
Collection of Research Papers

and Articles

Ganapathy Mahalingam, Ph.D.

THE ALGORITHMIC AUDITORIUM

A computational model for auditorium design

 GANAPATHY MAHALINGAM
 Department of Architecture and Landscape Architecture
 North Dakota State University
 Fargo, North Dakota
 USA

Abstract. Auditorium design is a complex task. Various programmatic, functional and
acoustical parameters have to be resolved in the spatial design of an auditorium. This
ongoing research project deals with the development of a computer-aided design system
for the preliminary spatial design of proscenium type auditoriums. The concept of
“acoustic sculpting” is used to generate the spatial form of the auditorium from
programmatic, functional and acoustical parameters. These parameters are incorporated
using a combination of mathematical, empirical and statistical methods. The generation
of the spatial form of the auditorium is implemented as an algorithm that is executed on
the computer. The spatial form of the auditorium generated by the system is exported as
a computer model for design development and acoustical analysis.

1. Introduction

Auditorium design is a complex task. Various programmatic, functional and
acoustical parameters have to be resolved in the spatial design of the
auditorium. The emergence of sophisticated computational modeling tools has
now enabled the creation of design systems that treat the design of auditoriums
as an algorithmic process. In this paper, the design of proscenium-type
auditoriums is presented as an algorithmic process. This process is implemented
in a design system where the generator of the spatial form of the auditorium is
modeled as a “virtual computer.”

2. Auditorium Design Parameters

The complexity of auditorium design arises from the need to resolve many
interacting parameters. Some of the programmatic design parameters of the
auditorium include the type of performance that is to be presented in the

2 GANAPATHY MAHALINGAM

auditorium and the capacity of the auditorium. Programmatic parameters help
decide the dimensions of stage enclosures and seating areas. Functional
parameters include anthropometric constraints such as the area per seat, visual
constraints such as sight lines, and conditions for visual clarity. However, the
key parameters that influence the generation of the spatial form of the
auditorium are the acoustical parameters. Acoustical parameters are integrated
in the auditorium design system using the concept of acoustical sculpting.

3. Acoustic Sculpting

Acoustic sculpting is the creation of architectural shapes and forms based
primarily on acoustical parameters. It can be likened to sculpting, not with a
chisel, but with abstract entities such as acoustical parameters. Acoustical
parameters become special abstract tools that shape the environment in their
own characteristic way, hence the term acoustic sculpting.

In this context, it will be interesting to introduce the concept of a locus. In
planar geometry, loci are lines traced by points according to certain rules or
conditions. A circle is the locus of a point that is always equidistant from a
given point. An ellipse is the locus of a point whose sum of distances from two
given points is always equal. From these examples, it can be seen that a
particular rule or condition can trace a particular locus. The scope of application
of the concept of a locus can be dramatically widened by realizing that the word
locus in Latin means place. Architecture involves the creation of places and
spaces. A question can be posed - What is the locus of an acoustical parameter?
In answering that question, architecture based on acoustical parameters can be
created. Acoustics can become a form-giver for architecture. Figure 1 shows
how the time delay gap, an acoustical parameter, is used to generate a semi-
elliptical spatial field using the concept of the locus.

Acoustical parameters are often measured to assess the acoustical quality of
a space or a scaled architectural model. They are indicators of the acoustical
quality of the space in which they are measured. However, it is important to
realize certain facts about acoustical parameters. Acoustical parameters are
location specific. For a given sound source in a room, acoustical parameters
vary systematically at different locations in the room. Acoustical parameters
also vary when the sound source is varied. Hence, a set of acoustical parameters
at a given location, for a specific sound source, can be used only to generate the
general features of the architectural space around that location. Figure 2 shows
the source-receiver locations used in the design system. This, to stay within the
metaphor of sculpting, will result only in a first cut. Different sets of acoustical
parameters from different locations can further refine the definition of the
architectural space encompassing those locations. It has been found by
researchers that at least 10 to 12 sets of acoustical parameters are required to

 THE ALGORITHMIC AUDITORIUM 3

derive the mean values of acoustical parameters in an auditorium (Bradley &
Halliwell, 1989). If architectural shapes and forms can be created from
acoustical parameters, then a rational basis can be established for the creation of
acoustical environments.

Figure 1. Concept of locus used to derive a spatial field from an acoustical parameter.

Currently, the creation of acoustical environments is a trial-and-error

process that tries to match the acoustical parameters of the space being created,
probably in the form of a physical model, with acoustical parameters that have
been observed in other well-liked spaces. The manipulations of the space's
shape and form to achieve the match, are done in an arbitrary fashion, with no
explicit understanding of the relationships between the shape and form of the
space and the corresponding acoustical parameters. There has been extensive
research conducted in the 1960s, 1970s and 1980s by Ando (1985), Barron
(1988), Barron & Lee (1988), Beranek (1962), Bradley (1986, 1990), Cremer
(1978), Hawkes (1971) and Sabine (1964) to establish those aspects of the
auditory experience that are important in the perception of the acoustical quality
of a space, and how they relate to objectively measured acoustical parameters in
that space. There has not been much research conducted except by Gade (1986,
1989) and Chiang (1994) regarding the relationships between acoustical
parameters and the shapes and forms of the spaces in which they are generated.

Acoustic sculpting attempts to define the latter relationships and uses them
to create a system that generates spatial forms of auditoriums based on
acoustical parameters. This generative system is used as a tool for creating
preliminary designs of proscenium-type auditoriums.

4 GANAPATHY MAHALINGAM

Figure 2. Spatial form of the auditorium showing the source-receiver pair for acoustical

parameters.

3.1. METHODS OF ACOUSTIC SCULPTING

The process of generation of the spatial form of the auditoriums is related to the
set of acoustical parameters both statistically and theoretically. The acoustical
parameters for the generative system are drawn from, but are not limited to, the
set presented in the following section. This set of parameters is used by
acousticians to study concert hall and lecture room acoustics. These parameters
are derived from response graphs of sound intensity variations at the receiving
location. Figure 3 shows a response graph. Though the set is extensive, not all
of the parameters are used in the spatial form generation stage.

3.1.1. Acoustical Parameters
The acoustical parameters include Reverberation Time, Early Decay Time,
Room Constant, Overall Loudness or Strength of Sound Source, Initial Time
Delay Gap, Temporal Energy Ratios: Early/Total Energy Ratio (Deutlichkeit),
Early/Late Energy Ratio (Clarity), Center Time, Lateral Energy Fraction,
Spatial Impression, Bass Ratio, Bass Level Balance, Early Decay Time Ratio

 THE ALGORITHMIC AUDITORIUM 5

and Center Time Ratio, Useful/Detrimental Ratio, Speech Transmission Index
and the Rapid Speech Transmission Index.

The different acoustical parameters cited above resolve into related groups
that have corresponding subjective perception characteristics. These subjective
perception characteristics are classified as Reverberance, Loudness, Clarity,
Balance and Envelopment.

A limited set of acoustical parameters related to these subjective perceptions
are incorporated in the system (using both statistical and theoretical methods)
that derives architectural parameters from the acoustical parameters. It must be
remembered that, in the spatial form generation stage, acoustical parameters are
not the only factors determining the shapes and forms of the auditoriums. Other
factors like seating requirements, visual constraints and other programmatic
requirements, along with the acoustical parameters, determine the spatial forms
of the auditoriums. The values of the acoustical parameters for use in the
generative system are drawn from a database of objectively measured readings
in different architectural settings that have been subjectively evaluated as
desirable. Based on studies done so far, a generative system based on
macrostatic statistical relationships and some analytical theory has been
developed by the author. Details of this system are to be found in another paper
by the author (Mahalingam, 1992).

Figure 3. Response graph showing sound intensity variation over time at receiver
location.

6 GANAPATHY MAHALINGAM

4. Spatial Model Of The Auditorium

The spatial form of the auditorium is modeled as a parametric object. Each
vertex that makes up the topology of the auditorium is spatially located by a
function of multiple parameters. These parameters may be directly input by the
user of the design system or derived from the user input using calculations. The
various parameters are linked in a spatial form generating algorithm using a
structure that resembles an ASIC (application specific integrated circuit). Figure
4 shows this relationship of the various parameters. This structure can also be
reconfigured as a network or semi-lattice. The connectivity of the vertices that
establishes the topology of the auditorium is derived from the spatial type of the
proscenium auditorium. The whole design system is a “virtual computer” that
outputs spatial designs of proscenium-type auditoriums.

Figure 4. The relationship of the various parameters of the spatial form generator as an
ASIC (application specific integrated circuit)

 THE ALGORITHMIC AUDITORIUM 7

5. What Is A Virtual Computer?

In object-oriented computing, entities are modeled as encapsulations of data,
and operations that can be performed on that data. Encapsulation is a computer
abstraction. A collection of data and operations normally performed on the data
are closely related, so, they are treated as a single entity (rather than separate)
for purposes of abstraction. Each encapsulation can be thought of as a virtual
computer that is mapped onto a physical computer (see Figure 5) with its own
private memory (its data) and instruction set (its operations). The reference to
objects as computers was made by Alan Kay (1977). He envisaged a host
computer being broken down into thousands of computers (virtual?), each
having the capabilities of the whole, and exhibiting a certain behavior when
sent a message which is a part of its instruction set. He called these (virtual?)
computers "activities." According to him, object-oriented systems should be
nothing but dynamically communicating "activities." As such they form an
interesting model with which to simulate architectural design. Mitchell’s recent
call (1994) for a “society of design” with a “collection of agents of different
kinds interacting over a network” echoes the ideas of Alan Kay. In another
interesting perspective, encapsulations have been likened to integrated circuits
rather than virtual computers by Ledbetter & Cox (1985) (see Figure 4).

Figure 5. The concept of a virtual computer (or computational object) being mapped
onto a physical computer.

8 GANAPATHY MAHALINGAM

6. The Auditorium Design System

The design system used to generate the preliminary spatial designs of
proscenium type auditoriums is based on acoustical, functional and
programmatic parameters. The computational model of the auditorium is
parametric. The various acoustical, functional and programmatic parameters are
its data. Procedures that compute the spatial parameters of the auditorium and
create its graphic representation are its operations. These data and operations,
when encapsulated, act as a virtual computer that is mapped onto the physical
computer (see Figure 5). The function of this virtual computer is to output
auditorium designs.

The generative system involves an algorithmic procedure for the design of
the auditoriums based on constants, user input of independent variables and
derived variables. These constants and variables are used to calculate the spatial
location of sets of vertices in 3D space that are linked to form wire-frame and
shaded plane images of the auditoriums. The topology of the auditorium is
based on the proscenium-type auditorium typology. It is a variant topology with
the introduction of balconies only when necessary (see Figure 6). The vertices
are parametrically controlled and change with changing parametric inputs.

Figure 6. Topological model of the auditorium showing the variant topology for the
balconies.

 THE ALGORITHMIC AUDITORIUM 9

The algorithmic procedure is implemented in the SmalltalkTM object-
oriented programming language. The software has a user-friendly menu and
graphic interface with which to input acoustical, functional and programmatic
parameters. When any aspect of the model is changed, the spatial form is
updated. The system provides a dynamic design environment. In the system, the
spatial form changes in real time with changing input of the parameters. The
auditorium is depicted in true perspective. Once the spatial form is generated, it
can be viewed from any angle and from any distance. The systems can be used
to rapidly generate alternate designs based on the various parameters.

To limit the scope of the software design to manageable limits, the initial
version of the generative system has a limited set of 21 independent variables.
However, the total number of variables (both independent and derived) in the
system is large, indicating a complex system. An interface has been developed
that can transfer the computer model generated by this system in a format
readily acceptable by commercial CAD packages (the DXF format) for design
development. An interface has also been developed to link this system to
acoustical simulation software (EASE and EARS) to predict what the
auditorium will sound like if it is built. The view of the computer screen when
running the software is shown in Figure 7.

Figure 7. View of the screen of the design system software for auditoriums.

10 GANAPATHY MAHALINGAM

Acknowledgements

Much of this research work was completed as part of the author’s doctoral
dissertation under the supervision of Professors John Alexander and Gary
Siebein at the University of Florida, Gainesville, USA.

References

Ando, Y.: 1985, Concert Hall Acoustics, Springer-Verlag, Berlin.
Barron, M.: 1988, Subjective Study of British Symphony Concert Halls, Acustica,

Vol.66, No.1, pp. 1-14.
Barron, M. and Lee J.: 1988, Energy Relations in Concert Auditoriums, Journal of the

Acoustical Society of America, Vol. 84, No. 2, pp. 618-628.
Beranek, L. L.: 1962, Music, Acoustics and Architecture, John Wiley & Sons, New

York.
Bradley, J. S.: 1990, The Evolution Of Newer Auditorium Acoustics Measures,

Canadian Acoustics, Vol.18, No.4, pp. 13-23.
Bradley, J. S.: 1986, Auditorium acoustics measures from pistol shots, Journal of the

Acoustical Society of America, Vol.80, No.1, pp. 199-205.
Bradley, J. S. and Halliwell R. E.: 1989, Making Auditorium Acoustics More

Quantitative, Sound and Vibration, February, pp. 16-23.
Chiang, Wei-Hwa: 1994, Effects of Various Architectural Parameters on Six Room

Acoustical Measures in Auditoria, Ph.D. Dissertation, University of Florida,
Gainesville.

Cremer, L.: 1978, Principles and Applications of Room Acoustics, Vol. 1, (Translated
by T. Schultz), Applied Science Publishers, London, England.

Gade, A. C.: 1989, Acoustical Survey of Eleven European Concert Halls, Report No.
44, The Acoustics Laboratory, Technical University of Denmark, Lyngby.

Gade, A. C.: 1986, Relationships Between Objective Room Acoustic Parameters And
Concert Hall Design, Proceedings of the 12th International Congress on Acoustics,
Vol./Band D-G, E4-8, Toronto.

Hawkes, R. J.: 1971, Experience in Concert Auditoria, Acustica, Vol. 24, pp. 236-250.
Kay, A. C.: 1977, Microelectronics and the Personal Computer, Scientific American,

September, pp. 230-244.
Ledbetter, L. and Cox B.: 1985, Software-ICs, in Byte, June, pp. 307-316.
Mahalingam, G.: 1992, Designing the Sound Environment: Acoustic Sculpting,

Proceedings of the ACSA Technology Conference, San Diego, February.
Mitchell, W. J.: 1994, “Three paradigms for computer-aided design,” in Automation in

Construction, Vol. 3, Numbers 2-3.
Sabine, W. C.: 1964, Collected Papers on Acoustics, Harvard University Press,

Cambridge, Massachusetts, Reprinted by Dover Publications.

The Algorithmic Auditorium: Automating Auditorium Design

Ganapathy Mahalingam, Ph.D.
North Dakota State University

Abstract

The goal of this ongoing research project is the development of an algorithm for the process of auditorium design. A
version of this algorithm has been implemented in a computer-based design system for the preliminary spatial
design of proscenium-type auditoriums. The spatial form of the auditorium is derived from acoustical, functional
and programmatic parameters. Each of these parameters implies an appropriate spatial form for the auditorium. The
algorithm resolves the spatial implications of these multiple parameters to arrive at an "optimized" form of the
auditorium. The design system is to be used by architects as a performance-based preliminary design tool. The
process of generating the spatial form of the auditorium from architectural acoustical parameters is called acoustic
sculpting. Acoustic sculpting is a type of performance-based design. Performance loci of the various parameters
drive the form generation. This concept can be extended to include lighting and HVAC parameters as well in spatial
form generation. This approach will eventually lead to the generation of various architectural spaces based on
environmental performance criteria. The design of architectural spaces will then be based on tracing the loci of
programmatic, functional and environmental performance parameters in addition to visual considerations. Current
research work is focused on developing algorithms to derive acoustical parameters from the spatial forms generated
by the design system. This will complete the cycle of inquiry to see if the forms that are generated yield the
acoustical parameters on which they were based. Since similar measurements of acoustical parameters can be made
in different spaces, this research will most likely not yield a deterministic design system but an effective design
system. The successful implementation of an algorithmic process to design auditoriums also addresses the issue of
the computability of architectural design. If auditorium design can be automated, then there is hope yet for the
computability of architectural design.

Introduction

The algorithmic auditorium project (Mahalingam, 1998) started with two main premises. One was that you could
automate auditorium design by developing an algorithmic process to generate the spatial form of the auditorium.
The other was that you could generate spatial forms based on acoustical, functional and programmatic parameters.
Both these premises were realized in the development of a design system for the preliminary spatial design of
proscenium-type auditoriums (Mahalingam, 1995).

The characterization of the system as a design system can be called into question. To resolve the issue of whether
computers, or more appropriately, computer-based systems, can design, an Architectural Turing Test should be used.
Take this scenario in an architect's office. The principal walks into the studio and gives a staff architect the task of
generating the initial spatial form of a proscenium-type auditorium. The architect is given general requirements such
as the seating capacity, area per seat, the performance type, and acoustical parameters such as reverberation time.
The principal walks away. The architect sets to work. After 12 hours, she has drawn a perspective drawing of the
initial spatial form of the auditorium, after resolving issues such as volume, seating areas, sight lines, seating slopes
and sound reflection panels. Has she designed the auditorium? If she has, then a computer-based system that does
what she has done is also designing. This is the basis of an Architectural Turing Test. Given the same input, if a
computer-based system produces the same output as a human designer, and the human is considered to be designing,
then the computer-based system can be said to be designing as well.

