisticated 'subjective seeing' of the images. 
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DISCOVERING COMPUTATIONAL STRUCTURES IN 
ARCHITECTURE 

An Exploration 
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Abstract. The linkage between the worlds of Architecture, which 
involves the design and construction of the built environment, and 
Computer Technology, which involves practical applications of 
computation, still has a vast, as yet untapped potential. What if the 
implications of the linked term, ‘computer-architecture,’ are explored 
to reveal its full scope? This paper describes a unique method to 
analyze and code works of Architecture in a way that enables one to 
discover hidden computational structures in the works of Architecture. 
The case being made here is that the inherent structures of architecture 
may be computational structures as well. 

1. Introduction 

The term ‘computer architecture’ is often used in the computer industry and 
refers specifically to the design of computer systems, both hardware and 
software. Even Bill Gates, the head of Microsoft, prefers the title Chief 
Software Architect. This linkage between the worlds of Architecture, which 
involves the design and construction of the built environment, and Computer 
Technology, which involves practical applications of computation, still has a 
vast, as yet untapped potential. What if the implications of the linked term, 
‘computer-architecture,’ are explored critically to reveal its full potential? 

A work of architecture is created after an intense design process. The 
resultant architecture has embodied in it various formal structures (i.e., 
structures that articulate a particular form). The really interesting question is, 
are these formal structures, feasible computational structures as well? If the 
answer is yes, this will truly bring the world of Architecture into the world 
of computation! This project sets out as its main goal to discover and verify 
if the formal structures embodied in works of Architecture could serve as 
computational structures as well. 
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This project is the next in line of a long list of investigations completed 
by Mahalingam in the last decade linking the worlds of computation and 
architectural design. For his doctoral work Mahalingam successfully created 
an algorithm for the design of proscenium-type auditoriums. The algorithm 
was incorporated in object-oriented software for the design of proscenium-
type auditoriums using the Smalltalk programming language and the 
VisualWorks software development environment. (Mahalingam, 1998, 
2000). As a part of his doctoral investigation, Mahalingam also proposed a 
paradigm for the representation of architectural design entities as virtual 
computers (Mahalingam, 1997). This was a significant attempt to look at 
architectural entities as computational devices. In a subsequent investigation, 
a model was proposed for the parallel computational processing of load 
transfer in rectangular structural systems for architectural design 
(Mahalingam, 1999). A project was also completed where a programming 
language was proposed for architectural design with the complete Backus-
Naur notation for the language (Mahalingam, 2000). In a more recent 
project, a new model was proposed for the sensor-based control of the 
propagation of sound in spatial enclosures based on an algorithmic model for 
sound propagation simulation developed earlier (Mahalingam, 1999). This 
project involved the modeling of the components involved as an elliptical 
graph called an optimaton (Mahalingam, 2005). 

In a recent seminal paper, which has generated the main idea for this 
research project, a paradigm was presented for the representation of different 
aspects of architectural design using connections-based models 
(Mahalingam, 2003). The paradigm suggested a uniform representation of 
spatial layouts, circulatory systems, egress systems, structural systems and 
environmental control systems in architecture using three-dimensional 
networks or graphs. The argument was made that these three-dimensional 
networks or graphs reveal the architectonics underlying their composition, 
and by extension, could be the basis of computational frameworks. In this 
project, the author has simulated the behavior of a computational structure in 
the form of a virtual finite state machine (VFSM) that is based on works of 
physical architecture to see if the VFSM could be the basis of new 
computational tasks in architectural design such as the simulation of fire 
spread in a building, load transfer in structural systems, sound propagation in 
spatial enclosures, and heat transfer in buildings, to name a few. 

2. Methodology 

The way this was accomplished is as follows: 
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2.1. ANALYSIS 

The first step was to analyze a work of Architecture (i.e., part of the built 
environment) so as to reveal its underlying systems, such as structural 
systems, circulation systems and arrangements of spaces. Three projects by 
the architect Frank Lloyd Wright from around the U.S.A. that were analyzed 
earlier by March and Steadman (1971) were selected by the author. Each of 
these works of Architecture had been analyzed to reveal the ‘invariant’ 
relationships in their arrangement of spaces. Other examples of some of 
systems that could have been included in the analysis are structural systems, 
circulation systems, egress systems, HVAC systems, plumbing systems, etc. 
These were not attempted in this initial implementation. 

2.2. CODING 

The next step was to code the spatial arrangement system as a diagram 
comprising nodes and links, i.e., as a graph. The spatial arrangement system 
uncovered in the analysis phase was coded as an adjacency graph 
comprising ‘nodes’ and ‘links.’ 

 

nodes and link
of a plan graph

nodes and link
of an adjacency graph

nodes and link
of an embedded
egress graph  

Figure 1. Encoding of an architectural plan as a graph showing how different 
features are embedded hierarchically. 
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Figure 2. Three different floor plans of architectural works designed by the architect 
Frank Lloyd Wright showing the identical graph of space adjacencies derived from 

each one of them (from March and Steadman, 1971). 