In the design system, non-spatial information is converted to spatial form by an algorithm. This can be said to be the
essence of computer-based architectural design, or for that matter, any process of designing material artifacts. This
system proves that certain non-trivial design tasks can be automated, therefore, other non-trivial design tasks can
also be automated if they are computationally articulated. The auditorium design system is based on performance
criteria and their translation into spatial form. It was possible to create this system, because it was possible to
computationally articulate the decision making in auditorium design. Rather than focus on the design behavior of the
architect in the auditorium design process, the focus was placed on design decision making. This approach
acknowledges that designs are created by a sequence of explicit decisions. Design behavior is a larger rubric that

 1

surrounds design decision-making. Protocol analyses of design behavior often lead to unresolvable complexity in
the articulation of design because they do not focus on the decision-making process. Protocol analyses can lead to
computational articulation if they focus on the design decisions that are actually made.

Main Concepts

The single main concept used in the design system is acoustic sculpting (Mahalingam, 1992). Acoustic sculpting is
the process by which spatial form is generated from architectural acoustical parameters. The sculpting analogy was
used because the use of a particular tool for sculpting yields characteristic results. Sculptors use stone chisels, wood
carving implements, blowtorches and lasers to sculpt material. What if sculptors working in digital media use
abstract mathematical tools to sculpt forms? What if the sculptor's material was architectural space and the abstract
mathematical tools were environmental performance criteria?

Figure 1. Two performance loci, an elliptical field for the initial time delay gap and an isocandle envelope.

Each acoustical parameter has its performance locus, a spatial form in which the acoustical parameter is generated.
For example, the performance locus of the initial time delay gap (an acoustical parameter) is an elliptical spatial
field. The initial time delay gap is the difference in time between the time taken by the first reflected ray to arrive at
a receiver location and the time taken by the direct ray from the sound source. The initial time delay gap's
performance locus is an elliptical field because an ellipse is the locus of a point that moves such that the sum of its
distances from two fixed points is constant. The two fixed points are the source and the receiver locations. Similarly,
the performance locus of an area of seating that minimizes distances from a point source is a segment of a circle.
Deriving the performance locus of a parameter can be based on geometrical, mathematical or statistical analysis. For
example, in the design system, some of the spatial implications of acoustical parameters were established by
performing regression analysis between architectural dimensions and acoustical parameters recorded in various
spaces. The use of performance loci to generate spatial form is a powerful concept. Performance loci of many
environmental performance criteria including lighting and HVAC parameters can become form-givers for
architectural spaces. Performance loci are a means to derive spatial form from non-spatial information. Multiple
performance loci can be resolved into an optimal spatial form using Boolean operations such as intersection (see
Figs. 1 & 2). The common space occupied by various performance loci becomes the optimal architectural space.
This is similar to the constraint envelopes used in three-dimensional constraint-based reasoning.

 2

Figure 2. The common optimal space between the two performance loci obtained through the Boolean operation of
intersection

Gyorgy Doczi (1981) wrote an important book on the power of limits in which he showed how many forms found in
nature and in cultural artifacts were the results of "dinergy" patterns. Doczi showed that the intersection of "dinergy"
patterns and their limiting conditions generated various forms of flowers, leaves, shells and fish. Doczi described
these patterns as the creative energy of organic growth. Performance loci are like "dinergy" patterns that can be used
to generate a new breed of organic architectural spaces. Greg Lynn (1999) uses the concept of animate form, but
primarily deals with the transformation (or more accurately, deformation) of architectural forms based on external
contextual forces using the "affector" technology available in special effects systems. Lynn's forms accommodate
functions in unique and innovative ways, but the form generation process itself is not governed by environmental
performance criteria. Animate forms will acquire more power if the transformation or deformation of the form being
designed is being done by programmatic, functional and environmental performance criteria. Rather than being a
pliant form acted on by external forces, architectural space should unfold as a response to performance criteria.

Implementation

The initial version of the auditorium design system (see Fig. 3) was implemented in 1991 using the object-oriented
software development environment ObjectWorksTM. The programming language used was Smalltalk. The current
version was developed using the VisualWorksTM software development environment, which is also based on
Smalltalk (see Fig. 4). The system runs on the VisualWorksTM virtual machine and is platform independent. It can
run on PCs, Macintoshes and Unix machines. The design system is modeled as a virtual computer. The various
parameters are its input, the spatial form of the auditorium is its output, and the algorithmic process is like an
integrated circuit in the processing unit.

The spatial form of the auditorium is a collection of vertices. Each vertex is spatially located by a function of
acoustical, functional and programmatic parameters. The vertices are connected based on the typology of the
proscenium-type auditorium. The topology of the spatial form is provided by the typology. This topology generates
the coupled space configuration of the stage house and the auditorium. The topology is not a fixed topology. For
instance, balconies are embedded in the initial topology only to be activated when the parameters warrant it. The
whole spatial form of the auditorium collapses to a point, a singularity, when the various parameters are set to zero.
The embedded topology of the balcony collapses into the initial topology when not needed. Connecting appropriate
vertices creates the different surfaces of the auditorium. Currently an algorithm is being developed (Mahalingam,
1999) that models sound propagation in the auditorium as radiation from surface to surface. This model of diffuse

 3

sound propagation allows for a quick assessment of the acoustical parameters of the computer model of the
auditorium.

The spatial form of the auditorium generated by the design system can be exported in file formats accepted by
commercial CAD (AutoCADTM) and acoustical analysis (EASE/EARSTM) software. This allows an architect using
the system to further develop and articulate the spatial form of the auditorium generated by the design system. In the
design development stage, the spatial form generated by the design system will be the constraining envelope because
it is based on the various performance criteria.

Figure 3. Initial version of the auditorium design system from 1991.

Figure 4. Current version of the auditorium design system.

Concluding Thoughts

 4

 5

Acoustic sculpting addresses the generation of spatial forms from acoustical parameters. Similar spatial form
generation techniques can be applied to lighting and HVAC parameters. Just as we can ask what the performance
locus or spatial form of an acoustical parameter is, so we can ask what the performance locus or spatial form of a
lighting or HVAC parameter is! Architectural space generation will become a supple manipulation and visual (?)
resolution of the elliptical spatial fields of time delay gaps, isocandle envelopes and isothermal bubbles! Generating
optimal forms from performance loci will be the challenge. One can begin the design process with performance loci,
yet the final optimization of the spatial form can still be visual, which however, may now be difficult to justify with
the spatial articulation of other performance criteria.

References

Doczi, G. (1981), The Power of Limits, Shambala Publications Inc., Boulder, Colorado, and London, England.

Lynn, G., (1999), Animate Form, Princeton Press, New York.

Mahalingam, G. (1999), “A New Algorithm for the Simulation of Sound Propagation in Spatial Enclosures,”
Building Simulation '99 Conference, Kyoto, Japan.

Mahalingam, G., (1998), The Algorithmic Auditorium, Initiative for Architectural Research, Research Poster
Competition Winner.

Mahalingam, G. (1995), The Application of Object-oriented Computing in the Development of Design Systems for
Auditoria, Ph.D. Dissertation, University of Florida, Gainesville, Florida.

Mahalingam, G., (1992), "Designing the Sound Environment: Acoustic Sculpting," ACSA Technology Conference,
San Diego.

A COMPUTATIONAL MODEL OF A SENSOR NETWORK FOR
THE OPTIMIZATION AND CONTROL OF ACOUSTICAL
PERFORMANCE CRITERIA IN SPATIAL ENCLOSURES

GANAPATHY MAHALINGAM
North Dakota State University, Fargo, North Dakota, U.S.A.
Email address:Ganapathy.Mahalingam@ndsu.edu

Abstract. The technology of nanoblock-based circuits is enabling the
creation of ultra-small sensors that can transmit their location and
readings using radio frequencies. This technology has the potential to
enhance the optimization of environmental performance criteria in
spatial enclosures, using a wide range of actuators that function at
different scales. The combination of such ultra-small sensors with
actuators will enable the creation of spatial enclosures that are
complex adaptive systems, which dynamically optimize the various
environmental performance criteria for the enclosures. Defining a
model for the optimization process in these systems presents
significant challenges. This paper will set out a model for the use of
ultra-small sensor systems in optimizing environmental performance
criteria in spatial enclosures, especially acoustical performance
criteria.

1. Introduction

The technology of nanoblock-based circuits is enabling the creation of ultra-
small sensors that can transmit their location and readings using radio
frequencies. This technology has the potential to enhance the optimization of
environmental performance criteria in spatial enclosures, using a wide range
of actuators that function at different scales. These actuators range from
material modifiers that use piezoelectric effects to micro-electrical
mechanical systems to motors that move large panels. The combination of
such ultra-small sensors with actuators will enable the creation of spatial
enclosures that are complex adaptive systems, which dynamically optimize
the various environmental performance criteria for the enclosures. Defining a
model for the optimization process in these systems presents significant
challenges. This paper will set out a model and relevant challenges for the
use of ultra-small sensor systems that are combined with actuators to
optimize environmental performance criteria in spatial enclosures. This
model will enable the consideration of architectural space as a dynamic,
adaptive entity rather than as a static entity, which has been the traditional
approach. This model also has the potential to serve a broader range of
optimization problems in other contexts as well.

2 GANAPATHY MAHALINGAM

2. Sensors and Effectors

2.1 NANOBLOCKS AND ULTRA-SMALL SENSORS

Nanoblocks are substrates for circuit components at the scale of nanometers.
These nanoblocks are the size of pepper flakes. These blocks are combined
into ultra-small circuits that can function as a sensor or be part of an
actuator. A sensor measures some environmental criterion. An actuator takes
the measurement or reading of a sensor and performs an action through
electrical and mechanically driven devices. An actuator may have a digital
signal processor as part of its configuration. These nanoblock-based ultra-
small sensors can be so ubiquitous as to form a coat of ‘sensor paint’ on
surfaces of spatial enclosures.

2.2 SENSOR ARRAYS AND NETWORKS

Since the ultra-small sensors are so small that thousands could be placed in
one square inch, their individual readings may be so close to each other that
they are not significantly different from each other. This allows the
combination of many sensors into sensor arrays using statistical techniques
such as cluster analysis. Cluster analysis is a statistical technique that groups
entities together such that the within-group variation is minimized and
between-group variation is maximized. These sensor arrays can be
dynamically defined based on a cyclic sampling of the sensor readings,
performing the cluster analysis, and grouping sensors into sensor arrays. In
the case of steady-state criteria, these sensor arrays are fairly stable in terms
of their boundaries, but in dynamic criteria, the boundaries of the sensor
arrays may vary in time. The same process can also be used for the actuators
if the actuators are at the same scale as the sensors.

These sensor arrays or ‘zones’ can communicate with each other using
radio frequency waves, exchange information, and create ad-hoc networks of
measurements. Optimization of environmental performance criteria in the
spatial enclosures is modeled as an optimization based on this network of
measurements.

2.3 EFFECTORS

An effector is a complex entity that produces an effect on another entity or
on the environment. An effector is a sensor-actuator pairing. It combines, at
a minimum, one sensor with one actuator. Other configurations that are
possible are the coupling of one sensor with many actuators, many sensors
with one actuator, and many sensors with many actuators. The actuator
performs its action based on the readings from one or more sensors. This
actuation process can utilize computation or other forms of processing of the
sensor data. The optimization, both spatial and temporal, of readings from
multiple sensors requires sophisticated techniques. The sensor can simply be
a measuring instrument that record measurements of different kinds. Sensors
are available that can measure temperature, humidity, mass airflow, position,
etc. An actuator can range in scale from one that does molecular

A COMPUTATIONAL MODEL OF A SENSOR NETWORK FOR THE
OPTIMIZATION AND CONTROL OF ACOUSTICAL PERFORMANCE
CRITERIA IN SPATIAL ENCLOSURES

 3

manipulation to micro electro-mechanical systems to large scale motor-based
kinetic systems.

3. Environmental Performance

3.1 ENVIRONMENTAL PERFORMANCE CRITERIA

The environmental performance criteria of interest to designers of spatial
enclosures for various purposes are illumination levels, sound frequencies,
sound amplitude, sound intensities, temperature and humidity. These
performance criteria correspond to the human senses of sight, hearing and
touch respectively. Being able to optimize these criteria in complex spatial
enclosures will enhance human activities in those enclosures in transparent
and subtle ways.

For example, patrons sitting in a library carrel and reading books will not
notice that these ultra-small sensors have recorded the illumination levels on
their desktops and signaled the lights overhead to increase their brightness.
Concert goers in a concert hall will not notice the detection of an echo
condition and its cancellation by a network of actuators controlled by
sensors on the surfaces of the spatial enclosure of the auditorium. A
homeless man will not realize that the park bench he is approaching is being
warmed up for him to curl on as he approaches the bench.

3.2 STEADY-STATE AND DYNAMIC ENVIRONMENTAL PERFORMANCE
CRITERIA

A steady-state environmental performance criterion is one that does not vary
significantly over time, unless a change is made to one of its causal agents.
A dynamic environmental performance criterion is one which varies in time.
The time cycles can range from mere milliseconds or seconds in the case of
sound, to a year in the case of temperature. Illumination levels in a spatial
enclosure are steady-state phenomena. Unless the light sources are changed,
the illumination levels stabilize in a very short duration after the light
sources are turned on. The only exception to this is daylight which causes
illumination levels to vary over a time cycle. Temperature variation is
similarly a steady-state phenomenon, especially in interior spatial
enclosures. Temperature variation can be a dynamic phenomenon if the
spatial enclosure has a membrane exposed to the exterior, which has a
dynamic temperature range over a time cycle.

4 GANAPATHY MAHALINGAM

4. Optimization

4.1 OPTIMIZATION OF ENVIRONMENTAL PERFORMANCE CRITERIA

Optimization can be simply defined as the maximizing or minimizing a
particular quantity, in this case, the measurements of various environmental
performance criteria recorded by the various sensors.

The spatial distribution of sensors makes it necessary to consider the
spatial effect of the optimization. A local optimization has global effects, and
global optimization has local effects. This spatial effect can be resolved
using relatively simple techniques in the case of steady-state criteria. The
optimization becomes very complex when the criteria are dynamic and
change over different time cycles. For example, sound changes over time
cycles measured in millisecond intervals and temperature varies over time
cycles measured in hours.

Optimization of environmental performance criteria is complicated by the
fact that human preferences are often based on aggregate measurements of
the environmental performance criteria rather than instantaneous
measurements. For example, human preferences for acoustical conditions are
based on the ratio of sound energy summations over time intervals, rather
than the instantaneous sound energy variation in time, as would be indicated
by an energy response graph.

4.2 RESOLVING THE SPATIAL EFFECTS OF SOURCES AND EFFECTORS

The optimization of the environmental performance criteria depends to a
large extent on the resolution of the spatial effects caused by the sources
(light fixtures, sound sources, heat sources, etc.) and the spatial effects
caused by the surfaces that make up the enclosure. The measurement at a
particular sensor at a particular time can be modeled as a vector of the spatial
effects of the various sources and surfaces that are part of the spatial
enclosure. All the vectors are convolved in time to produce the dynamic
variation of criteria at a particular sensor location.

A COMPUTATIONAL MODEL OF A SENSOR NETWORK FOR THE
OPTIMIZATION AND CONTROL OF ACOUSTICAL PERFORMANCE
CRITERIA IN SPATIAL ENCLOSURES

 5

Source Sensor

Effector

Effector (Sensor + Actuator)
Effector

EffectorEffector

EffectorEffector

Figure 1. Diagram of a system showing a single source, a set of effectors (sensor-actuator
pairs) and a performance sensor. This system is called an optimaton.

An optimization network that links a single source, effectors and a single

performance sensor is called an optimaton. An optimaton behaves like a
neural network in that the source acts as an input, the network of effectors
optimizes the effect of the source or “transforms” the source and the
performance sensor receives the output of the transformation. Multiple
optimatons can be linked to form meta-networks by networking the sources
or the performance sensors.

The mathematical model for the spatial effect of multiple sources in a
spatial enclosure made up of a finite number of surfaces can be modeled as
follows:
1) Let us say there are m sources S1.…..Sm.
2) Let us also say that there are n surfaces E1.…..En such that each functions
as an effector (sensor-actuator pair), and
3) Let us measure performance characteristics at one performance sensor R.

6 GANAPATHY MAHALINGAM

A

B

C

D

E

F

G

H

M

N

O

P

Figure 2. Diagram showing the form factor between two components

The spatial relationship between any two components of an optimization

network is called its form factor. Form factors establish the spatial effect
between a source and an effector, or between an effector and another
effector, between a source and a performance sensor, and an effector and a
performance sensor. Figure 2 shows the form factor relationships between
any two components in the model.

In Figure 2, ABCD and EFGH are two components. MN and OP are the
normals to the two components at their centroids. NP is the distance between
the two components. The angle between the two components is the angle
between the normals. To derive the form factor between the two
components, the following relations are taken into account:
1. The radiation between the components is directly proportional to the ratio
of their areas. This can also be modeled as being proportional to the solid
angle subtended by the two components.
2. The radiation between the two components is inversely proportional to the
square of the distance between the components.
3. The radiation between the two components is proportional to the cosine of
the angle between the two components.
The form factor for the two components will then be: (Aabcd/Aefgh) *
(1/Dnp

2)*(cosθ)
For a situation where there is a single source, n effectors and one

performance sensor, there are the following form factors:
1) Source to performance sensor (SR)
2) Source to all effectors (SE1.…..SEn)
3) Each effector to all other effectors (E1E2.…..E1En)

A COMPUTATIONAL MODEL OF A SENSOR NETWORK FOR THE
OPTIMIZATION AND CONTROL OF ACOUSTICAL PERFORMANCE
CRITERIA IN SPATIAL ENCLOSURES

 7

4) Each effector to the performance sensor (E1R……EnR)
These form factors can be written as a sum of vectors: V(SR) + V(∑1 to n

SEn) + V(∑1 to n En∑1 to n-1 (En+1)) + V(∑1 to n EnR). These form factors add up
to a total of (1) + (n) + n(n-1) + (n) = n2 + n + 1 form factors.