2.3. VFSM GENERATION 

The next step was to use the graph that was uncovered in the previous step to 
model a virtual finite state machine (VFSM). The graph was used as a 
template for the generation of a VFSM using commercial software 
(StateWORKS for VFSM simulations). 
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Figure 3. The state diagram of a virtual finite state machine (VFSM) based on the 3 
architectural works by Frank Lloyd Wright that share the same adjacency graph for 

the spaces that they contain. The finite state machine is used to determine 
computationally if fire has spread from one space to another, given the occurrence 

of fire at the various locations. 

2.1. SIMULATION 

The next step was to simulate computations using the VFSM and see what 
computational structures could be derived from the works of Architecture. 
The VFSM was used to simulate the spread of fire in the buildings, a 
computational task in architectural design that could be mapped easily onto 
the VFSM. 

2.1. TESTING 

The last step was to test to see if the computational structures could be used 
to form the basis of new computer software for architectural design (i.e., the 
spread of fire in a building). The efficiency of the VFSM in performing the 
computational task attempted was demonstrated. The suitability of the 
VFSM for new computational tasks in traditional computation as well as 



6 GANAPATHY MAHALINGAM  

other computational tasks in architectural design will be explored in the 
future. 

3.  Implementation 

The spatial arrangement of three works of architecture by the architect Frank 
Lloyd Wright which were analyzed earlier and coded as adjacency graphs 
were used in the implementation. Incidentally all three works had the same 
underlying adjacency graph. The software StateWORKs (Wagner et. al., 
2006) was then used to generate a virtual finite state machine (VFSM) that 
was based on the adjacency graph of the spatial arrangement. 

A particular computational implementation was then mapped onto the 
VFSM. This was a computation that would determine if fire spread to a 
particular space given the occurrence of a fire in another space. The nodes of 
the graph (the spaces) were each assigned a range for a flammability value. 
This flammability value was modeled as a ‘switchpoint’ that would switch 
on and off based on whether the fire in that space crossed the high or low 
threshold value. If the intensity of a fire in that space exceeded the 
flammability value’s high threshold then the space caught fire. Conditions 
were set for the fire to transmit from one space to another. This was modeled 
as state transition conditions in the VFSM. A system was then set up to input 
the intensity of a fire in each of the spaces. A simulation was then run, 
whereby one could input the intensity of a fire in each of the spaces using a 
numerical input dialog box and see if it spread to the other spaces, which 
was indicated in an output monitor that indicated that a fire had occurred in 
that space. The whole process of the spread of the fire was a computation of 
state transitions in the VFSM. 

In a real world scenario, the system for the input of the intensity of the 
fires could be linked to a real digital input using a communication port in the 
computer, and the output signal that a fire had occurred could be used to 
activate an alarm using another communication port in the computer. This 
capability to link digital inputs and outputs to communication ports on the 
computer is inherent in the StateWORKS software system. This VFSM 
could effectively form the engine of a real fire alarm system in each of the 
buildings analyzed. 

If one had to develop software for the prediction of fire spread in the 
architectural design by inputting flammability values for each of the spaces, 
starting fires of various intensities in the various spaces, and predicting 
where the fire would spread, then this VFSM could be used as an engine for 
the development of the software. The StateWORKS software system allows 
you to generate such software engines for runtime control systems with full 
control of I/O (input/output) such as WinStExec, StExec, LinuxExec and a 
diskless RTOS (real-time operating system) environment, which can be used 
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for software development using other IDEs (integrated development 
environments). The conditional transitions from state to state in the VFSM 
could also be used to model systems such as Bayesian networks that are 
based on the VFSM. The state transition conditions could then incorporate 
probabilistic triggers. 

Also other computational systems, such as heat transfer from space to 
space, could also be mapped onto the same VFSM. Instead of the ‘flow’ of 
fire, the ‘flow’ of heat from space to space could be computed using the 
same VFSM. The conditional transitions in the computational ‘flow’ from 
space to space could be modeled based on the heat transfer properties 
between the spaces. 
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Figure 4. Screen shots of the VFSM runtime computation monitor in StateWORKS 

that monitors the Wrightian VFSM. The indicators in green show where the fires 
have occurred and the numerical values are the intensity of fires that have been 

mapped to the various spatial locations in the Wrightian houses. 

4.  Intellectual Merit of the Project 

The intellectual merit of this project is that it makes a unique proposal to 
analyze and code works of Architecture in a way that enables one to 
discover hidden computational structures in the works of Architecture. It is 
hoped that the project will provide valuable insight into the architectural 
basis of computational structures. 