The radiation sequence from the sources to the effectors to the
performance sensor can be modeled. In this model,
1) Energy is radiated from the source to the performance sensor
2) Energy is radiated from the source to all the effectors in the spatial
enclosure
3) Energy is radiated from all the effectors to the performance sensor
4) Energy is radiated from each effector to all other effectors
5) Energy is radiated from all effectors to the performance sensor
6) Steps 4 and 5 are repeated till the energy is dissipated
 Steps 1-5 are defined as constituting the primary propagation. This
propagation engages all form factors once. The energy is therefore
multiplied by (n2 + n + 1) form factors for this primary propagation. After
this propagation, the secondary propagation is a repetition of the radiation
from each effector to all other effectors, and from all effectors to the
performance sensor (steps 4 and 5). This represents n(n - 1) + n = n2 form
factor calculations per cycle. This propagation cycle is repeated at the
required frequency f. Therefore the total number of form factor computations
for energy propagation is ((n2 + n + 1)+(n2)f) if there are no form factor
updates required by changes in effectors. For m sources there are m((n2 + n +
1)+(n2)f) form factor computations for the propagation. This is a polynomial
and can be computed in polynomial time.

This process is complicated by the fact that any change at an effector will
affect the subsequent propagation. If an effector changes in a single
propagation cycle, then the following form factors change:
1) That effector to all other effectors
2) That effector to the performance sensor
3) That effector to the source

This represents an update of (n-1) + (1) + (1) = (n + 1) form factors for
the next propagation cycle. If all effectors change in one cycle, then the
following form factors will change:
1) All effectors to each other
2) All effectors to performance sensor
3) Source to all effectors

This represents an update of n(n - 1) + (n) + (n) = (n2 + n) or n(n + 1)form
factors for the next propagation cycle. The algorithm for energy propagation
will be as follows:
1) Start with energy Q
2) Multiply Q by vectors of a total of (n2 + n + 1) form factors

8 GANAPATHY MAHALINGAM

3) Record energy and time of arrival at the performance sensor, after
multiplication by vectors that end in performance sensor
4) Update n(n + 1) form factors, where n is the number of effectors that have
changed
5) Multiply Q by vectors of a total of (n2) form factors
6) Update/record energy and time of arrival at the performance sensor, after
multiplication by vectors that end in performance sensor
7) Repeat updates of form factors
8) Repeat multiplication by vectors of a total of (n2) form factors
9) Update/record energy and time of arrival at the performance sensor, after
multiplication by vectors that end in performance sensor
10) Plot energy response graph
11) Sum energy for time intervals of interest
12) Compute parameters based on relations between energy at different time
intervals

4.3 OPTIMIZATION FUNCTIONS

Optimization in this system will be the optimization of form factors based on
changes made by effectors. Each effector can be changed based on an
objective function, the form factors can be updated, new vectors of form
factors can be computed, and the propagation cycle can be repeated.

The objective function of a form factor between two components can be
based on three terms, the area, the distance between components and the
angle between the components. It will take the form: f(a, d, θ)

Each of the variables in the objective function has a range of values. The
ranges are as follows:
1) The area (a) can vary from 0 to ∞
2) The distance (d) can vary from 0 to ∞, but a practical upper limit is
√(initial energy ⁄ perception threshold)
3) The angle between components (θ) can vary from 0 to π

The objective function for a spatial enclosure is a function of a maximum
of (n2 + n + 1) form factors. It will take on the form: f (ff1……ffn

2
 + n + 1). An

objective function used in the optimization of environmental performance
criteria can have up to (n2 + n + 1) terms. This is a large number of terms in
an objective function. However, these terms can be grouped into four sets
that behave in a concerted way. These four sets are:
1) Term associated with direct transfer of energy from source to receiver.
2) Terms associated with transfer of energy from a source to all other
effectors.
3) Terms associated with transfer of energy from an effector to all other
effectors.
4) Terms associated with the transfer of energy from all effectors to the
receiver.

4.4 COMMON FRAMEWORK

The complex process of optimizing the various environmental performance
criteria can be resolved by adopting a common framework for the spatial
propagation of the various types of energy. One such framework is the
general model of radiation (Mahalingam, 2000). Radiation is simply

A COMPUTATIONAL MODEL OF A SENSOR NETWORK FOR THE
OPTIMIZATION AND CONTROL OF ACOUSTICAL PERFORMANCE
CRITERIA IN SPATIAL ENCLOSURES

 9

considered as the transfer of energy between spatially separated surfaces. For
the modeling of temperature variation in a spatial enclosure, this technique
can be applied directly. The radiosity based modeling of light propagation in
spatial enclosures provides a theoretical framework for modeling
illumination levels in the spatial enclosure based on radiation. The radiation-
based modeling of sound propagation provides a theoretical framework for
the modeling of sound intensity levels in the spatial enclosure (Mahalingam,
1999).

The triple integral form of the radiation equation, that measures radiation
from a source to a surface, integrates intensities based the variation of the
surface orientation (the cosine or Lambertian component), the area of the
surface, the solid angle subtended by the surface at the source, and time.
This may provide the common framework that may simplify the
optimization process.

This relationship is given by:

Qe = ∫∫∫ LecosθdAdΩdt (Woan, 2000)

Qe = energy at a surface
Le = rate of transfer of energy per unit area per steradian
cosθ = angle between surface where energy is being measured and the source
A = area of surface where energy is being measured
Ω = solid angle in steradians subtended by surface where energy is being
measured
t = time in seconds

5. Conclusion

This paper has introduced a model for the optimization of environmental
performance criteria in spatial enclosures using a system of effectors (sensor-
actuator pairs). This model uses a common radiation-based propagation
framework for different kinds of energy, namely thermal, luminous and
acoustical energy. The effectors that regulate the various environmental
performance criteria are shown to form optimization networks or
optimatons. These optimatons behave in a manner that is similar to other
well-known computational networks such as neural networks.

References

Farlow, S.J.: 1993, Partial Differential Equations for Scientists and Engineers, Dover
Publications Inc., New York.

Mahalingam, G.: 2000, Enhanced Boundary Representation: A Lingua Franca For Computer-
based Building Performance Simulation?, in the ACADIA Quarterly, Association for
Computer-aided Design In Architecture.

10 GANAPATHY MAHALINGAM

Mahalingam, G.: 1999, A New Algorithm for the Simulation of Sound Propagation in Spatial
Enclosures, in the Proceedings of the Building Simulation ’99 Conference, Kyoto, Japan,
September.

Woan, G.: 2000, The Cambridge Handbook of Physics Formulas, Cambridge University
Press, Cambridge, United Kingdom.

Enhanced Boundary Representation: A lingua franca for computer-based building performance
simulation? 1

Enhanced Boundary Representation: A lingua franca for
computer-based building performance simulation?

Ganapathy Mahalingam, Ph.D.

Abstract
With the realistic visual representation of buildings on the computer having reached maturity, the emphasis
has now shifted to the performance simulation of buildings on the computer. The challenge of performance
simulation in computer-based models of buildings lies in the integration of various simulation techniques
that require different kinds of building representations. Traditional simulation techniques for luminous,
acoustic and thermal environments require different building representations. The paper proposes that an
enhanced boundary representation is a viable, common building representation format for performance
simulation of illumination levels, acoustical parameters and thermal comfort, thereby providing a building
representation format for multi-domain performance simulation on the computer. Simulation techniques
that have been developed for radiosity-based modeling of illumination in buildings, radiation-based
modeling of sound propagation in spatial enclosures, and the modeling of thermal comfort based on mean
radiant temperatures, point to a convergence of techniques. These techniques can all work based on an
enhanced boundary or surface representation of buildings. The paper suggests that an enhanced boundary
representation format, and integrated performance simulation techniques based on radiation, can together
serve as a core model for developers of computer-aided design analysis systems.

1 Introduction
In the four decades of its rapid development, the field of computer-aided architectural
design (CAAD) has successfully focused on the visual synthesis and representation of
architectural designs. The visualization of built things has been achieved at
unprecedented levels of realism in both static and animated forms. As architects, we
cannot be satisfied, dealing with built things on a purely visual level. Architectural
creations engage us and affect us in many other ways that have to be understood and
computationally modeled to augment our design capabilities. The key benefit of the
computational modeling of architecture, which is yet to be fully realized, is that it makes
evaluation of designs possible before they are built.

Extensive research has been conducted in the computational modeling of the natural
environment. The visual modeling of the natural and the built environment has been
pursued rigorously with excellent results. However, the computational modeling of the
built environment in its multiple aspects is still in its infancy. The research challenge of
the next decade is the computational modeling of the built environment at all scales, from
individual buildings to large cities, that focuses on aspects other than visualization. This
computational modeling of architectural entities and architectural design processes
should emphasize performance simulation over the visualization of the product. This will

Enhanced Boundary Representation: A lingua franca for computer-based building performance
simulation? 2

enable architects to computationally evaluate their designs based on various aspects of
performance. The performance of designs for buildings should now become the center of
attention for researchers engaged in the computational modeling of the built environment.
Though this task presents many challenges, the development of computer-aided design
analysis systems (CADAS) is the logical next step in the evolution of computer-aided
architectural design. The various issues in the multi-domain simulation of building
performance in computer-based models of buildings have to be systematically addressed
if progress is to be made.

2 Performance Simulation
The challenge of performance simulation in computer-based models of buildings lies in
the integration of various simulation techniques that require different kinds of building
representations. This has been called the "integration problem." Traditional simulation
techniques for luminous, acoustic and thermal performance require different building
representations or data models that contain both geometric and attribute data. Initial data
models for the representation of buildings on computers were directed towards visual
representation. The boundary representation of building forms enabled surface
characteristics of buildings to be successfully modeled and rendered. The use of color and
texture for the representation of materials by applying texture, transparency and bump
maps onto surfaces enabled the realistic visual representation of buildings. When the
material properties of forms, such as mass, needed to be addressed in structural analysis,
constructive solid geometry (CSG) was used as the representational model. Mass
properties could be easily calculated from the CSG representational model. The CSG
representational model, however, did not serve the needs of performance simulation in
other domains well, and was useful only in a narrow domain. This has restricted the use
of CSG mainly in computer-aided design systems used by mechanical and structural
engineers. This may not be the case with boundary representation.

2.1 Domains of Performance Simulation

While there is a wide range of performance measures used in the design of buildings, the
performance of buildings needs to be evaluated in the domains of the five senses of
human beings to test the quality of a building's habitability. The five human senses are
sight, hearing, touch, smell and taste. Of these, sight, hearing and touch (felt as
kinesthetics or tectonics, though these may be argued to be muscular senses) are the
critical senses that architects have traditionally addressed while designing buildings.
Architecture has long reigned primarily as a visual art, with the visual manipulation of
virtual material being the predominant mode for designing buildings. Architects using
traditional techniques have evaluated the performance of buildings only in the domains of
the three critical senses mentioned earlier. To evaluate computer-based architectural
designs in the domains of the human senses, computer-based models of designs for
buildings should have a representational structure that allows the simulation of the

Enhanced Boundary Representation: A lingua franca for computer-based building performance
simulation? 3

buildings in various sensory modes, or alternatively, provide indices for the sensory
modes.

2.2 Integration of Performance Domains

Since human sensory domains primarily involve the processing of radiation information
(with the exception of taste and smell), simulation techniques based on radiation models
become a natural choice when trying to integrate performance simulation techniques.
Simulation techniques that have been developed for the radiosity-based modeling of
illumination in buildings, radiation-based modeling of sound propagation in spatial
enclosures, and the modeling of thermal comfort based on mean radiant temperatures,
point to a convergence of simulation techniques. These techniques can all be used with an
enhanced boundary or surface representation of buildings. The enhanced boundary
representation format, and integrated performance simulation techniques based on
radiation, can now serve as the core model for developers of computer-aided design
analysis systems.

3 Integrated Performance Simulation
A significant research effort in integrated performance simulation in computer-based
models of buildings is the SEMPER system being developed at Carnegie Mellon
University. The SEMPER system uses a variety of building representations for various
performance simulations. In the SEMPER system, energy flows are simulated using cell
nodes for walls and spaces. Airflow is simulated using multiple zones of differing
pressures. HVAC systems are modeled as components linked in a distribution network.
Lighting is simulated using a radiosity-based method. Sound propagation is modeled as
the generation and emission of "virtual phonons" generating an excitance pattern for the
room enclosures (Mahdavi 1999). In the SEMPER system, the building representations
needed for the various performance simulations are derived from a shared object model
and a topology kernel. To solve the "integration problem," the developers of SEMPER
have taken the approach of creating a lowest common denominator building
representation for the shared object model and the topology kernel, from which other
building representations are derived. These complex derivations create domain models
and domain kernels for performance simulation in the various domains.

Enhanced boundary representation is an alternate, common building representation
format that can enable performance simulation of multiple aspects of a building's
performance. Performance simulation of illumination levels, acoustics and thermal
comfort can be achieved using an enhanced boundary representation format without a
complex process to derive different building representations for different performance
simulations.

The enhanced boundary representation method for representing architectural forms
promises to be a strong candidate for a common representational format for the multi-

Enhanced Boundary Representation: A lingua franca for computer-based building performance
simulation? 4

domain evaluation of building performance for many reasons. The radiosity-based
simulation of light propagation in spaces enables visual simulation, and the evaluation of
computer-based building models for illumination levels (Greenberg 1995). The success
of modeling and rendering software such as form.ZTM, which uses boundary
representation predominantly, is a testimony to this fact. The virtual light meter provided
in the LightscapeTM software, is an example of how illumination levels can be measured
in computer models of buildings created with a boundary representation format. The
radiation-based model for the propagation of sound in computer-based building models
enables acoustical parameters related to the perception of speech and music to be
computed and evaluated (Mahalingam 1999). The radiation-based indicator, mean radiant
temperature (MRT) allows thermal comfort to be evaluated in computer-based models of
buildings. Though the mean radiant temperature is not a complete measure of thermal
comfort (researchers suggest that air temperature be averaged with it to derive what is
called the operative temperature), it is a good general indicator (Stein and Reynolds
2000). In these three examples, enhanced boundary representation is shown to be
sufficient for the performance simulations in three human sensory domains, sight, hearing
and touch (touch can be represented by thermal comfort, since the skin is the sensory
organ for the perception of thermal comfort). The various performance indicators and the
simulation techniques used for these three performance simulations are also related
because they are all based on radiation models.

3.1 Enhanced Boundary Representation Format

To serve as a common representational format for various types of performance
simulations, enhanced boundary representation of buildings should have the following
specifications:

• All the forms that make up the building should be constructed out of well-formed
surfaces.

• It should be possible to compute the center of each surface.

• It should be possible to compute the area of each surface.

• It should be possible to compute the surface normal at the center and vertices of
each surface.

• It should be possible to compute the form-factor for a pair of surfaces (form-
factor is a relationship between two surfaces, including orientation, to simulate a
radiation exchange between them)

• It should be possible to define the material properties related to the various
performance domains for each surface.

These specifications will enable the various performance simulation techniques to be
used effectively based on what is essentially a common representational format. Because
the surface components are the same for the performance simulations, and form-factors

Enhanced Boundary Representation: A lingua franca for computer-based building performance
simulation? 5

between pairs of surface components are the same, it is also possible to represent the
surfaces computationally using object-oriented modeling techniques and modeling the
radiation interaction between the surfaces as computations in a network.

3.2 Limitations

The use of an enhanced boundary representation format for computer-based building
models has some limitations. All surfaces should preferably be planar to reduce
computational complexity. Curved surfaces must be faceted into planar surfaces. This
needs to be done so that the surface normals for the surfaces (especially at the center of
the surfaces) can be effectively computed. The occlusion of surfaces by other surfaces
also needs to be computed efficiently. The size of the surfaces should also be at the
appropriate level of resolution for efficiency in computations. Having many tiny surfaces
in the building model will greatly increase the computational resources required for the
simulations. Because of the nature of the model, boundary representation and radiation
models will be more successful in the performance simulation of global, diffuse effects
rather than directional and specular effects.

4 Conclusions
The performance simulation of computer-based designs of buildings in various
performance domains has been difficult because of what has been called the 'integration
problem." Researchers trying to use performance simulation techniques with building
representations that are not compatible with the simulation techniques have augmented
this problem. In this paper, an approach has been suggested that takes a building
representation format that is currently being used in computer-aided architectural design
systems, and using an enhanced version of that representation format as a basis for an
integrated set of performance simulation techniques based on a common radiation model.

References

Mahalingam, G. (1999). A New Algorithm for the Simulation of Sound Propagation in
Spatial Enclosures. Building Simulation '99 Conference Proceedings. Kyoto, Japan.

Greenberg, D. P. (1995). Computers and Architecture. In Scientific American, vol. 6, no.
1, eds. J. Rennie, M. Press and J. T. Rogers, 120-125. New York: Scientific
American Inc.

Mahdavi, A. (1999). A comprehensive computational environment for performance based
reasoning in building design and evaluation. In Automation in Construction, vol. 8,
no. 4, eds. Y. E. Kalay and R. Becker, 427 - 435. New York: Elsevier.

Stein, B. and J. S. Reynolds. (2000). Mechanical and Electrical Equipment for Buildings,
9th ed., 42-43. New York, New York: John Wiley & Sons, Inc.

1

POCHÉ
Polyhedral Objects Controlled by Heteromorphic Effectors

Ganapathy Mahalingam
North Dakota State University

Key words: Effectors, abstract machines, design as interface

Abstract: This paper takes the architectural concept of poché and uses it to explore new
possibilities in transforming polyhedra with effectors. In many computer-aided
design systems, architectural entities are represented as well-formed
polyhedra. Parameters and functions can be used to modify the forms of these
polyhedra. For example, a cuboid can be transformed by changing its length,
breadth and height, which are its parameters. In a more complex example, a
polyhedron can be transformed by a set of user-defined functions, which
control its vertices, edges and faces. These parameters and functions can
further be embodied as effectors that control and transform the polyhedra in
extremely complex ways. An effector is an entity, which has a transforming
effect on another entity or system. An effector is more complex than a
parameter or function. An effector can be a modelled as a virtual computer.
Effectors can take on many roles that range from geometric transformation
agents and constraints to performance criteria. The concept of the poché, made
famous by Venturi is familiar to architects. The poché is a device to mediate
the differences between an interior and an exterior condition or between two
interior conditions. In a poché, the role of the effector changes from being an
agent that acts on a polyhedron from the outside, to an agent that acts as a
mediator between an interior polyhedron and an exterior polyhedron, which
represent interior and exterior environments respectively. This bi-
directionality in the role of the effector allows a wide range of architectural
responses to be modelled. The effector then becomes an interface in the true
sense of the word. This concept will work best in a three-dimensional or four-
dimensional representational world but can be used effectively in a two-
dimensional representational world as well. The application of this concept in
design systems is explored with examples drawn from the work of the author,
and practitioners who are using the concept of effectors in their work. A brief
discussion of how this technique can evolve in the future is presented.

2 CAAD Futures 2001

1. ARCHITECTURAL ENTITIES AS POLYHEDRAL

OBJECTS

Architectural entities can be classified as physical or conceptual. Physical

architectural entities are made of building materials and have geometric
form. Physical architectural entities comprise building materials,
components and assemblies. Conceptual architectural entities may have
geometric form but are not made up of any material. Conceptual
architectural entities comprise entities such as ordering systems and
circulation systems. Both physical and conceptual architectural entities have
spatial location. Conceptual architectural entities can influence the geometric
form and spatial location of physical architectural entities. Conceptual
architectural entities, in turn, can be defined by physical architectural
entities. Architectural design can be considered as the definition and
integration of physical and conceptual entities and fixing their location in
space.

In computer-aided design systems, physical architectural entities are
represented as well-formed polyhedra. Polyhedra, as their name implies, are
volumes defined by a closed boundary of faces. The representation of
architectural entities as well-formed polyhedra is called boundary
representation. By their definition polyhedra are finite and can be fabricated
with material. In their computer-based representation, polyhedra are defined
as hierarchical collections of vertices, edges and faces. Of these, the actual
variables are the values for the tuples that define each of the vertices of a
polyhedron. These variables, in turn, determine the variations in the
dimensions and spatial locations of the edges and faces of the polyhedron.
Controlling the variables allows a designer to control the various forms that
the polyhedra can take. The manipulation of form, which is one of the
principal activities of the designer, can be enhanced by creating armatures
for the manipulation and transformation of architectural entities represented
as polyhedra. The concept of effectors provides one such armature.

2. EFFECTORS

An effector is an entity, which has a transforming effect on another entity

or system. An effector is more complex than a constraint, parameter or
function. An effector can be a computational entity in its own right. It can
accept different kinds of input, perform computations and cause an effect in
another entity as part of its output. An effector can be modelled as a virtual

poché 3

computer that can embody both state and behavior (Mahalingam, 1998).
Effectors can take on many roles that range from geometric transformation
agents and constraints to performance criteria. Multiple effectors can be
integrated as a network of effectors that act in a concerted manner to
function as a meta-effector. A hierarchical system of effectors and meta-
effectors can also be developed that may or may not be concerted in their
transforming effects. The overall effect of a hierarchy of effectors, that do
not act in a concerted manner, needs to be controlled by a meta-effector.

Effectors change other entities based on computations. Effectors are
different from constraints or parameters. Constraints specify an acceptable
range of values for a variable, or relationships between variables. When a
constraint specifies a maximal or minimal value for a variable, then it is
considered a "limit." If the constraint specifies a range of values for a
variable that straddles a certain value, then it is considered a "tolerance." The
acceptable values for a variable specified by a constraint can be simply
declared, or computed based on a function of that variable or other
associated variables.

A parameter specifies values for a variable indirectly. The actual values
of the variables are computed using the parameter. For example, the
parameters for a cuboid are length, breadth and height. Changing these
parameters changes the values for the vertices of the cuboid. The values of
the vertices are computed using the parameters. A parameter needs an origin
in order to compute its effect unambiguously. For example, changing the
length of a cuboid can change only four or all eight of its vertices, depending
on whether a vertex or the centroid of the cuboid is used as the origin.

A function can also be used to determine the value of a variable, which is
usually called the dependent variable. A function can be any mathematical
relation and may not require an origin to compute its effect. A function is
defined in terms of one or more independent variables. The function may
sometimes be recursive and use the variable it is determining in its
computation. Effectors subsume constraints, parameters and functions when
they are modelled as virtual computers.

When an effector is modeled as a virtual computer, a network of effectors
becomes a network of computers. Polyhedra controlled by bi-directional
effectors become a multi-layered network. Mathematical models used to
model neural networks, parallel systems and 3D graphs are all viable tools to
model networks of effectors. In its most abstract and general form, an
effector is a relation between two virtual computers. Each virtual computer
can change the state and behaviour of the other virtual computer. This
relationship can be realised through one or several computational processes.

4 CAAD Futures 2001

2.1 Homomorphic and heteromorphic effectors

If the component of a polyhedron being controlled by an effector is the

same kind as the effector, then the effector is homomorphic. If the effector is
not the same kind as the component it is transforming, then the effector is
heteromorphic. To determine if an effector is the same kind as the
component it is transforming, it should correspond in form or type.
Geometric transformation effectors transforming the geometry of a
polyhedron are homomorphic effectors. This is type correspondence. Since
effectors are not geometric entities, the issue of form correspondence arises
only if there are connected effectors. For example, two effectors joined to
form a straight line that transform the edges of a polyhedron are considered
homomorphic effectors. Also, a polyhedral network of effectors
transforming a polyhedron is considered a homomorphic effector.

3. POCHÉ

The concept of the poché, made famous by the architect Robert Venturi,

is familiar to architects. The poché is a device to mediate the differences
between an interior and an exterior condition or between two interior
conditions. It is usually used to resolve two conflicting requirements or
conditions.

In his influential book, Complexity and Contradiction in Architecture,
Venturi explains the wide ranging implication of the concept of poché by
quoting Gyorgy Kepes, "Every phenomenon - a physical object, an organic
form, a feeling, a thought, our group life - owes its shape and character to the
duel between opposing tendencies; a physical configuration is a product of
the duel between native constitution and outside environment." (Venturi,
1966). Venturi also states that designing from the outside in, as well as the
inside out, creates necessary tensions, which help make architecture. He goes
on to make a significant and influential statement, "Since the inside is
different from the outside, the wall - the point of change - becomes an
architectural event." The concept of bi-directional effectors takes the
condition of poché described by Venturi and provides a computational
framework to implement the design processes that he describes. For
example, the "native constitution" of an entity can be governed by uni-
directional effectors, and "duel" with the "outside environment" can be
mediated by bi-directional effectors.

poché 5

e1

e2

e3
e4

interior exterior

exterior

exterior

exteriorA
B

CD

E

F

G
H

Figure 1. A simple poché condition with four bi-directional effectors in a two-dimensional
representational world

In Figure 1, an example of a poché condition in a two-dimensional
representational world is shown. This figure is not a literal diagram but
represents an abstract machine in the Deleuzian sense (Deleuze and Guattari,
1987). ABCD is an exterior polygon and EFGH is an interior polygon. The
states of A, B, C and D are determined by exterior contextual criteria. The
states of E, F, G and H are determined by interior performance criteria. The
four bi-directional effectors are e1 (AE), e2 (BF), e3 (CG) and e4 (DH). The
bi-directional effectors e1, e2, e3 and e4 can be parameters, constraints,
functions or virtual computers (Mahalingam, 1998). The role of the bi-
directional effectors is to mediate and determine the states of the
interior/exterior variable pairs that they link. The four bi-directional effectors
can be linked to form a polygon of effectors thereby defining a meta-effector
that is homomorphic. A meta-effector is a network of effectors. The role of
the meta-effector in this case is to co-ordinate the effects of the four bi-
directional effectors. Meta-effectors can be constraining agents. If, for
example, the above condition represents a single-room structure, then the
meta-effector can ensure that a minimum wall thickness is maintained.

6 CAAD Futures 2001

A B

C
D

E
F

G
H

I

JK

L

MN

O P

Q

R S

T

U

V

W

X
Y

Z
A’

C’ B’

D’
E’

F’

Figure 2. A more complex poché condition with bi-directional effectors in a two-dimensional
representational world

In Figure 2, a more complex, multicellular poché condition is shown in a
two-dimensional representational world. This figure is also not a literal
diagram but represents an abstract machine in the Deleuzian sense (Deleuze
and Guattari, 1987). There are five interior polygons and an exterior
polygon. There are eight peripheral bi-directional effectors and there are four
clusters of bi-directional effectors in the interior, each cluster forming a
nexus of effectors affecting four variables. In each nexus the state of each
one of the four variables needs to be resolved based on the simultaneous
effects of the individual effectors. Each nexus can be modeled as a meta-
effector. The four clusters that each forms a nexus can be networked as a
polygon to create another meta-effector that is one step higher in a hierarchy
of effectors. One role of the "nexus" meta-efffectors is conflict resolution at
each nexus, to resolve conditions such as spatial overlap. A "nexus" meta-
effector can also be used to maintain a minimum separation distance between
the variables. Alternatively, a "nexus" meta-effector can collapse into a
simple bi-directional effector, suggesting a merging of some of the cells in
the multicellular configuration.

poché 7

bi-directional effector

Figure 3. A simple poché condition with bi-directional effectors in a three-dimensional
representational world

In Figure 3, a model consisting of three nested polyhedra is shown. If the
polyhedron in the middle (shown in the dash-dot line) is a network of
effectors, and the polyhedra on the inside and outside represent interior and
exterior environments, then the whole system represents the condition of
poche' in a three-dimensional representational world. The role of the effector
changes from being an agent that acts on a polyhedron from the outside, to
an agent that acts as a mediator between an interior polyhedron and an
exterior polyhedron, which represent interior and exterior conditions
respectively. This bi-directionality in the role of the effector allows a wide
range of architectural responses to be modelled, especially simultaneous
responses to interior performance criteria and external contextual conditions.

8 CAAD Futures 2001

The bi-directional effector can be a mediating channel through which
conflicting conditions between interior and exterior environments are
resolved (mediated?). The bi-directional effector then becomes an interface
in the true sense of the word.

3.1 Application of effectors in architectural design

The application of effectors in digital design processes for architecture

holds a lot of potential. Since architectural entities are usually represented as
polyhedra, the transformation of the polyhedra by effectors becomes a
central part of design processes that shape forms and space.

Figure 4. View of auditorium design system developed by the author

The author has developed an auditorium design system (see Fig. 4) where
the polyhedral form of a proscenium-type auditorium is generated based on
multiple functions of acoustical, programmatic and functional parameters
(Mahalingam, 1996). The functions that locate the vertices of the polyhedra
that make up the auditorium can be likened to uni-directional effectors.
These effectors take the role of functions. The model in the auditorium
design system that was developed was inwardly oriented. The design system

poché 9

can now be extended with bi-directional effectors to control an exterior
polyhedral form that responds to external site conditions.

e1

e2e3

e5

e6
e4

e7

e8

e9

e10

e11

e12

e13

e14

Figure 5. A conceptual diagram of the integration of the concept of effectors in the
auditorium design system

In Figure 5, the spatial form of an auditorium seating enclosure is shown.
The vertices of the polyhedron that make up the seating enclosure is
determined by a set of twelve uni-directional effectors (e1…e6 represent one
half of a symmetrical set of twelve effectors). The exterior polyhedron of the
auditorium is governed by eight bi-directional effectors (e7…e14). Based on
the mediating action of the bi-directional effectors, the exterior polyhedron
can respond to site and other contextual conditions, while at the same time
responding to the interior polyhedron that is generated by the interior
performance criteria. This is just a conceptual example. The complexity of
the exterior polyhedron can be increased to address the complexity that a
particular contextual condition demands.

10 CAAD Futures 2001

3.2 Application of effectors in architectural practice

Recently, a number of projects have been published that have used

dynamic and non-linear computational processes to generate architectural
designs. A recent issue of Architectural Design focusing on contemporary
processes in architecture features two projects that can be examined for their
relationship to the concept of poche'.

An outstanding project featured in the issue (Architectural Design, 2000),
Embryologic Houses by Greg Lynn, uses the concept of effectors, but in a
limited way. Lynn describes the underlying concept of his Embryologic
Houses thus, "the variations in specific house designs are sponsored by the
subsistence of a generic envelope of potential shape, alignment, adjacency
and size between a fixed collection of elements." This generic envelope that
is subject to mutation is composed of 2048 panels, 9 steel frames and 72
aluminium struts defining a shell. The form and space of the houses are
modified within the predefined limits of the components. This is analogous
to a polyhedron with a fixed set of vertices, edge, faces and constraints. All
the effectors (transforming agents or control points) in Lynn's project act on
the generic envelope from the outside and do not mediate between an
"interior" and an "exterior" requirement. In fact, the variations in the houses
are described as an adaptation to "contingencies" of lifestyle, site, climate,
construction methods, materials, spatial effects, functional needs and special
aesthetic effects. In the prototyping stage, six houses were developed
exhibiting a unique range of domestic, spatial, functional, aesthetic and
lifestyle "constraints." How these "contingencies" and "constraints" affect
the generic envelope is not clearly articulated, so their role in generating the
design cannot be determined. The transforming agents that mutate the
generic envelope are causal agents and not mediating agents.

In another project featured in the same issue, Ali Rahim describes the
operational principles in the generation of his competition winning entry for
a Steel Museum in South Asia thus, "This (abstract machine) was comprised
of vectors, fields, pressures and constraints in combination with inverse
kinematics, particles and surfaces, embedded within the confluence of virtual
matrices." Rahim's abstract machine, or machinic phylum as he prefers to
call it, involves the causal transforming effect of particles and vectors (the
flock of contaminants) on virtual matrices (the unactivated field) and vice
versa. The interaction between the two enables the design. Though there is
an exchange between the particles and the virtual matrices, again there is no
mediation between an "interior" an "exterior" requirement. The actual spaces
for the accommodation of program elements emerge from fluctuating
intensities that indicate spatial potential. These intensities result from the

poché 11

indeterminate interaction between the particles and the matrices. The process
is akin to crystallisation and annealing, or an act of congealing or
solidification. Duration and temporal evolution determine space. There are
no desiring, inhabiting forces that create spatial potential, like the need for a
pleasant acoustical environment, thermal delight, or a view to the outside.
There is a significant absence of interiority in the design generation
processes that both these projects use, even though there is a creation of
interiors in both of them. The forms and spaces created provide
"opportunities" for occupancy, but there are no active occupying or dwelling
forces that generate the forms and spaces. The concept of poché forces
attention on this "interiority."

3.3 Future directions

With growing attention being focused on digital processes for

architectural design, a well-defined mechanism, or an abstract machine that
triumphs over mechanisms (Deleuze, 1988), needs to be developed to
generate the process space for these design processes. The concept of
effectors provides one such mechanism/machine. Effectors can be
configured into various abstract machines that generate architectural designs.
The concept of effectors can be the unifying concept that allows the
computational modelling of all architectural entities as active agents.

In the editorial to the issue of Architectural Design (Architectural
Design, 2000) devoted to contemporary architectural processes, an emerging
field is defined that optimises the state of the "in-between" as process and
"systemic delay" as a major source of creativity. The concept of "in-
between", as used in some of the projects featured in the issue, is based on
the concept of "tweening" used in animation systems and not on the concept
of poché. The concept of poché provides a different "in-between" paradigm.
Systemic delay is defined as conceptual development in the time lag between
an initial idea and its material form. This can also be related to the concept of
poché, if the space-time of poché (in its extreme characterisation, a poché
can be a space-time continuum), is considered a systemic delay between an
idea and its realisation in material form.

As such, the concept of effectors and poché can provide the means to
mediate between idea and material form, between inside and outside,
between performance criteria and space, in short, any condition that involves
the mediation between two (or more) active principles. Though polyhedra
are used in the examples in this paper, effectors can be used with completely
curvilinear surfaces as well. Also, the polygons and polyhedra are not literal
but represent networks of effectors that may constitute abstract machines.

12 CAAD Futures 2001

4. REFERENCES

Architectural Design: Contemporary Processes in Architecture, 2000, Vol. 70, No. 3, Wiley-

Academy, England, June, pp. 26-35 and pp.63-69.
Deleuze, G., 1988, Bergsonism, Translated by Hugh Tomlinson and Barbara Habberjam,

Zone Books, New York, New York, pp. 107.
Deleuze, G. and F. Guattari, 1987, A Thousand Plateaus: Capitalism and Schizophrenia,

Translated by Brian Massumi, University of Minnesota Press, Minneapolis, Minnesota,
pp. 141 and pp. 510-514.

Mahalingam, G., 1998, "Representing architectural design using virtual computers,"
Automation in Construction, Vol. 8, Elsevier, New York, New York, pp. 25-36.