During the process of architectural design, various formal structures (i.e., 
structures that articulate a particular form) are generated and integrated to 
define the design of a building. These formal structures determine the spatial 
layout of structural systems, circulation systems, egress systems, 
arrangement of spaces, HVAC systems, plumbing systems, etc. in a building. 
All these formal structures are integrated in the design process to create the 
design of a functional building. These formal structures satisfy many 
constraints and meet many performance criteria in different domains. As 
such, they are very complex design constructs. If these formal structures 
could be shown to be feasible computational structures as well, then the 
rigor and complexity of the architectural design process could be brought to 
bear on the design of software systems. If a particular formal structure 
derived from a work of Architecture is shown to be a computational 
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structure as well, then the methodology of the architectural design process 
that resulted in that formal structure could be studied as a viable software 
design process. This will bring the whole body of design methods used in 
the architectural design process into the world of software design. 
Conversely the research process will also yield computational structures for 
the design of architectural entities, thereby enabling the creation of new 
kinds of computer-aided design systems in Architecture. 

The broader impact of this research project will be to amplify the 
interdisciplinary relationship between Architecture and Computer Science 
and provide practical benefits such as the creation of new kinds of software 
for both traditional computational tasks and for architectural design. Though 
the methodology described in this project aims at discovering hidden 
computational structures in Architecture, it can be adapted to discover 
hidden computational structures in other fields such as Engineering and 
Biology, thereby enriching the field of computation. 

5.  Conclusion 

The project described in this paper has successfully shown how you can take 
a formal structure from Architecture and convert it into a computational 
structure. It has also shown how this computational structure can be used as 
an engine to develop hardware and software systems for applications such as 
the monitoring of fire spread in a building. This is the proof of concept for 
discovering computational structures in architecture. The project still has to 
demonstrate that these computational structures, which are derived from 
works of Architecture, can be feasible computational structures for tasks in 
traditional computation. They hold the promise of serving as meta-
computational structures for computational applications in architectural 
design, but have yet to be shown to enable other computational tasks such as 
sorting and searching, which are often considered benchmark tasks in 
Computer Science. 
 In his landmark book, Hillier presented the case that “space is the 
machine.” (Hillier, 1996) This book has a strong connection to this project. 
However, Hillier was specific in referring to his theory as a “configurational 
theory of architecture,” and not a “computational theory of architecture.” In 
a chapter devoted to the topic, he made the case for “non-discursive 
techniques,” that were neutral in the analysis of space and form, thereby 
aiming for a “universal” understanding and the development of an “internal” 
theory of architecture. Is Hillier’s machine a computer? If this is the case, the 
‘configurations’ of architecture become viable ‘computational structures’ as 
well. This project reveals the intriguing possibility that this may be the case. 
As this project unfolds, more involved issues related to discovering 
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computational structures in architecture are bound to emerge, which need to 
be thoroughly investigated. 
 The results of this research project are intended to be used as the 
foundation for an interdisciplinary Honors seminar course at our university 
titled, “The Architecture of Software Systems.” This course will extend this 
inquiry and develop it further. The Honors program at our university is 
based on selective admission and attracts the best and brightest students in 
the university who have a natural inclination for interdisciplinary studies. 
Courses are typically taught by a team of two or more faculty members from 
different disciplines. Mahalingam and a faculty member from Computer 
Science intend to teach the Honors course together. Their cross-disciplinary 
collaboration on the subject will make them effective teaching colleagues. 
The course will stimulate motivated students to pursue and extend research 
ideas in this area of inquiry further by exposing them to the state-of-the-art 
in this field. 

Acknowledgements 
The developers of the StateWORKS development tool have opened up this new 
avenue for research in the field of computer-aided architectural design. 
StateWORKS allows researchers to study computational modeling problems in 
architecture by building and testing tractable solutions in the form of virtual finite 
state machines that can be implemented in both software and hardware. 

References 

Hillier, B: 1996, Space is the machine, Cambridge University Press, Cambridge, England. 
Mahalingam, G: 2005, “A Computational Model of a Sensor Network for the Optimization 

and Control of Acoustical Performance Criteria in Spatial Enclosures” Proceedings of 
CAADRIA 2005, New Delhi. 

Mahalingam, G: 2003, “Representing Architectural Design Using a Connections-based 
Paradigm,” Proceedings of the ACADIA 2003 Conference, Indianapolis, Indiana. 

Mahalingam, G: 2001, "POCHE: Polyhedral Objects Controlled by Heteromorphic 
Effectors," Proceedings of the CAAD Futures 2001 Conference, Eindhoven, Netherlands, 
July, 2001. The proceedings were also published as a book, “CAAD Futures,” by Bauke 
de Vries, Jos van Leeuwen and Henri Achten, Kluwer Academic Publishers, Dordrecht. 

Mahalingam, G: 2000, “The Algorithmic Auditorium: Automating Auditorium Design,” 
Proceedings of the ACSA Technology Conference 2000, MIT, Boston, Massachusetts. 