Mahalingam, G., 1996, "Object-oriented computer-aided design systems for the preliminary
design of auditoria," Journal of Architectural and Planning Research, Vol. 13, No. 3,
Locke, Chicago, Illinois, Autumn, pp. 214-229.

Venturi, Robert, 1966, Complexity and Contradiction in Architecture, Museum of Modern
Art, New York, pp. 85.

Representing Architectural Design Using a Connections-based Paradigm 1

Representing Architectural Design Using a Connections-based Paradigm

Ganapathy Mahalingam, Ph.D.

Abstract
Any making, including a work of architecture, is synthetic in nature and is made by making
connections. To base the core of a computational representation of architectural design on
connections is to base it on the very core of making. The articulation of the core of architecture,
its architectonics, should be based on articulating its connections. This paper probes how
connections can serve to represent architectural design. A paradigm consists of a core cluster of
concepts that, for a time period, provides a framework to articulate the issues and problems
facing a field and to generate solutions. This paper offers a connections-based paradigm to
represent architectural design computationally. A number of connections-based strategies for the
representation of architectural design have emerged. Modeling frameworks that have been
identified include dendograms, bipartite graphs, adjacency graphs, plan graphs, planar graphs,
Hasse diagrams, Boolean lattices and Bayesian networks. These modeling frameworks have
enabled the representation of many aspects of architectural design. Is it possible to extract a
uniform modeling framework from all these frameworks that enables the computation of
architectural design in all its aspects? Using biological analogies, will an integration of these
modeling frameworks provide the ‘molecular’ structure of a ‘DNA’ that makes up the
architectural ‘genome’? This paper will attempt to answer these questions.

1 Introduction
Resolving the computability of design has been a longstanding quest among researchers in
computer-aided architectural design. One does not question whether design, as a cognitive
activity, is possible, but one does question whether design is computable. Remarkable advances
are being made in cognitive modeling using computer-based systems. The key to making design
truly computable may lie in these advances in cognitive modeling. Researchers, who conclude
that design is not computable, or is not computable in its creative aspect, invariably point out a
computer-based system’s inability to generate radically new forms. When you carefully examine
what constitutes a radically new form, the answer that emerges is new connections at various
topological levels.

Articulating the synthesis of forms or the generation of spatial organization has a long tradition
spanning four decades. Beginning with Christopher Alexander’s Notes on the Synthesis of Form
(1964), the design profession has wrestled with the articulation of architecture. Lionel March and
Philip Steadman’s pioneering work on the geometry of the environment (March & Steadman
1971), followed by Lionel March’s work on the architecture of form (March 1976) have set the
precedent decades ago for what may now form the core for representing architectural design.

Representing Architectural Design Using a Connections-based Paradigm 2

Articulating spatial organization found new energy in Hillier and Hanson’s work on the social
logic of space (Hillier & Hanson 1984). Hillier and his team have recently expanded their
research to the broader framework of space as a machine (Hillier 1996). In doing so, they have
begun to make the case for a non-discursive, analytical theory of architecture based on
‘configurations.’

In his seminal work from the early 60s, Alexander attempted to get at the core process in the
synthesis of forms, an issue central to architecture. In the preface to a later edition of his book on
the subject (Alexander 1964), he carefully articulated his quest and its significance. He wrote:

“In this book I presented the diagrams as the end results of a long process; I put the
accent on the process, and gave the diagrams themselves only a few pages of discussion.
But once the book was finished, and I began to explore the process which I had
described, I found that the diagrams themselves had immense power, and that, in fact,
most of the power of what I had written lay in the power of these diagrams. The idea of a
diagram, or pattern, is very simple. It is an abstract pattern of physical relationships
which resolves a small system of interacting and conflicting forces, and is independent of
all other forces, and of all other possible diagrams. The idea that it is possible to create
such abstract relationships one at a time, and to create designs which are whole by fusing
these relationships—this amazingly simple idea is, for me, the most important discovery
of the book.”

This book led to the widespread use of diagrams or patterns as the basis for designs, especially
architectural designs. The subsequent search for diagrams and patterns extended the scale
attempted by Alexander in his book, the scale of a village in India. The thought that diagrams
could form the basis of designs took firm root. This paper is about an attempt to extend the
tradition that began with Alexander’s work into a new realm made possible by advanced
computing techniques.

2 Connections-based Representations
A connections-based representation is quite simply one that uses connections as an organizing
framework for the representation. In this paper, the term “connections-based” is deliberately used
rather than “connectionist,” which has its own connotations. The connectionist model is a subset
of the broader category of connections-based representations.

The term “connectionist” is widely used to describe a computational technique used to model the
human brain, especially its neural network. A connectionist model is made up of a network of
many simple processing units that act in parallel to produce “emergent” behavior. These simple
processing units have been described as intuitive, sub conceptual and sub symbolic entities that
are linked in a dynamic system that does not allow a precise conceptual level description. There
is a healthy and ongoing debate about the effectiveness of the “connectionist” model to represent
the working of the human brain.

A connections-based representation, on the other hand, is a diagram made up of multiple nodes
that are linked in various ways. The word “diagram” is based on its Greek roots dia and

graphein, which mean “through” and “write” respectively. The Greek verb diagraphein means to
“mark out by lines” from which the noun diagramma is derived. Originally the word diagram
referred to a geometrical figure, and for a brief period even to a written list or register, which is
very curious. Based on its etymology, the word “diagram” refers to an intrinsic structure,
something that is drawn “through” an entity, like a skeletal framework. When coupled with the
etymology of the word “understanding,” diagrams provide intrinsic knowledge of entities. One
of the goals of connections-based representations is to help acquire this intrinsic knowledge of
architecture. Architecture like connections must be made and is not given (Rajchman 2000). The
primary architectural act can be considered as the linking of two nodes. This is the beginning of
synthesis and a plurality. Starting with this primary connection-based representation (Figure 1), a
hierarchy of connections-based representations can be articulated. Connections-based
representations that have emerged in research can be organized based on increasing complexity.
Some of the representations that have emerged include the ones described in the following
sections.

Node Node
Link

the primary architectural act

Figure 1. The architecture of connections.

2.1 Dendograms
A dendogram is a diagram that has a branch-like structure (Figure 2). Starting from a single
node, branches or links lead to successive nodes. Examples of dendograms are parse trees,
decision trees and binary trees. Each terminal node of a ‘tree’ representation is appropriately
called a leaf. In representations such as decision trees, the leaves represent outcomes that are a
result of decisions made at the nodes. Parse trees can be used to verify if a particular architectural
composition has been created using a particular architectural language. Decision trees can be
used to represent a design process as a hierarchical sequence of design decisions, where each
design decision leads to subsequent design decisions. Because of their architecture, dendograms
are useful in representing hierarchical procedures or processes. A dendogram or tree of (n) nodes
has (n-1) links. Figure 3 illustrates this rule.

Representing Architectural Design Using a Connections-based Paradigm 3

a dendogram an outcome

Figure 2. A dendogram.

Figure 3. Dendograms of increasing order, i.e., number of nodes (image courtesy
Weisstein, 1999-2003).

Representing Architectural Design Using a Connections-based Paradigm 4

Figure 4. Molecular structures as dendograms (image courtesy Weisstein, 1999-2003).

Dendograms are especially useful in the modeling of molecular structures (Figure 4) and by
analogy the relationships between spaces in a building. When the nodes of the dendogram are
used as the insertion points or instantiation points of polyhedra representing spaces, dendograms
can form the skeletal generating framework of the complex spatial form of a building.
Dendograms can also be used to model the load-transfer action in structural assemblies. Each
node represents a structural component and each link a load transfer path.

When dendograms are used to represent design processes, they become the representation of
time. In this case, the dendogram is used as a state-transition graph. Each node of the dendogram
represents the state of a design at a particular time. Though the state-transition graph extends in
space, the spatial boundaries of the entity whose evolution is being described by the state–
transition graph can be fixed. When used as a decision tree, dendograms become design decision
paths in action space that are traversed in time.

A more general case of the dendogram, which is not a hierarchical tree, called a permeability
map, was developed by Hillier and Hanson (1984) to represent the privacy gradient in a set of
spaces.

2.2 Bipartite Graphs
A bipartite graph is a connections-based representation whose nodes can be partitioned into two
sets such that no two nodes in any set are adjacent (Figure 5). In a complete bipartite graph, in
addition, every node in one set is connected to every node in the other set. A tree is also a
bipartite graph. Bipartite graphs are useful when the representation has two distinct set of
elements that are related to each other but not amongst themselves. Bipartite graphs are also used
to model a type of representation called a Petri Net, especially the channel-agency form of the
Petri Net. Petri Nets are used to model hardware devices, communication protocols, parallel
programs and distributed databases.

Representing Architectural Design Using a Connections-based Paradigm 5

Figure 5. Bipartite graphs K 3,2 and K 2,5 (image courtesy Weisstein, 1999-2003).

The bipartite graph can be used to model a situation where a set of environmental sensors
interacts with a set of architectural elements. A complete bipartite graph exhausts all the relations
between the components in such as system.

Figure 6. A 3-partite graph K 2,3,5 - an example of a k-partite graph (image courtesy
Weisstein, 1999-2003).

The model of the environmental performance of an architectural space where there is a set of
sources that generate environmental performance criteria, a set of receivers, that is, inhabitants
who experience these environmental performance criteria, and a set of architectural elements,

Representing Architectural Design Using a Connections-based Paradigm 6

can be represented by a complete 3-partite graph (Figure 6) that exhausts all the relations
between the various components.

Bipartite graphs can also be used as armatures for architectural designs. A notable example of the
use of bipartite graphs in the arts is the use of a K18,18 bipartite graph (Figure 7) in Umberto
Eco’s Foucault’s Pendulum.

Figure 7. Umberto Eco’s K 18,18 bipartite graph armature in Foucault’s Pendulum (image
courtesy Weisstein, 1999-2003).

2.3 Adjacency Graphs
In an adjacency graph, each separate space is represented as a node. Spaces that are in contact
with another, that is, they are adjacent, are connected by links. In this representation, spaces that
are connected only at corner points are not considered adjacent. The general exterior space is
also represented as a node. All the ‘interior’ nodes connect to this general ‘exterior’ node.
Adjacency graphs and their alternate form of representation, adjacency matrices, have been used
in architectural design to establish proximal relations between spaces. When the duals of planar
adjacency graphs are drawn, the ‘wireframe’ plan of a set of spaces can be generated. In a recent
project (Hwang & Choi 2002), adjacency graphs were used as metadata for information retrieval
in a spatial information storage system.

In an interesting analysis performed by Steadman (March & Steadman 1971), different designs

Representing Architectural Design Using a Connections-based Paradigm 7

by the architect Frank Lloyd Wright for different clients and sites were shown to have the same
adjacency graph as the basis for the organization of spaces.

nodes and link
of a plan graph

nodes and link
of an adjacency graph

nodes and link
of an embedded
egress graph

Figure 8. Plan graphs, adjacency graphs and embedded graphs.

2.4 Plan Graphs and Planar Graphs
In a plan graph (Figure 8), the junctions between walls in an architectural plan are represented as
nodes and the walls themselves are represented as links. In this representation, the representation
of “walls” is not restricted to physical barriers alone, but includes other divisions of space as
well. A plan graph of a set of spaces is related to its adjacency graph. One is called the dual of
the other.

A planar graph (Figure 8) is quite distinct from a plan graph and it is easy to be confused by the
similar sounding terms. A planar graph is a graph that can be drawn on a plane without any of
the links crossing each other. A completely connected planar graph (Figure 9), that is, a graph in
which each node is connected to every other node, cannot have more than 4 nodes. This implies
that to maintain a complete set of relations between more than four components in a connections-
based representation requires three-dimensional spatial thought.

Because of the way in which a plan graph is constructed, it is always planar. Plan graphs and
adjacency graphs can be integrated with other graphs, which can be embedded in them. The
example shown in Figure 8 represents the modeling of an egress pattern in the floor plan of a
building. Each egress element, a door or a window, is represented as a node. This node is
embedded in the link between nodes that represent spaces in an adjacency graph of the plan. The
egress node is also embedded in the plan graph of the floor plan. If this representation is used to
simulate egress from a building during an emergency such as a fire, then traversing the graph can
establish whether there is a safe egress path to the exterior of the building.

Representing Architectural Design Using a Connections-based Paradigm 8

a completely connected planar graph
of the highest order (4 nodes)

Figure 9. A completely connected planar graph.

2.5 Hasse Diagrams
According to March (1976), a Hasse diagram (Figure 10) is a diagram of connected nodes such
that you can move from one node to another through a set of one or more “upward” links. As
such it can be used to model “directional” synthesis of any set of entities. The Hasse diagram
defines a progression from a null set to a full set of entities, where each intermediate set is a
cover (a mathematical relation) of the immediately preceding set or sets. The directional buildup
of an architectural design or a conceptual map that defines an architectural design as it evolves
incrementally can be represented by a Hasse diagram.

Figure 10. Hasse diagrams of sets with 2, 3, 4 and 5 entities (image courtesy Weisstein,
1999-2003).

2.6 Boolean Lattice
According to March (1976), a Boolean lattice is a representation of Boolean algebra as a

Representing Architectural Design Using a Connections-based Paradigm 9

complemented, distributive lattice. A Boolean algebra b(A) of a set A is the subsets of A that can
be obtained by a finite number of the set theoretic operations of OR (union), AND (intersection)
and NOT (complementation). Each element of b(A) is called a Boolean function. The number of
Boolean functions of a set of 2 entities (say 1 and 0 as in a binary system) is 16. Computing
circuitry is based on a Boolean algebra of 2 entities. The abstract structure of the Boolean
algebra is isomorphic to specific algebras used in set theory, the algebra of events, symbolic
logic, switching algebra and automated process control. If the sequence of design operations that
generates an architectural design can be represented by Boolean lattice, then it can be automated.

2.7 Bayesian Networks
A Bayesian network (Figure 11) has been described as a “belief’ network. Each node in a
Bayesian network represents the probability of a variable (a Bayesian variable) in a system.
Nodes are linked to each other based on conditional dependence. The network is based on a
probability model and distribution. The connections are causal connections and are directional.
The direction is always from cause to effect. The dependent node is called a ‘child’ and the
influencing node is called the ‘parent.’ Time is also introduced into the model as a parent is the
temporal antecedent of a child. In a complex Bayesian network, many cycles of dependencies
can be set up. Once a Bayesian network has been set up, a variable is given a value based on
observation. Calculations are then performed to find the values of all other variables based on
their probability of occurring. Once all variables are established, the network defines the
probable state of the system.

A Bayesian network can be used to create a predictive model of environmental performance
criteria in the design of an architectural space. Such environmental performance criteria can
include temperature, illumination and sound intensity.

a Bayesian network

probability of
a variable
conditional
dependence

Figure 11. A Bayesian network.

Table 1: Connections-based representations and their use in the representation of

Representing Architectural Design Using a Connections-based Paradigm 10

Representing Architectural Design Using a Connections-based Paradigm 11

architectural design
Connections-based

Representation
Architectural Representation

Dendogram Relationship of spaces, Load-transfer in structures

Bipartite Graph Environmental control using sensors, Modeling of
environmental performance

Adjacency Graph Relationship of spaces, Relationship of surfaces in a
space

Plan/Planar Graph Architectural floor plans, Surface distribution in spaces

Hasse Diagram Architectural design generation using a kit of parts

Boolean Lattice Automated architectural design generation

Bayesian Network Prediction models for environmental performance

3 Modeling Architectural Design Using Networks
In the past, the computational representation of architecture, both as a product and as a process,
has utilized a wide range of representational frameworks. Architecture has been represented as
data structures, databases, procedures, algorithms and virtual computers. A connections-based
representational framework now extends this range of representations to include networks (Table
1).

3.1 Elements of a Network
A network has only two basic elements, nodes and links. The complexity of networks is based on
the number of nodes and their interconnections or links. When used as a representational
framework, networks provide the following opportunities:

• Nodes: the representation of state (properties, variables, parameters, probability elements)

• Links: the representation of relations (constraints, semantics, physical connections, causal
connections, transformations, transfer functions, dependencies)

• Networks: the representation of state, the representation of a process, the representation
of probabilities of outcomes

• Network of networks: the representation of complex spatial systems

4

4

4

2

3

3

3

Order = 8

Beta Index = 1.0 (has only one circuit)

Konig Number of node (shown inside node)

Valence of node (shown outside node)

2

3

3

2

1

2

2

A Connections-based Representation

4 1

Node (vertex)

Link (edge)

Figure 12. Properties of networks.

3.2 Properties of a Network
The various properties of networks (Figure 12) lend themselves to various representations of
architecture. Some of the properties include:

Hamilton Path/Hamiltoninan Cycle or Circuit: A path in a network that starts at a starting node,
goes through each node only once, is not obligated to traverse each link and ends at the starting
node. It describes a circuit (Figure 13).

Euler Path/Eulerian Cycle or Circuit: A path that traverses each link of the network once, with no
restrictions on the number of times it goes through a node. An Euler path is possible in a network
only if the network is connected and no more than two nodes have an odd valence.

Order of the Network: The order of a network is the total number of nodes in the network.

Valence: The number of separate links to a node.

Konig Number of a Node: It is the maximum number of links in the shortest path to connect a
particular node in the network to any other node in the network. The Konig number is used to
establish the ‘centrality’ of node in a network.

Representing Architectural Design Using a Connections-based Paradigm 12

Beta Index: It is a measure derived by dividing the number of links in a network by the number
of nodes in the network. A network with a beta index of less than 1.0 is a tree, a network with a
beta index of 1.0 has only one circuit and a network with a beta index of greater than 1.0 is a
complex network.

Figure 13. Hamiltonian circuits in graphs of Platonic solids (image courtesy Weisstein,
1999-2003).

4 Advantages of a Connections-based Representation of Architecture
The proposal for a non-discursive, analytical theory of architecture (Hillier 1996), may on the
surface look like an erosion of a much-fought-for-and-gained political freedom in architectural
expression, but in the end, may turn out to be more liberating than political freedom.

The single major advantage of using connections-based representations is the potential for
distributed representation. Artificial intelligence researchers modeling the working of the brain
distinguish between two kinds of representations, symbolic representations and distributed
representations.

Symbolic representations use symbols such as words and numbers. These symbolic units have
meanings associated with them. These units are combined into propositions in a language using
the grammar(s) of that language. For example, words are combined into sentences (propositions)
using the grammar of the English language. Similarly, numbers can be combined into

Representing Architectural Design Using a Connections-based Paradigm 13

Representing Architectural Design Using a Connections-based Paradigm 14

mathematical propositions using a mathematical grammar. The main disadvantages of symbolic
representations are that they are language-based and propositional; they are “brittle” and not
fault-tolerant. Symbolic representations are considered “brittle” because symbolic units either
exist or do not. A word is there in a sentence or it is not. Symbolic representations are not
considered fault-tolerant because minor damage to a symbolic conceptual structure can cause the
loss of the entire concept.

Distributed representations are ones in which meaning is not captured in a single symbolic unit,
but arises from the interaction of a network of units. The common example that is given to
illustrate this is that the concept “grandmother” is not stored in a single “grandmother cell” in the
brain, but in a pattern or network of interacting neurons (brain cells). Distributed representations
now provide the foundation for realistic computational models of human cognition related to
visual, olfactory, auditory and tactile perception. Connections-based representations combine the
features of symbolic representations (their structural sensitiveness) and distributed
representations (their sensitiveness to statistical distributions of low-level perceptions) making
them the ideal representational framework.

5 The Future of the Paradigm
The future of this paradigm lies in its ability to uncover the core of architecture, its
architectonics. The architectonics of architecture may well be the architectonics of human
thought. Rather than architecture being a theater of memory, through this paradigm architecture
stands to be revealed as the theater of thought.

Stephen Grand OBE, a researcher from the UK and the developer of the computer game
Creatures, has been developing an intelligent robot called Lucy. His goal is ensure that Lucy
graduates from nursery school. Based on his research, Grand believes that the crucial element for
intelligence is a particular circuit of neurons in the cerebral cortex of the brain that enables
learning. Grand’s goal is to unravel this circuit and use it to create an alternative to the digital
computer that is similar to a living system. Since architecture is created by some of the most
exacting neural processing known to humans, the key to this neural circuit could conceivably lie
in a work of architecture. A connections-based coding, hence understanding, of this work of
architecture, can lead to the discovery of this “learning” circuit.

On the other hand, Douglas Hofstadter, in his seminal book, Gödel Escher Bach, points out that
the neural substrate of humans may pose barriers to certain processes of thought. He describes
the problem encountered when someone tries to make “sense” of the Epimenides paradox thus:

“Now my feeling is that the Tarski transformation of the Epimenides paradox teaches us to
look for a substrate in the English-language version. In the arithmetical version, the upper
level of meaning is supported by the lower arithmetical level. Perhaps analogously, the
self-referential sentence which we perceive (“This sentence is false”) is only the top level
of a dual-level entity. What would be the lower level, then? Well, what is the mechanism
that language rides on? The brain. Therefore one ought to look for a neural substrate to the
Epimenides paradox—a lower level of physical events which clash with each other. That
is, two events which by their nature cannot occur simultaneously. If this physical substrate

Representing Architectural Design Using a Connections-based Paradigm 15

exists, then the reason we cannot make heads or tails of the Epimenides sentence is that our
brains are trying to do an impossible task.”

Hoftstadter proposes that when confronted with a situation such as making “sense” of the
Epimenides paradox, the brain encodes the paradox in the neural substrate using “symbols” and
processes it using “symbolic processing.” He writes:

“Now what would be the nature of the conflicting physical events? Presumably when you
hear the Epimenides sentence, your brain sets up some “coding” of the sentence—an
internal configuration of interacting symbols. Then it tries to classify the sentence as “true”
or “false”. This classifying act must involve an attempt to force several symbols to interact
in a particular way. (Presumably this happens when any sentence is processed.) Now if it
happens that the act of classification would physically disrupt the coding of the sentence—
something which would ordinarily never happen—then one is in trouble, for it is
tantamount to trying to force a record player to play its self-breaking record. We have
described the conflict in physical terms, but not in neural terms. If this analysis is right so
far, then presumably the rest of the discussion could be carried on when we know
something about the constitution of the “symbols” in the brain out of neurons and their
firings, as well as about the way that sentences become converted into “codings.”

Such limits in neural processing may be why architecture is intrinsically homeostatic, that is, it
does not change in its inherent structure. It may also be why all works of architecture can be
created with a simple programming language. This paradigm will reveal such limitations in
architecture, if they exist. Though this sounds pessimistic, there is hope for this paradigm as
revealed by Alexander. In describing the creative potential of abstract diagrams, Alexander
points out that these diagrams can evolve:

“I have discovered, since, that these abstract diagrams not only allow you to create a single
whole from them, by fusion, but also have other even more important powers. Because the
diagrams are independent of one another, you can study them and improve them one at a
time, so that their evolution can be gradual and cumulative. More important still, because
they are abstract and independent, you can use them to create not just one design, but an
infinite variety of designs, all of them free combinations of the same set of patterns.”

Rather than use traditional genetic algorithms (Holland 1975) for the evolution of forms, which
are used to transform one population of genetic characteristics (chromosomes) into another
through processes of crossover (recombination), mutation and inversion, connections-based
representation lend themselves to modeling based on biological analogies such as protein
synthesis and morphogenesis (from developmental biology). Just as the molecular structure of
DNA “instructs” protein synthesis, connections-based representations “instruct” the creation of
works of architecture. A collection of connections-based representations (architectural DNA
molecules – see analogy in Figure 4) then defines the “genome” of the field of architecture.
Classifying this collection of connections-based representations, thereby defining the
architectural genome, is a work on the scale of Durand’s Précis. Unlike the process followed by
Durand who focused on lines and delineation, mapping the architectural genome will focus on
the underlying structure or architectonics of architecture. These underlying connections-based

Representing Architectural Design Using a Connections-based Paradigm 16

representations are distinguished by the fact that they do not belong to the measurement-based
“metric” space of architectural modulation and variation but the “invariant” space of
relationships.

6 Conclusions
One can conclude with a quote from Alexander that captures the spirit of a connections-based
representation of design:

“The shapes of mathematics are abstract, of course, and the shapes of architecture concrete
and human. But that difference is inessential. The crucial quality of shape, no matter of
what kind, lies in its organization, and when we think of it this way we call it form. Man’s
feeling for mathematical form was able to develop only from his feeling for the processes
of proof. I believe that our feeling for architectural form can never reach a comparable
order of development, until we too have first learned a comparable feeling for the process
of design.”

This paper offers making connections as a process of design which will allow that comparable
order of development. The computational representation of architecture started with the
representation of architectural entities as data structures and architectural design processes as
procedures. It evolved into the representation of architectural entities and processes as virtual
computers. The next stage in the evolution of the computational representation of architecture is
the representation of architectural entities and processes as networks of virtual computers or
computational entities. The examples of connections-based representations presented in this
paper suggest that various aspects of architectural design from spatial synthesis to environmental
performance control can be successfully represented using the techniques. Recent work by
Wolfram (Wolfram, 2002) suggests that it is possible to go even further and model the evolution
of networks, which can then be used as an overarching representational framework.

References
Alexander, C. (1964). Notes on the Synthesis of Form. Harvard University Press.

Durand, J. N. L. (1802) Précis des leçons d’architecture. Paris: Ecole Polytechnique.

Hillier, B. and J. Hanson. (1984). The Social Logic of Space. Cambridge University Press.

Hillier, B. (1996). Space is the machine: A configurational theory of architecture. Cambridge
University Press.

Hofstadter, D. (1980). Gödel Escher Bach. Vintage Books Edition.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.

Hwang, J. and J. Choi. (2002). SpaceCore: Metadata for Retrieving Spatial Information in
Architecture. In Proceedings of the ACADIA 2002 Conference, pp. 199 - 217.

March, L., Editor. (1976). The architecture of form. Cambridge University Press.

Representing Architectural Design Using a Connections-based Paradigm 17

March, L. and P. Steadman. (1971). The geometry of environment: An introduction to spatial
organization in design. RIBA Publications Ltd.

Rajchman, J. (2000). The Deleuze Connections. MIT Press.

Skiena, S. (1990). Implementing Discrete Mathematics: Combinatorics and Graph Theory with
Mathematica. Reading, Massachusetts: Addison Wesley.

Weisstein, E. W. (1999-2003). Eric Weisstein's World of Mathematics (MathWorldTM)
http://mathworld.wolfram.com/

Wolfram, S. (2002). A New Kind of Science. Champaign, Illinois: Wolfram Media, Inc.

http://mathworld.wolfram.com/

IMPROVING ‘OBJECTIVE’ DIGITAL IMAGES WITH
NEURONAL PROCESSING

A Computational Approach

GANAPATHY MAHALINGAM, RAJESH G KAVASSERI
North Dakota State University, USA

Abstract. This paper describes an experiment where an image
recorded with a digital camera is processed using an electro-
physiological model of a neuron. The luminosity level of each pixel of
the source image is treated as the stimulus for an individual neuron,
and the source image is transformed into a response image based on
the processing behavior of the Hodgkin-Huxley neuronal model. It is
seen that transformation of the image through neuronal processing
yields (i) more evenly balanced levels of luminosity compared to the
image directly recorded by the digital camera and (ii) a more
`subjective' rendering of the environment than what was photographed
with the digital camera. The CCD (charge coupled device) - based
digital camera reveals its limitation as a linear recording device that
does not have a balanced dynamic range. The neuronal processing of
the image adds non-linearity and a balanced range to the luminosity
levels in the image, rendering it closer to a 'subjective' perception of
the scene.

1. Introduction

The use of digital media by design professionals has become widespread.
Design professionals such as architects and interior designers are using
digital images to make design decisions about built environments at different
scales. Many of these design decisions are based on the luminosity levels in
the images, and the levels of contrasts between the luminosity levels. If these
levels, and their differences, are based on what a CCD sensor 'sees' rather
than a 'eye-brain' perceptual mechanism, then the design decisions made
using objective digital representations of images may lead to unanticipated
and unintended subjective experiences of the built environment. These
objective digital images are generated based on computational models that
are physics-based. They provide an accurate rendering of the built

2 A. AUTHOR, B. AUTHOR AND C. AUTHOR

environment based on objective measurements of luminosity levels. In that
sense, they represent 'ideal' mathematical visions of the environments they
portray. These renderings do not reflect the subjective processing of the
scene that occurs when the neuronal cells in the brain process the 'raw'
sensory data.

A common problem that occurs when one takes a grayscale photograph
(commonly referred to as a black and white photograph) with a digital
camera is that the image produced by the digital camera does not reflect our
perception of the scene. This is because the digital camera uses a CCD
sensor that records luminosity levels in an objective manner. In keeping with
the scientific method, these levels are objective measures that are recorded
by the instrument without any subjective interference.

One cannot predict if one is going to get a balanced image when one
takes a grayscale photograph with a digital camera by just surveying the
scene. The skills of photographers like Ansel Adams lay predominantly in
their ability to survey a scene and deduce that the scene would indeed
produce a brilliantly balanced grayscale photograph. One of the challenges
we addressed in our experiments was to see if we can account for this
discrepancy between an 'objective seeing' and a 'subjective seeing,' at least in
the narrow realm of luminosity levels of digital representations of images.

In our experiments we took digital images and processed those using
electro-physiological models of neurons to see what emerges when a
digitally encoded image is processed ‘neuronally.’ Our results revealed that
the neuronal 'adjustment' to the objective luminosity levels in the source
image presented a much more balanced and clearer image that was in tune
with subjective perceptions.

2. Methodology

The methodology we employed is illustrated in Fig. 1. It is a multi-stage
process that is implemented in the software package MATLAB.

FIGURE 1. Model of method used in the experiment.

The original picture with N × N pixels is denoted as P = p(i,j), i,j = 1…N
where p(i,j) represents the luminosity level of the pixel (i,j). Next, we regard
the luminosity of each pixel as the stimulus to a neuron so that its effect may
be represented by an input current Iinp(i,j). The current Iinp(i,j) is then fed as a

 PAPER TITLE 3

steady input current to a neuron represented by the Hodgkin-Huxley model
(Hodgkin and Huxley, 1954). The neuron responds to this input current by
producing an action potential with a frequency f(i,j) which depends on the
strength of the input current. The ability of excitable neurons to encode the
strength of the input in to a firing rate is used as a preliminary attempt to
capture the input-output transduction process in visually responsive neurons.
The firing rates f(i,j) are then mapped back to the range of luminosity levels
contained in the original image to obtain the neuronally processed image PHH
= p'(i,j) ,i,j = 1… N.

2.1. NEURONAL MODEL

The biophysical model proposed by Hodgkin and Huxley (1954) has been
one of the most important models in computational neuroscience. The
Hodgkin-Huxley (HH) model is described by the time evolution of four
variables (v,m,n,h) which represent membrane potential, activation of a
sodium current, activation of a potassium current and inactivation of the
sodium current respectively. The dynamical system for the model can be
then described by:

 C dv/dt = -gl(v-vl) – gKn4 (v – vK) + gNahm3(v – vNa) + Iinp
 τx dx/dt = x ∞ (v) – x

where x ∈ {m,n,h}. When the input current Iinp exceeds a certain threshold,
the neuron is capable of displaying sustained oscillatory behavior. From a
dynamical point of view, the bifurcation that determines the transition from a
quiescent to oscillatory state determines the type of neural excitability in a
given model (Izhikevich, 1999). Accordingly, we have two types of
excitability (Rinzel and Ermentrout, 1989) namely,

Type I: neural excitability occurs when the rest potential (quiescent state)
disappears after a saddle node bifurcation on a limit cycle.

Type II: neural excitability results when the quiescent state undergoes an

Andronov-Hopf bifurcation.

The HH neuronal model employed here displays Type-II neural
excitability where the frequency of oscillations at the onset of neural
excitability is distinctly non-zero. In our case, the transition from rest state to
repetitive firing is seen to occur through a supercritical Hopf bifurcation at
Iinp = 6.265 mA corresponding to a frequency of f = 52.5 Hz. As the input
current is gradually increased, the frequency of oscillations increases as
shown in Fig. 2. When Iext = 86.35 mA, the upper limit of the frequency of
oscillations is reached, which is 140 Hz. It follows that when the input

4 A. AUTHOR, B. AUTHOR AND C. AUTHOR

current is in the range of [6.26 - 86.35] mA, the neuron fires with a
corresponding frequency in the range of [52.5 – 140] Hz. The relation
between firing frequency f and input current Iinp in the model employed is
shown in Fig. 2. Regarding the current Iinp as the input and the firing
frequency f as the output enables us to represent the input-output
transduction of the neuron by the characteristics shown in Fig. 2. Thus we
have attempted to capture the selectivity of the response of a neuron to
different luminosity levels in a given image by the mapping process
explained. Fig. 2 also shows (in dashed line) the mapping of a stimulus to a
response based on the Weber-Fechner law, which maps psychophysical
responses.

FIGURE 2. Mapping of the stimulus current to the response firing frequency based
on the Hodgkin-Huxley neuronal model and the Weber-Fechner Law

3. Results

The proposed scheme was tested by processing four images acquired
through a NIKON digital camera. The images were processed using the
transformation model outlined in Section 1. The original and processed
images are shown in Figures 3 - 10. Histograms of luminosity levels (see
Figures 11, 12, 13 and 14) in the four sets of images were constructed. A
summary of the mean luminosity levels for the four sets of images is shown
in Table 1.

Image Mean
Luminosity of
Original Image

Mean
Luminosity of
Processed
Image

Ratio of Mean
Luminosity
Levels

1 93.75 142.84 1.5236
2 59.81 100.34 1.6772

 PAPER TITLE 5

3 86.98 139.73 1.6063
4 60.21 102.55 1.7032

TABLE 1. Mean luminosity levels of 4 sets of original and processed images.

Figure 3. Photograph of a studio environment taken with a digital camera (Image 1)

6 A. AUTHOR, B. AUTHOR AND C. AUTHOR

Figure 4. Image 1 that has been processed neuronally

Figure 5. Another photograph of the studio environment taken with a digital camera

(Image 2)

Figure 6. Image 2 that has been processed neuronally

 PAPER TITLE 7

Figure 7. Another photograph of the studio environment taken with a digital camera

(Image 3)

Figure 8. Image 3 that has been processed neuronally

8 A. AUTHOR, B. AUTHOR AND C. AUTHOR

Figure 9. Another photograph of the studio environment taken with a digital camera

(Image 4)

Figure 10. Image 4 that has been processed neuronally

 PAPER TITLE 9

Figure 11. Histograms of luminosity levels of original and processed Image 1

Figure 12. Histograms of luminosity levels of original and processed Image 2

Figure 13. Histograms of luminosity levels of original and processed Image 3

Figure 14. Histograms of luminosity levels of original and processed Image 4

10 A. AUTHOR, B. AUTHOR AND C. AUTHOR

It can be noted from Figures 4, 6, 8 and 10 that the neuronal processing

improves the visual appearance of the images. From Table 1, we note that
the average luminosity level of the original image is increased by a
minimum of 50 % upon neuronal processing. The histogram of the original
Image 1 shows a concentration of luminosity levels in the “darker” ranges
and a gradual waning as luminosities in the brighter range are approached.
On the other hand, the processed image has a fair distribution of luminosities
both in the lower and higher ranges. The histogram of the original Image 2
shows a strong concentration of luminosities from the low to midrange, and
luminosities in the higher range are virtually absent. The histogram of the
processed Image 2 however shows a fair concentration of luminosity levels
in the entire range. A similar feature is observed from the histogram plots of
the original and processed Images 3 and 4. Therefore, it is reasonable to say
that the distribution of the luminosity levels is more balanced in the
processed images compared to the original images. Thus, the neuronal
processing model is seen to offer a marked improvement in the visual appeal
of images by virtue of a balanced range of luminosities.