Mahalingam, G: 2000, “Computing Architectural Designs Using An Architectural 
Programming Language,” Proceedings of the eCAADe 2000 Conference, Weimar, 
Germany. 

Mahalingam, G: 1999 “A Parallel Processing Model for the Analysis and Design of 
Rectangular Frame Structures,” Proceedings of the ACADIA 99 Conference, Snowbird, 
Utah, October. 

Mahalingam, G: 1999, “A New Algorithm for the Simulation of Sound Propagation in Spatial 
Enclosures,” Proceedings of the Building Simulation ’99 Conference, Kyoto, Japan. 

 



DISCOVERING COMPUTATIONAL STRUCTURES IN ARCHITECTURE
 11 
Mahalingam, G: 1998, “The Algorithmic Auditorium,” Proceedings of the CAADRIA 98 

Conference, Osaka, Japan. 
Mahalingam, G: 1997, “Representing Architectural Design Using Virtual Computers,” 

Proceedings of the ACADIA 97 Conference, Cincinnati, Ohio. 
March, L and Steadman, P: 1971, The geometry of environment: An introduction to spatial 

organization in design, RIBA Publications Ltd. 
Wagner F, R Schmuki, T Wagner and P Wolstenhilme: 2006, Modeling Software with Finite 

State Machines: A Practical Approach, Auerbach Publications, Taylor & Francis Group, 
New York, New York. 



 

 

A CASE FOR ARCHITECTURAL COMPUTING 

Computing Using Architectural Constructs 
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Abstract. This paper is about the potential of architectural computing. 
Architectural computing is defined as computing that is done with 
computational structures that are based on architectural forms. An 
analysis of works of architecture reveals the embedded forms in the 
works of architecture. A uniform, connections-based representation of 
these architectural forms allows us to derive computational structures 
from them. These computational structures form the basis of 
architectural computing. In this paper a case is made for architectural 
computing, ideas are provided for how it could be done, and the 
benefits of architectural computing are briefly explored. 

Keywords. Architectural computing: architectural programming 
language; intentional programming; connections-based paradigm. 

1. Introduction 

Researchers in the field of computer-aided architectural design have 
pondered the computability of design for the past 3 to 4 decades. While this 
inquiry may seem moot now, given that most design activities can be 
performed on the computer using various pieces of software, it has masked 
what can now be considered as a unique form of computing, architectural 
computing. Claude Shannon (1937), in his influential master’s thesis, A 
Symbolic Analysis of Relay and Switching Circuits, literally founded modern 
digital computing by integrating Boolean algebra, binary arithmetic and 
electromechanical relays into an effective device to perform computations. 
What if we now recast the inherent devices of architecture as effective 
machines? Can we build architectural computers from them? What would 
these computers do and what would be their unique characteristics? What if 
we derive an architectural programming language from the operations of 
architectural design? Not too long ago, Charles Simonyi (1995) hailed the 
death of computer languages and the birth of intentional programming. What 
is the potential of architectural intentions when we consider them as 
effective devices? What are the kinds of ‘logic gates’ that we could derive 
from architectural constructs? Besides opening up the world of ‘architectural 
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computing,’ this inquiry would make us reconsider the world of architecture 
with a renewed rigor. It is time now to make the case for architectural 
computing. This paper is an attempt to do that effectively. 

2. Architectural Computing 

What is architectural computing? Architectural computing is computing that 
is done with a computational structure that has as its basis an architectural 
form. Architectural forms are embodied in works of architecture. They are 
essentially intrinsic. They include the forms of the building envelope, the 
forms of the structural system, the forms of the mechanical and plumbing 
systems, the forms of the circulation system, the forms of the electrical 
system, the forms of the life safety and communication systems, etc. These 
architectural forms are manifest in the finished works of architecture. They 
can be derived from the finished works of architecture by careful analysis. 
These are the manifest forms of architecture. 

However, the process of creating a work of architecture has embedded in 
it various inherent devices as well. These are not immediately available from 
a cursory visual analysis. These include datums, proportional systems, 
ordering diagrams, etc. These inherent devices can also be represented in 
such a way that they can become the basis of computational devices. The 
challenge lies in the creative mapping of these inherent devices into 
computational structures. 

In recent research a case has been made for the uniform representation of 
architecture (i.e., architectural forms) using a connections-based paradigm 
(Mahalingam, 2003). A case has also been made to derive computational 
structures from these connections-based representations of architecture 
(Mahalingam, 2007). Earlier a case was made for an architectural 
programming language (Mahalingam, 2000). These three approaches can 
now be integrated into a case to be made for architectural computing. 

Why architectural computing? Computer scientists often talk about 
computer architectures, which refer to the organization of computational 
devices. Though the term used is architecture, these computational devices 
seldom approach the complexity of works of architecture in the built 
environment, viz. buildings. Building designs are the result of some of the 
most exacting neuronal processing in the brains of designers. The synthesis 
of building designs represents the complex structuring of our neuronal 
systems. It may be said that complex works of architecture reveal human 
neuronal underpinnings more accurately than any other cultural artifact that 
humans produce. Architectural computing is proposal to tap this neuronal 
richness that is manifest as complex architectural constructs. The first step in 
this process is to see if, at the heart of architectural creation, there is a 
programming language. 

3. An Architectural Programming Language 

This section of the paper is adopted from an earlier paper on the topic 
(Mahalingam, 2000). It is absolutely necessary to integrate it in this paper to 
make the case for architectural computing. 
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The potential success in developing a programming language for 
architectural design depends on a careful mapping of the fundamental 
operations in the creation of architectural designs onto a set of computable 
operations. A characterization of architectural design at a fundamental level 
is needed before a programming language can be defined to enable the 
creation of architectural designs. Architecture has been defined as the art and 
science of designing buildings and supervising their construction. The 
creation of a work of architecture is the result of a complex interaction of 
diverse processes. However, the complexity in the creation of an 
architectural design belies a set of simple, fundamental operations. 

A programming language is defined by its syntax and semantics. The 
syntax of the language describes the rules for creating structures (programs) 
using the language, and the semantics of the language reveals the meaning of 
valid structures (programs) that can be created with the language. Of these, 
the syntax is formally represented. Examples of formal description systems 
for the syntax of a programming language are the Backus-Naur notation and 
syntax diagrams. 

To create a programming language for architectural design, one has to 
define the starting symbol, terminal symbols, non-terminal symbols and 
production rules for the creation of architectural designs. This may seem a 
daunting task, but, if we realize that the fundamental entities in architecture 
consist of form and space, solids and voids, the definition of a language for 
architectural design becomes viable. 

3.1 THE DEFINITION OF AN ARCHITECTURAL PROGRAMMING 
LANGUAGE 

This section presents the definition of an architectural programming 
language, complete with the Backus-Naur form (BNF) for the language. The 
purpose of developing this language is to provide a tool to write programs 
that generate architectural designs when executed. A complete syntactical 
description of the language including its starting symbol, its non-terminal 
symbols, its terminal symbols, and its set of production rules is provided. 

A complete syntactical description of a language is called a grammar. A 
grammar can be considered a tuple of the following elements: 

Starting symbol (S) 
Terminal symbols (T) 
Non-terminal symbols (N) 
Production rules (P) 
The notation for a grammar is thus: G (S, T, N, P) 
A language (L) based on a grammar is defined thus: L (G) = L (S, T, N, 

P) 
The task of creating a programming language for architectural design 

starts with the definition of a grammar for the creation of architectural 
designs. Using the 4-tuple form for the definition of a grammar, G (S, T, N, 
P), architectural design can be mapped thus: 

Starting symbol (S): Architectural form (f) 
Terminal symbols (T): Solid polyhedron (ps), Void polyhedron (pv), 

Union (U), Difference (\) 
Non-terminal symbols (N): Architectural form (f), architectural space (s) 
Production rules (P): 
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f → ps | f U f | f \ s 
s → pv | s U s 
The union operation (U) has precedence over the difference operation (\) 

in the production rules. The vocabulary (V) of the grammar or language is 
defined as N U T, that is, the union of the non-terminal and terminal 
symbols. The use of the symbol * after V, N or T indicates all possible 
strings over the sets of V, N and T. 

These production rules defined give rise to other production rules of the 
form: 

f → ps U ps 
This production rule allows an architectural form to be created by 

unioning a solid polyhedron with another solid polyhedron. 
f → ps U f 
This production rule allows an architectural form to be created by 

unioning a solid polyhedron with another architectural form. 
f → ps \ pv 
This production rule allows an architectural form to be created by 

differencing a void polyhedron from a solid polyhedron. 
s → pv U pv 
This production rule allows an architectural space to be created by 

unioning a void polyhedron with another void polyhedron. 
s → pv U s  
This production rule allows an architectural space to be created by 

unioning a void polyhedron with another architectural space. 
If you visualize the creation of an architectural design, an architect starts 

with an existing architectural form, the site of the design. The architect then 
synthesizes a new form by creating a solid polyhedron, combining solid 
polyhedra (material) or removing void polyhedra (empty space) from the 
solid polyhedra (material). The production rules defined to create 
architectural forms are both recursive and non-recursive. Since there are an 
infinite number of solid and void polyhedra, this grammar does not preclude 
any architectural form. 

In this programming language, only the Boolean operators of union and 
difference are used. Now can we visualize an architectural design operation 
that creates, in essence, a different ‘logic gate’? 

The grammar presented above is context-free like most programming 
languages. The actual grammar to create specific types of architectural forms 
will be a refined version of this grammar. This grammar captures the essence 
of a real grammar that creates an architectural form. Since polyhedra are 
themselves complex entities, a nested grammar can be defined to generate 
polyhedra. This series of nested grammars can then be used to develop a 
comprehensive programming language for architectural design. 