When we compare neuronal processing and the psychophysical response
to a stimulus as predicted by the Weber-Fechner law, which is given by the
relation:

S = klogI

where S = subjective response level, k is a constant and I is the stimulus
intensity level, some interesting results are produced.

We see that the results produced by the neuronal processing are superior
to the ones predicted by the Weber-Fechner law (Fig. 15). In order to
compare the stimulus-response (input-output) mapping curve of the Weber-
Fechner law with the stimulus-response mapping curve defined by the
Hodgkin-Huxley neuronal model, we used a value for k = 70. Though the
mapping curves seem to match rather closely (Fig. 2), the image produced
by the neuronal processing is distinctly superior to the image produced by a
stimulus-response mapping based on the Weber-Fechner law. This can be
attributed to the difference between the continuous smooth curvature of the
Weber-Fechner mapping curve and the stepped transitions in the Hodgkin-
Huxley curve.

 PAPER TITLE 11

Figure 15. Comparison of processed Image 1, processed according to the Weber-
Fechner law (above) and the Hodgkin-Huxley neuronal model (below)

4. Conclusions

We have shown that the neuronal processing of digital images of
environments produces adjustments to the images that reflect our perception

12 A. AUTHOR, B. AUTHOR AND C. AUTHOR

of the environments more closely. This approach would be a good post
processing strategy for digital images generated by digital cameras and
computer-based modeling and rendering software. In our approach, images
that are 'objective,' and are generated by physics-based computational
models are modified into images that are 'subjective' and generated by
processing with electro-physiological neuron models. This type of
processing enables design professionals, who use digital images, to make
design decisions based on images that are closer to subjective perceptions.
One of the assumptions that we made in this process was that the individual
luminosity levels in the source images were connected in exactly the same
way (as a grid) in the neuronal processing model. This need not be the case.
A study of the variations in connectivity in the neuronal processing model
based on the neuronal firing frequencies of individual luminosity levels or
'cells' can reveal other intricacies in the neuronal processing of the images,
thereby revealing a more sophisticated 'subjective seeing' of the images.

References

Hodgkin, AL and Huxley AF: 1954, A quantitative description of membrane current and
application to conduction and excitation in nerve, Journal of Physiology, 117: 500-544.

Izhikevich, EM: 1999, Class 1 Neural Excitability, Conventional Synapses, Weakly
Connected Networks and Mathematical Foundations of Pulse Coupled Models, IEEE
Transactions on Neural Networks, 10 (3): 499-507.

Rinzel, J and Ermentrout, GB: 1989, Analysis of neural excitability and oscillations, Methods
in Neuronal Modeling, MIT Press, Cambridge, Massachusetts.

DISCOVERING COMPUTATIONAL STRUCTURES IN
ARCHITECTURE

An Exploration

GANAPATHY MAHALINGAM
North Dakota State University, U.S.A.

Abstract. The linkage between the worlds of Architecture, which
involves the design and construction of the built environment, and
Computer Technology, which involves practical applications of
computation, still has a vast, as yet untapped potential. What if the
implications of the linked term, ‘computer-architecture,’ are explored
to reveal its full scope? This paper describes a unique method to
analyze and code works of Architecture in a way that enables one to
discover hidden computational structures in the works of Architecture.
The case being made here is that the inherent structures of architecture
may be computational structures as well.

1. Introduction

The term ‘computer architecture’ is often used in the computer industry and
refers specifically to the design of computer systems, both hardware and
software. Even Bill Gates, the head of Microsoft, prefers the title Chief
Software Architect. This linkage between the worlds of Architecture, which
involves the design and construction of the built environment, and Computer
Technology, which involves practical applications of computation, still has a
vast, as yet untapped potential. What if the implications of the linked term,
‘computer-architecture,’ are explored critically to reveal its full potential?

A work of architecture is created after an intense design process. The
resultant architecture has embodied in it various formal structures (i.e.,
structures that articulate a particular form). The really interesting question is,
are these formal structures, feasible computational structures as well? If the
answer is yes, this will truly bring the world of Architecture into the world
of computation! This project sets out as its main goal to discover and verify
if the formal structures embodied in works of Architecture could serve as
computational structures as well.

2 GANAPATHY MAHALINGAM

This project is the next in line of a long list of investigations completed
by Mahalingam in the last decade linking the worlds of computation and
architectural design. For his doctoral work Mahalingam successfully created
an algorithm for the design of proscenium-type auditoriums. The algorithm
was incorporated in object-oriented software for the design of proscenium-
type auditoriums using the Smalltalk programming language and the
VisualWorks software development environment. (Mahalingam, 1998,
2000). As a part of his doctoral investigation, Mahalingam also proposed a
paradigm for the representation of architectural design entities as virtual
computers (Mahalingam, 1997). This was a significant attempt to look at
architectural entities as computational devices. In a subsequent investigation,
a model was proposed for the parallel computational processing of load
transfer in rectangular structural systems for architectural design
(Mahalingam, 1999). A project was also completed where a programming
language was proposed for architectural design with the complete Backus-
Naur notation for the language (Mahalingam, 2000). In a more recent
project, a new model was proposed for the sensor-based control of the
propagation of sound in spatial enclosures based on an algorithmic model for
sound propagation simulation developed earlier (Mahalingam, 1999). This
project involved the modeling of the components involved as an elliptical
graph called an optimaton (Mahalingam, 2005).

In a recent seminal paper, which has generated the main idea for this
research project, a paradigm was presented for the representation of different
aspects of architectural design using connections-based models
(Mahalingam, 2003). The paradigm suggested a uniform representation of
spatial layouts, circulatory systems, egress systems, structural systems and
environmental control systems in architecture using three-dimensional
networks or graphs. The argument was made that these three-dimensional
networks or graphs reveal the architectonics underlying their composition,
and by extension, could be the basis of computational frameworks. In this
project, the author has simulated the behavior of a computational structure in
the form of a virtual finite state machine (VFSM) that is based on works of
physical architecture to see if the VFSM could be the basis of new
computational tasks in architectural design such as the simulation of fire
spread in a building, load transfer in structural systems, sound propagation in
spatial enclosures, and heat transfer in buildings, to name a few.

2. Methodology

The way this was accomplished is as follows:

 DISCOVERING COMPUTATIONAL STRUCTURES IN ARCHITECTURE 3

2.1. ANALYSIS

The first step was to analyze a work of Architecture (i.e., part of the built
environment) so as to reveal its underlying systems, such as structural
systems, circulation systems and arrangements of spaces. Three projects by
the architect Frank Lloyd Wright from around the U.S.A. that were analyzed
earlier by March and Steadman (1971) were selected by the author. Each of
these works of Architecture had been analyzed to reveal the ‘invariant’
relationships in their arrangement of spaces. Other examples of some of
systems that could have been included in the analysis are structural systems,
circulation systems, egress systems, HVAC systems, plumbing systems, etc.
These were not attempted in this initial implementation.

2.2. CODING

The next step was to code the spatial arrangement system as a diagram
comprising nodes and links, i.e., as a graph. The spatial arrangement system
uncovered in the analysis phase was coded as an adjacency graph
comprising ‘nodes’ and ‘links.’

nodes and link
of a plan graph

nodes and link
of an adjacency graph

nodes and link
of an embedded
egress graph

Figure 1. Encoding of an architectural plan as a graph showing how different
features are embedded hierarchically.

4 GANAPATHY MAHALINGAM

Figure 2. Three different floor plans of architectural works designed by the architect
Frank Lloyd Wright showing the identical graph of space adjacencies derived from

each one of them (from March and Steadman, 1971).

2.3. VFSM GENERATION

The next step was to use the graph that was uncovered in the previous step to
model a virtual finite state machine (VFSM). The graph was used as a
template for the generation of a VFSM using commercial software
(StateWORKS for VFSM simulations).

 DISCOVERING COMPUTATIONAL STRUCTURES IN ARCHITECTURE 5

Figure 3. The state diagram of a virtual finite state machine (VFSM) based on the 3
architectural works by Frank Lloyd Wright that share the same adjacency graph for

the spaces that they contain. The finite state machine is used to determine
computationally if fire has spread from one space to another, given the occurrence

of fire at the various locations.

2.1. SIMULATION

The next step was to simulate computations using the VFSM and see what
computational structures could be derived from the works of Architecture.
The VFSM was used to simulate the spread of fire in the buildings, a
computational task in architectural design that could be mapped easily onto
the VFSM.

2.1. TESTING

The last step was to test to see if the computational structures could be used
to form the basis of new computer software for architectural design (i.e., the
spread of fire in a building). The efficiency of the VFSM in performing the
computational task attempted was demonstrated. The suitability of the
VFSM for new computational tasks in traditional computation as well as

6 GANAPATHY MAHALINGAM

other computational tasks in architectural design will be explored in the
future.

3. Implementation

The spatial arrangement of three works of architecture by the architect Frank
Lloyd Wright which were analyzed earlier and coded as adjacency graphs
were used in the implementation. Incidentally all three works had the same
underlying adjacency graph. The software StateWORKs (Wagner et. al.,
2006) was then used to generate a virtual finite state machine (VFSM) that
was based on the adjacency graph of the spatial arrangement.

A particular computational implementation was then mapped onto the
VFSM. This was a computation that would determine if fire spread to a
particular space given the occurrence of a fire in another space. The nodes of
the graph (the spaces) were each assigned a range for a flammability value.
This flammability value was modeled as a ‘switchpoint’ that would switch
on and off based on whether the fire in that space crossed the high or low
threshold value. If the intensity of a fire in that space exceeded the
flammability value’s high threshold then the space caught fire. Conditions
were set for the fire to transmit from one space to another. This was modeled
as state transition conditions in the VFSM. A system was then set up to input
the intensity of a fire in each of the spaces. A simulation was then run,
whereby one could input the intensity of a fire in each of the spaces using a
numerical input dialog box and see if it spread to the other spaces, which
was indicated in an output monitor that indicated that a fire had occurred in
that space. The whole process of the spread of the fire was a computation of
state transitions in the VFSM.

In a real world scenario, the system for the input of the intensity of the
fires could be linked to a real digital input using a communication port in the
computer, and the output signal that a fire had occurred could be used to
activate an alarm using another communication port in the computer. This
capability to link digital inputs and outputs to communication ports on the
computer is inherent in the StateWORKS software system. This VFSM
could effectively form the engine of a real fire alarm system in each of the
buildings analyzed.

If one had to develop software for the prediction of fire spread in the
architectural design by inputting flammability values for each of the spaces,
starting fires of various intensities in the various spaces, and predicting
where the fire would spread, then this VFSM could be used as an engine for
the development of the software. The StateWORKS software system allows
you to generate such software engines for runtime control systems with full
control of I/O (input/output) such as WinStExec, StExec, LinuxExec and a
diskless RTOS (real-time operating system) environment, which can be used

 DISCOVERING COMPUTATIONAL STRUCTURES IN ARCHITECTURE 7

for software development using other IDEs (integrated development
environments). The conditional transitions from state to state in the VFSM
could also be used to model systems such as Bayesian networks that are
based on the VFSM. The state transition conditions could then incorporate
probabilistic triggers.

Also other computational systems, such as heat transfer from space to
space, could also be mapped onto the same VFSM. Instead of the ‘flow’ of
fire, the ‘flow’ of heat from space to space could be computed using the
same VFSM. The conditional transitions in the computational ‘flow’ from
space to space could be modeled based on the heat transfer properties
between the spaces.

8 GANAPATHY MAHALINGAM

Figure 4. Screen shots of the VFSM runtime computation monitor in StateWORKS

that monitors the Wrightian VFSM. The indicators in green show where the fires
have occurred and the numerical values are the intensity of fires that have been

mapped to the various spatial locations in the Wrightian houses.

4. Intellectual Merit of the Project

The intellectual merit of this project is that it makes a unique proposal to
analyze and code works of Architecture in a way that enables one to
discover hidden computational structures in the works of Architecture. It is
hoped that the project will provide valuable insight into the architectural
basis of computational structures.

During the process of architectural design, various formal structures (i.e.,
structures that articulate a particular form) are generated and integrated to
define the design of a building. These formal structures determine the spatial
layout of structural systems, circulation systems, egress systems,
arrangement of spaces, HVAC systems, plumbing systems, etc. in a building.
All these formal structures are integrated in the design process to create the
design of a functional building. These formal structures satisfy many
constraints and meet many performance criteria in different domains. As
such, they are very complex design constructs. If these formal structures
could be shown to be feasible computational structures as well, then the
rigor and complexity of the architectural design process could be brought to
bear on the design of software systems. If a particular formal structure
derived from a work of Architecture is shown to be a computational

 DISCOVERING COMPUTATIONAL STRUCTURES IN ARCHITECTURE 9

structure as well, then the methodology of the architectural design process
that resulted in that formal structure could be studied as a viable software
design process. This will bring the whole body of design methods used in
the architectural design process into the world of software design.
Conversely the research process will also yield computational structures for
the design of architectural entities, thereby enabling the creation of new
kinds of computer-aided design systems in Architecture.

The broader impact of this research project will be to amplify the
interdisciplinary relationship between Architecture and Computer Science
and provide practical benefits such as the creation of new kinds of software
for both traditional computational tasks and for architectural design. Though
the methodology described in this project aims at discovering hidden
computational structures in Architecture, it can be adapted to discover
hidden computational structures in other fields such as Engineering and
Biology, thereby enriching the field of computation.

5. Conclusion

The project described in this paper has successfully shown how you can take
a formal structure from Architecture and convert it into a computational
structure. It has also shown how this computational structure can be used as
an engine to develop hardware and software systems for applications such as
the monitoring of fire spread in a building. This is the proof of concept for
discovering computational structures in architecture. The project still has to
demonstrate that these computational structures, which are derived from
works of Architecture, can be feasible computational structures for tasks in
traditional computation. They hold the promise of serving as meta-
computational structures for computational applications in architectural
design, but have yet to be shown to enable other computational tasks such as
sorting and searching, which are often considered benchmark tasks in
Computer Science.
 In his landmark book, Hillier presented the case that “space is the
machine.” (Hillier, 1996) This book has a strong connection to this project.
However, Hillier was specific in referring to his theory as a “configurational
theory of architecture,” and not a “computational theory of architecture.” In
a chapter devoted to the topic, he made the case for “non-discursive
techniques,” that were neutral in the analysis of space and form, thereby
aiming for a “universal” understanding and the development of an “internal”
theory of architecture. Is Hillier’s machine a computer? If this is the case, the
‘configurations’ of architecture become viable ‘computational structures’ as
well. This project reveals the intriguing possibility that this may be the case.
As this project unfolds, more involved issues related to discovering

10 GANAPATHY MAHALINGAM

computational structures in architecture are bound to emerge, which need to
be thoroughly investigated.
 The results of this research project are intended to be used as the
foundation for an interdisciplinary Honors seminar course at our university
titled, “The Architecture of Software Systems.” This course will extend this
inquiry and develop it further. The Honors program at our university is
based on selective admission and attracts the best and brightest students in
the university who have a natural inclination for interdisciplinary studies.
Courses are typically taught by a team of two or more faculty members from
different disciplines. Mahalingam and a faculty member from Computer
Science intend to teach the Honors course together. Their cross-disciplinary
collaboration on the subject will make them effective teaching colleagues.
The course will stimulate motivated students to pursue and extend research
ideas in this area of inquiry further by exposing them to the state-of-the-art
in this field.

Acknowledgements
The developers of the StateWORKS development tool have opened up this new
avenue for research in the field of computer-aided architectural design.
StateWORKS allows researchers to study computational modeling problems in
architecture by building and testing tractable solutions in the form of virtual finite
state machines that can be implemented in both software and hardware.

References

Hillier, B: 1996, Space is the machine, Cambridge University Press, Cambridge, England.
Mahalingam, G: 2005, “A Computational Model of a Sensor Network for the Optimization

and Control of Acoustical Performance Criteria in Spatial Enclosures” Proceedings of
CAADRIA 2005, New Delhi.

Mahalingam, G: 2003, “Representing Architectural Design Using a Connections-based
Paradigm,” Proceedings of the ACADIA 2003 Conference, Indianapolis, Indiana.

Mahalingam, G: 2001, "POCHE: Polyhedral Objects Controlled by Heteromorphic
Effectors," Proceedings of the CAAD Futures 2001 Conference, Eindhoven, Netherlands,
July, 2001. The proceedings were also published as a book, “CAAD Futures,” by Bauke
de Vries, Jos van Leeuwen and Henri Achten, Kluwer Academic Publishers, Dordrecht.

Mahalingam, G: 2000, “The Algorithmic Auditorium: Automating Auditorium Design,”
Proceedings of the ACSA Technology Conference 2000, MIT, Boston, Massachusetts.