3.2 THE POTENTIAL OF AN ARCHITECTURAL PROGRAMMING 
LANGUAGE 

Kalay (1989) calls computer models of real-world phenomena "languages of 
representation." What if this language of representation is a programming 
language? Symbols sets used in computer programming languages include 
the binary set (1,0) or the number set (1,2,3,4,5,6,7,8,9,0) or the English 
alphabet set (a,b,c,d…z). Such sets allow for programs to be written in an 
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alphanumeric language. The traditional language of architectural design is 
graphical. Therefore, a programming language for architectural design 
should probably use graphical symbols instead of alphanumeric symbols. 
This would make an architectural programming language a visual 
programming language. What if the symbol sets in an architectural 
programming language are graphical? Can one then draw a program instead 
of writing one? The equivalent of a sentence in an alphanumeric 
programming language would be a drawing in the visual programming 
language. What are the problems or benefits related to checking the validity 
of a program if it is drawn using graphic symbols? Actually, the problems 
related to checking the validity of a program written in a visual 
programming language should be no different than syntax checking in an 
alphanumeric programming language, if the graphic elements directly 
correspond to alphanumeric elements. 

In the grammar for an architectural programming language presented in 
this paper, if the alphanumeric symbols are replaced with graphics 
representing the polyhedra, then the string of alphanumeric symbols 
generated by the production rules has a graphical equivalent. The 
architectural programming language can generate different strings based on 
the production rules. These strings can then be converted into graphics by 
substitution. Each sentence in the language will then become a spatial 
composition. When the substitution is made, there may be invalid forms 
created by some of the production rules. This is because the alphanumeric 
symbols are not spatial. For example a void polyhedron that is larger than a 
solid polyhedron cannot be differenced from it. Similarly, two solid 
polyhedra that do not overlap cannot be unioned to create a single 
architectural form. A mechanism is needed for checking spatial parameters 
of the polyhedra when implementing the production rules. 

Drawing an architectural design may not be essentially more complex 
than programming an architectural design except for the visual immediacy of 
the drawing and the unstructured (or very complexly structured, depending 
on your viewpoint) nature of the drawing process. If graphical symbols are 
used in the architectural programming language, then programming an 
architectural design can become another form of drawing, a shorthand 
graphical notation of the design that reveals its full visual form when the 
program is executed. Even symbols for operators in the architectural 
programming language can be given graphical equivalents. A drawing will 
then be a computer program. This will be possible if the sequence of 
elements and operations used to create the drawing is accessible in order to 
map it onto a program. A finished drawing on paper using traditional media 
does not have a record of the sequence of graphic elements and operations 
used to create it, but a computer-based drawing does! Computer-based 
drawings can then provide a computational medium for the generation of 
architectural designs in a completely different sense. 

With a well-defined architectural programming language, architectural 
designs can be generated by executing programs written as you would with a 
general-purpose programming language like Smalltalk. Programs can then 
be written (drawn?) to generate programs that generate architectural forms. 
This can lead to a powerful form of automation in the creation of 
architectural designs. 
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4. Intentional Programming 

Charles Simonyi, who used to be one of the chief software architects at 
Microsoft, has been working on what he calls Intentional Software. 
According to his team, Intentional Software simplifies software creation by 
separating the software contents in terms of their various domains from the 
implementation of the software and by enabling automatic regeneration of 
the software as the contents change (Simonyi, Christerson and Clifford, 
2006). In traditional software development, programmers had to take tasks 
that were to be completed in the domain of an application, for example, the 
creation of a cuboid in 3D modeling software, and represent the process in a 
form that the computer could understand, that is, using a general purpose 
programming language. The program was written to facilitate execution on 
the computer and not to articulate the task being performed. This 
disconnection between a machine executable representation and an 
‘intentional’ representation in performing a task is the gap that is being 
closed by Intentional Software. 

In the implementation of Intentional Software, domain experts can work 
in parallel with programmers in their respective areas of expertise; and the 
repeated intermingling can be automated. Intentional Software is supported 
by a Domain Workbench tool where multiple domains can be defined, 
created, edited, transformed and integrated during software creation 
(Simonyi, Christerson and Clifford, 2006).  

Domain experts first define domain schema, where terms of the domain 
code are defined. Domain experts then define the domain code using the 
Domain Workbench tool and a domain specific language. This domain code 
takes the form an intentional tree in its parse structure. The domain code can 
also be converted to other forms of notation such as a finite state machine 
diagram (see Figure 2). A generator then processes the domain code to 
generate target code that is executed on the computer. The target code is the 
software program or application that a user needs to perform a particular 
task. These domain schemas and codes are defined by the domain experts, 
for example, the architectural programming language described in this paper 
would be a high-level ‘intentional’ domain defined by a domain expert, in 
this case, the architect.  

Using this domain definition many programs for the creation of various 
architectural designs could be generated (see Figure 1 for an overview of the 
Intentional Software system where the domain code for some of the 
production rules in the architectural programming language presented in this 
paper is shown in yellow). This is not always easy. In complex systems, the 
domain vocabulary, domain relationships and domain rules may not lend 
themselves to be easily mapped onto a programming language to generate 
the target code. However, this is not as difficult in the synthesis of 
architectural forms as the architectural programming language shows. 
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Figure 1. Overview of the Intentional Software system 
 
Other key features of Intentional Software include a uniform 

representation of multiple interrelated domains, the ability to project the 
domains in multiple editable notations, and simple access for a program 
generator (Simonyi, Christerson and Clifford, 2006). This rich environment 
seeks to exploit domain schema and codes from innumerable sources for 
diverse applications. These domain schemas and codes serve as engines for 
the software development process. A critical role is played by the generator 
in this process. The domain schemas and codes only specify the data 
structure; the behavior of the data in the target code is generated by the 
generator using a process that translates the domain code into target code. 

The world of architecture is rich in domain schema and domain codes. 
Hitherto, the world of architecture has not been seen as a valuable source of 
domain schema and domain codes for software design. With the 
implementation of Intentional Software, the opportunity has arisen for the 
use of architectural schema and architectural codes in the process of software 
design. Consider a structural design schema in architecture that can be used 
to create software for the design of the structural elements involved 
(Mahalingam, 1999). Consider a spatial layout schema, where the spatial 
layout and the interconnection of the spaces is the engine for a fire spread 
and control software for the building (Mahalingam, 2007) (see Figure 2). 
Consider a spatial design synthesis schema in the manner of a master 
architect, for example, software that can be used to design in the manner of a 
Palladio or a Wright (Hersey and Freedman, 1992). Consider a circulation 
system schema that can be used to create a program that automatically 
generates spatial layouts for buildings. The possibilities are endless. Where 
this research avenue can be taken is as limitless as the world of intentional 
forms. 
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Figure 2. Domain code in a finite state machine notation for a system to predict fire 

spread in a Wrightian style house 

5. Conclusion 

Architectural computing is a new frontier. There is enough structure in the 
process of creating architectural designs and in architectural products to 
allow us to derive architectural programming languages and other complex 
computational structures from them. These programming languages and 
computational structures will initially inform the process of architectural 
design and expand its potential. They would then migrate to other disciplines 
and engage worlds such as engineering and biology. Architecture is a 
universal phenomenon. Form is its central ingredient. Architectural 
computing mobilizes computing with architectural forms. The future is wide 
open. 
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In Formation… 

The central variable and object of contention for value in Architecture is form. Architects have long 
relied on innumerous methods from various disciplines to derive architectural forms. This has given 
Architecture its incredible richness and diversity. It has also made the central process of Architecture – 
the creation of architectural form – an open‐ended and a politically contentious process. This obsession 
with architectural form has been so strong that architects have often ignored the inhabitation of the 
forms and their sustainability as the real reasons for creating them in the first place. The profusion of 
architectural forms being generated currently through the use of digital media belies the persistent 
anxiety of architects in validating what they are creating. Reverting to divine inspiration as an 
explanation is the easy recourse, but validating what we create is an unavoidable human responsibility. 

There is a relatively new area of focus in human inquiry that is emerging, which has the potential to give 
architects the foothold they have longed for in validating the creation of architectural forms. 
Interestingly this area of inquiry links architecture to the last component in the quadrivium of 
professions made up of architecture, engineering, law and medicine. Architects have engaged 
engineering and law in the creation of the built environment and this engagement has served them well. 
The moment has come for architects to engage the fourth profession in the quadrivium – medicine, and 
with it, the world of biology. This engagement promises to resolve the persistent anxiety in the 
validation of architectural form through an area of inquiry called developmental biology.  

“Developmental biology is the study of the process by which organisms grow and develop. Modern 
developmental biology studies the genetic control of cell growth, differentiation and "morphogenesis," 
which is the process that gives rise to tissues, organs and anatomy. The study of morphogenesis involves 
an attempt to understand the processes that control the organized spatial distribution of cells that 
arises during the embryonic development of an organism and which give rise to the characteristic forms 
of tissues, organs and overall body anatomy.”   (Wikipedia) 

This last aspect of developmental biology, morphogenesis, the evolution of form, as the name implies, 
may embody the architect’s salvation. 

In the early part of the 20th century D’Arcy Wentworth Thompson wrote the influential book, On 
Growth and Form, where he explored evolutionary frameworks for the growth of various kinds of 
biological forms. His deliberations were picked up decades later in a telling manner by Alan Turing, a 
pioneer in the field of computation as we have come to know it today (Saunders, 1992). Turing used 
mathematical models based on reaction‐diffusion equations to suggest a methodology for pattern 
formation in biology, and in doing so may have also founded the contemporary study of pattern 
formation in nature.  He was specifically interested in how the Fibonacci series was manifest in the 
growth and development of plants. Unfortunately Turing passed away before he could build significantly 
on Thompson’s work. Digital media enthusiasts in architecture have recently rediscovered the work of 
Thompson, no doubt intrigued by Turing’s connection to his work, and have sought inspiration from it to 
drive the creation of architectural form using digital media. This heady mixture of the early stirrings of 
developmental biology and contemporary digital mediation has created the potential for unprecedented 
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knowledge in the creation of forms at the scale and complexity of nature. Developmental biologists are 
studying morphogenesis both in vivo and in silico. They have integrated computational tools into a field 
called systems biology and are now able to model aspects of morphogenesis computationally (Alon, 
2006). Here we are now, at the crossroads of biology, computation, and dare we say, architecture, that 
has begun to shed a new light on information seen as, in formation, that is, in the particular state of 
being formed. 

Why is this important? It may be urgently so, because understanding how genomes evolve, and 

morphogens (form generators) enable the creation of tissues and organs, will give architects a far more 

sophisticated set of form‐making tools than the Cartesian grid and Euclidean geometry to take on the 

complex imperative of sustainability of the built environment.  Our very survival may be dependent 

upon being able to understand and master these form‐making techniques. 

“Morphogens are substances governing the pattern of tissue development and, in particular, the 

positions of the various specialized cell types within a tissue. Morphogens spread from a localized 

source and form a concentration gradient across a developing tissue.”  (Wikipedia) This concentration 

gradient in turn drives the differentiation in the developing tissue required for the emergence of form. 

The processes of diffusion, activation and deactivation in cell structures, collectively called gastrulation, 

becomes the dynamic environment in which form is created. Understanding this dynamic process will 

enable architects to eventually attain a facility in form‐making similar to ones found in nature. “Well‐

known morphogens include:  Decapentaplegic / Transforming growth factor beta, Hedgehog / Sonic 

Hedgehog, Wingless / Wnt, Epidermal growth factor, and Fibroblast growth factor.”  (Wikipedia) Many 

of these morphogens were identified through the study of the fruit fly embryo. These morphogens are 

defined conceptually, not chemically, based on how they create or influence different forms.  For 

example, the Sonic Hedgehog morphogen influences the creation of digits (fingers and toes) in limbs, 

the midline structures in the brain and the spinal cord. How these morphogens actually work in 

specificity is still being charted by developmental biologists. 

The really intriguing set of questions is: What lessons do morphogens have for architects? What would 

be the equivalent of morphogens in the creation of various kinds of architectural form? For example, is 

there an Auditorium morphogen in architecture? What would it be, and how would it function?  

The case has been made for Acoustic Sculpting and the Algorithmic Auditorium (Mahalingam, 1998). 

Acoustic Sculpting, identified  by Professor Mahalingam (in the sense of giving it identity),  is the process 

of creation of architectural form, specifically the spatial form of an auditorium, based on acoustical 

parameters such as reverberation time, the time delay gap of sound reflections and inter‐aural cross 

correlation. Using geometric, mathematical and statistical functions, it is a method to generate 

architectural form that performs according to optimized criteria, acoustical criteria in this case. Through 

Acoustic Sculpting, sound becomes a form‐giver (a morphogen?) for Architecture. The process of 
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Acoustical Sculpting was used in the Algorithmic Auditorium project. The Algorithmic Auditorium is the 

project in which an algorithm was created for the preliminary spatial design (the design of the three‐

dimensional spatial envelope) of a proscenium‐type auditorium based on acoustical, programmatic, 

performance and visual criteria, and implemented as a functioning piece of software. (Mahalingam, 

1995). These two concepts were a precursor to a new way of looking at architectural form‐making. They 

also anticipated the role of morphogens in architecture by almost a decade. Evolution has now brought 

us to a point where practical tools such as Bentley’s Generative Components (released commercially in 

2007) are now making such considerations of architectural form‐making viable and accessible. 

Where is this leading us as architects? Is the Auditorium morphogen an evolutionary extension of the 

Algorithmic Auditorium? Does it point to a convergence of the fields of biology, computation and 

architecture? Will current inquiry resolve these questions? In a paper presented at a conference in 2003, 

Professor Mahalingam suggested that a uniform connections‐based representation of all aspects of 

architecture could be used to map the architectural genome and understand the myriad architectural 

forms that exist in the world. (Mahalingam, 2003) What if we could map both the architectural genome 

and, at the same time, identify all the morphogens that differentiate architecture? Could the study of 

form‐making in architecture run parallel to the field of study of the developmental biologists? Could 

architects’ understanding of form‐making inform the work of developmental biologists? Could the work 

of architects be profoundly significant, beyond the world of inhabitation and sensory experience? Could 

Architecture enhance Medicine? This is what is decidedly in formation… 
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