Mahalingam, G: 2000, “Computing Architectural Designs Using An Architectural
Programming Language,” Proceedings of the eCAADe 2000 Conference, Weimar,
Germany.

Mahalingam, G: 1999 “A Parallel Processing Model for the Analysis and Design of
Rectangular Frame Structures,” Proceedings of the ACADIA 99 Conference, Snowbird,
Utah, October.

Mahalingam, G: 1999, “A New Algorithm for the Simulation of Sound Propagation in Spatial
Enclosures,” Proceedings of the Building Simulation ’99 Conference, Kyoto, Japan.

DISCOVERING COMPUTATIONAL STRUCTURES IN ARCHITECTURE
 11
Mahalingam, G: 1998, “The Algorithmic Auditorium,” Proceedings of the CAADRIA 98

Conference, Osaka, Japan.
Mahalingam, G: 1997, “Representing Architectural Design Using Virtual Computers,”

Proceedings of the ACADIA 97 Conference, Cincinnati, Ohio.
March, L and Steadman, P: 1971, The geometry of environment: An introduction to spatial

organization in design, RIBA Publications Ltd.
Wagner F, R Schmuki, T Wagner and P Wolstenhilme: 2006, Modeling Software with Finite

State Machines: A Practical Approach, Auerbach Publications, Taylor & Francis Group,
New York, New York.

A CASE FOR ARCHITECTURAL COMPUTING

Computing Using Architectural Constructs

GANAPATHY MAHALINGAM
North Dakota State University, U.S.A.
Ganapathy.Mahalingam@ndsu.edu

Abstract. This paper is about the potential of architectural computing.
Architectural computing is defined as computing that is done with
computational structures that are based on architectural forms. An
analysis of works of architecture reveals the embedded forms in the
works of architecture. A uniform, connections-based representation of
these architectural forms allows us to derive computational structures
from them. These computational structures form the basis of
architectural computing. In this paper a case is made for architectural
computing, ideas are provided for how it could be done, and the
benefits of architectural computing are briefly explored.

Keywords. Architectural computing: architectural programming
language; intentional programming; connections-based paradigm.

1. Introduction

Researchers in the field of computer-aided architectural design have
pondered the computability of design for the past 3 to 4 decades. While this
inquiry may seem moot now, given that most design activities can be
performed on the computer using various pieces of software, it has masked
what can now be considered as a unique form of computing, architectural
computing. Claude Shannon (1937), in his influential master’s thesis, A
Symbolic Analysis of Relay and Switching Circuits, literally founded modern
digital computing by integrating Boolean algebra, binary arithmetic and
electromechanical relays into an effective device to perform computations.
What if we now recast the inherent devices of architecture as effective
machines? Can we build architectural computers from them? What would
these computers do and what would be their unique characteristics? What if
we derive an architectural programming language from the operations of
architectural design? Not too long ago, Charles Simonyi (1995) hailed the
death of computer languages and the birth of intentional programming. What
is the potential of architectural intentions when we consider them as
effective devices? What are the kinds of ‘logic gates’ that we could derive
from architectural constructs? Besides opening up the world of ‘architectural

2 A. AUTHOR, B. AUTHOR AND C. AUTHOR

computing,’ this inquiry would make us reconsider the world of architecture
with a renewed rigor. It is time now to make the case for architectural
computing. This paper is an attempt to do that effectively.

2. Architectural Computing

What is architectural computing? Architectural computing is computing that
is done with a computational structure that has as its basis an architectural
form. Architectural forms are embodied in works of architecture. They are
essentially intrinsic. They include the forms of the building envelope, the
forms of the structural system, the forms of the mechanical and plumbing
systems, the forms of the circulation system, the forms of the electrical
system, the forms of the life safety and communication systems, etc. These
architectural forms are manifest in the finished works of architecture. They
can be derived from the finished works of architecture by careful analysis.
These are the manifest forms of architecture.

However, the process of creating a work of architecture has embedded in
it various inherent devices as well. These are not immediately available from
a cursory visual analysis. These include datums, proportional systems,
ordering diagrams, etc. These inherent devices can also be represented in
such a way that they can become the basis of computational devices. The
challenge lies in the creative mapping of these inherent devices into
computational structures.

In recent research a case has been made for the uniform representation of
architecture (i.e., architectural forms) using a connections-based paradigm
(Mahalingam, 2003). A case has also been made to derive computational
structures from these connections-based representations of architecture
(Mahalingam, 2007). Earlier a case was made for an architectural
programming language (Mahalingam, 2000). These three approaches can
now be integrated into a case to be made for architectural computing.

Why architectural computing? Computer scientists often talk about
computer architectures, which refer to the organization of computational
devices. Though the term used is architecture, these computational devices
seldom approach the complexity of works of architecture in the built
environment, viz. buildings. Building designs are the result of some of the
most exacting neuronal processing in the brains of designers. The synthesis
of building designs represents the complex structuring of our neuronal
systems. It may be said that complex works of architecture reveal human
neuronal underpinnings more accurately than any other cultural artifact that
humans produce. Architectural computing is proposal to tap this neuronal
richness that is manifest as complex architectural constructs. The first step in
this process is to see if, at the heart of architectural creation, there is a
programming language.

3. An Architectural Programming Language

This section of the paper is adopted from an earlier paper on the topic
(Mahalingam, 2000). It is absolutely necessary to integrate it in this paper to
make the case for architectural computing.

 A CASE FOR ARCHITECTURAL COMPUTING 3

The potential success in developing a programming language for
architectural design depends on a careful mapping of the fundamental
operations in the creation of architectural designs onto a set of computable
operations. A characterization of architectural design at a fundamental level
is needed before a programming language can be defined to enable the
creation of architectural designs. Architecture has been defined as the art and
science of designing buildings and supervising their construction. The
creation of a work of architecture is the result of a complex interaction of
diverse processes. However, the complexity in the creation of an
architectural design belies a set of simple, fundamental operations.

A programming language is defined by its syntax and semantics. The
syntax of the language describes the rules for creating structures (programs)
using the language, and the semantics of the language reveals the meaning of
valid structures (programs) that can be created with the language. Of these,
the syntax is formally represented. Examples of formal description systems
for the syntax of a programming language are the Backus-Naur notation and
syntax diagrams.

To create a programming language for architectural design, one has to
define the starting symbol, terminal symbols, non-terminal symbols and
production rules for the creation of architectural designs. This may seem a
daunting task, but, if we realize that the fundamental entities in architecture
consist of form and space, solids and voids, the definition of a language for
architectural design becomes viable.

3.1 THE DEFINITION OF AN ARCHITECTURAL PROGRAMMING
LANGUAGE

This section presents the definition of an architectural programming
language, complete with the Backus-Naur form (BNF) for the language. The
purpose of developing this language is to provide a tool to write programs
that generate architectural designs when executed. A complete syntactical
description of the language including its starting symbol, its non-terminal
symbols, its terminal symbols, and its set of production rules is provided.

A complete syntactical description of a language is called a grammar. A
grammar can be considered a tuple of the following elements:

Starting symbol (S)
Terminal symbols (T)
Non-terminal symbols (N)
Production rules (P)
The notation for a grammar is thus: G (S, T, N, P)
A language (L) based on a grammar is defined thus: L (G) = L (S, T, N,

P)
The task of creating a programming language for architectural design

starts with the definition of a grammar for the creation of architectural
designs. Using the 4-tuple form for the definition of a grammar, G (S, T, N,
P), architectural design can be mapped thus:

Starting symbol (S): Architectural form (f)
Terminal symbols (T): Solid polyhedron (ps), Void polyhedron (pv),

Union (U), Difference (\)
Non-terminal symbols (N): Architectural form (f), architectural space (s)
Production rules (P):

4 A. AUTHOR, B. AUTHOR AND C. AUTHOR

f → ps | f U f | f \ s
s → pv | s U s
The union operation (U) has precedence over the difference operation (\)

in the production rules. The vocabulary (V) of the grammar or language is
defined as N U T, that is, the union of the non-terminal and terminal
symbols. The use of the symbol * after V, N or T indicates all possible
strings over the sets of V, N and T.

These production rules defined give rise to other production rules of the
form:

f → ps U ps
This production rule allows an architectural form to be created by

unioning a solid polyhedron with another solid polyhedron.
f → ps U f
This production rule allows an architectural form to be created by

unioning a solid polyhedron with another architectural form.
f → ps \ pv
This production rule allows an architectural form to be created by

differencing a void polyhedron from a solid polyhedron.
s → pv U pv
This production rule allows an architectural space to be created by

unioning a void polyhedron with another void polyhedron.
s → pv U s
This production rule allows an architectural space to be created by

unioning a void polyhedron with another architectural space.
If you visualize the creation of an architectural design, an architect starts

with an existing architectural form, the site of the design. The architect then
synthesizes a new form by creating a solid polyhedron, combining solid
polyhedra (material) or removing void polyhedra (empty space) from the
solid polyhedra (material). The production rules defined to create
architectural forms are both recursive and non-recursive. Since there are an
infinite number of solid and void polyhedra, this grammar does not preclude
any architectural form.

In this programming language, only the Boolean operators of union and
difference are used. Now can we visualize an architectural design operation
that creates, in essence, a different ‘logic gate’?

The grammar presented above is context-free like most programming
languages. The actual grammar to create specific types of architectural forms
will be a refined version of this grammar. This grammar captures the essence
of a real grammar that creates an architectural form. Since polyhedra are
themselves complex entities, a nested grammar can be defined to generate
polyhedra. This series of nested grammars can then be used to develop a
comprehensive programming language for architectural design.

3.2 THE POTENTIAL OF AN ARCHITECTURAL PROGRAMMING
LANGUAGE

Kalay (1989) calls computer models of real-world phenomena "languages of
representation." What if this language of representation is a programming
language? Symbols sets used in computer programming languages include
the binary set (1,0) or the number set (1,2,3,4,5,6,7,8,9,0) or the English
alphabet set (a,b,c,d…z). Such sets allow for programs to be written in an

 A CASE FOR ARCHITECTURAL COMPUTING 5

alphanumeric language. The traditional language of architectural design is
graphical. Therefore, a programming language for architectural design
should probably use graphical symbols instead of alphanumeric symbols.
This would make an architectural programming language a visual
programming language. What if the symbol sets in an architectural
programming language are graphical? Can one then draw a program instead
of writing one? The equivalent of a sentence in an alphanumeric
programming language would be a drawing in the visual programming
language. What are the problems or benefits related to checking the validity
of a program if it is drawn using graphic symbols? Actually, the problems
related to checking the validity of a program written in a visual
programming language should be no different than syntax checking in an
alphanumeric programming language, if the graphic elements directly
correspond to alphanumeric elements.

In the grammar for an architectural programming language presented in
this paper, if the alphanumeric symbols are replaced with graphics
representing the polyhedra, then the string of alphanumeric symbols
generated by the production rules has a graphical equivalent. The
architectural programming language can generate different strings based on
the production rules. These strings can then be converted into graphics by
substitution. Each sentence in the language will then become a spatial
composition. When the substitution is made, there may be invalid forms
created by some of the production rules. This is because the alphanumeric
symbols are not spatial. For example a void polyhedron that is larger than a
solid polyhedron cannot be differenced from it. Similarly, two solid
polyhedra that do not overlap cannot be unioned to create a single
architectural form. A mechanism is needed for checking spatial parameters
of the polyhedra when implementing the production rules.

Drawing an architectural design may not be essentially more complex
than programming an architectural design except for the visual immediacy of
the drawing and the unstructured (or very complexly structured, depending
on your viewpoint) nature of the drawing process. If graphical symbols are
used in the architectural programming language, then programming an
architectural design can become another form of drawing, a shorthand
graphical notation of the design that reveals its full visual form when the
program is executed. Even symbols for operators in the architectural
programming language can be given graphical equivalents. A drawing will
then be a computer program. This will be possible if the sequence of
elements and operations used to create the drawing is accessible in order to
map it onto a program. A finished drawing on paper using traditional media
does not have a record of the sequence of graphic elements and operations
used to create it, but a computer-based drawing does! Computer-based
drawings can then provide a computational medium for the generation of
architectural designs in a completely different sense.

With a well-defined architectural programming language, architectural
designs can be generated by executing programs written as you would with a
general-purpose programming language like Smalltalk. Programs can then
be written (drawn?) to generate programs that generate architectural forms.
This can lead to a powerful form of automation in the creation of
architectural designs.

6 A. AUTHOR, B. AUTHOR AND C. AUTHOR

4. Intentional Programming

Charles Simonyi, who used to be one of the chief software architects at
Microsoft, has been working on what he calls Intentional Software.
According to his team, Intentional Software simplifies software creation by
separating the software contents in terms of their various domains from the
implementation of the software and by enabling automatic regeneration of
the software as the contents change (Simonyi, Christerson and Clifford,
2006). In traditional software development, programmers had to take tasks
that were to be completed in the domain of an application, for example, the
creation of a cuboid in 3D modeling software, and represent the process in a
form that the computer could understand, that is, using a general purpose
programming language. The program was written to facilitate execution on
the computer and not to articulate the task being performed. This
disconnection between a machine executable representation and an
‘intentional’ representation in performing a task is the gap that is being
closed by Intentional Software.

In the implementation of Intentional Software, domain experts can work
in parallel with programmers in their respective areas of expertise; and the
repeated intermingling can be automated. Intentional Software is supported
by a Domain Workbench tool where multiple domains can be defined,
created, edited, transformed and integrated during software creation
(Simonyi, Christerson and Clifford, 2006).

Domain experts first define domain schema, where terms of the domain
code are defined. Domain experts then define the domain code using the
Domain Workbench tool and a domain specific language. This domain code
takes the form an intentional tree in its parse structure. The domain code can
also be converted to other forms of notation such as a finite state machine
diagram (see Figure 2). A generator then processes the domain code to
generate target code that is executed on the computer. The target code is the
software program or application that a user needs to perform a particular
task. These domain schemas and codes are defined by the domain experts,
for example, the architectural programming language described in this paper
would be a high-level ‘intentional’ domain defined by a domain expert, in
this case, the architect.

Using this domain definition many programs for the creation of various
architectural designs could be generated (see Figure 1 for an overview of the
Intentional Software system where the domain code for some of the
production rules in the architectural programming language presented in this
paper is shown in yellow). This is not always easy. In complex systems, the
domain vocabulary, domain relationships and domain rules may not lend
themselves to be easily mapped onto a programming language to generate
the target code. However, this is not as difficult in the synthesis of
architectural forms as the architectural programming language shows.

 A CASE FOR ARCHITECTURAL COMPUTING 7

Figure 1. Overview of the Intentional Software system

Other key features of Intentional Software include a uniform

representation of multiple interrelated domains, the ability to project the
domains in multiple editable notations, and simple access for a program
generator (Simonyi, Christerson and Clifford, 2006). This rich environment
seeks to exploit domain schema and codes from innumerable sources for
diverse applications. These domain schemas and codes serve as engines for
the software development process. A critical role is played by the generator
in this process. The domain schemas and codes only specify the data
structure; the behavior of the data in the target code is generated by the
generator using a process that translates the domain code into target code.

The world of architecture is rich in domain schema and domain codes.
Hitherto, the world of architecture has not been seen as a valuable source of
domain schema and domain codes for software design. With the
implementation of Intentional Software, the opportunity has arisen for the
use of architectural schema and architectural codes in the process of software
design. Consider a structural design schema in architecture that can be used
to create software for the design of the structural elements involved
(Mahalingam, 1999). Consider a spatial layout schema, where the spatial
layout and the interconnection of the spaces is the engine for a fire spread
and control software for the building (Mahalingam, 2007) (see Figure 2).
Consider a spatial design synthesis schema in the manner of a master
architect, for example, software that can be used to design in the manner of a
Palladio or a Wright (Hersey and Freedman, 1992). Consider a circulation
system schema that can be used to create a program that automatically
generates spatial layouts for buildings. The possibilities are endless. Where
this research avenue can be taken is as limitless as the world of intentional
forms.

8 A. AUTHOR, B. AUTHOR AND C. AUTHOR

Figure 2. Domain code in a finite state machine notation for a system to predict fire

spread in a Wrightian style house

5. Conclusion

Architectural computing is a new frontier. There is enough structure in the
process of creating architectural designs and in architectural products to
allow us to derive architectural programming languages and other complex
computational structures from them. These programming languages and
computational structures will initially inform the process of architectural
design and expand its potential. They would then migrate to other disciplines
and engage worlds such as engineering and biology. Architecture is a
universal phenomenon. Form is its central ingredient. Architectural
computing mobilizes computing with architectural forms. The future is wide
open.

References

Hersey, G. and R. Freedman, Possible Palladian Villas, MIT Press, Cambridge,
Massachusetts, 1992.

Kalay, Y. E. Modeling Objects and Environments. John Wiley & Sons, New York, New
York, 1989.

Mahalingam, G. Discovering Computational Structures in Architecture, CAAD Futures 2007
Conference, Sydney, Australia, July 2007.

Mahalingam, G. Representing Architectural Design Using a Connections-based Paradigm,
ACADIA 2003 Conference, Indianapolis, Indiana, October, 2003.

Mahalingam, G. Computing Architectural Designs Using An Architectural Programming
Language, eCAADe 2000 Conference, Weimar, Germany, June 2000.

Mahalingam, G. A Parallel Processing Model for the Analysis and Design of Rectangular
Frame Structures, ACADIA 99 Conference, Snowbird, Utah, October 1999.

 A CASE FOR ARCHITECTURAL COMPUTING 9

Shannon, C. A Symbolic Analysis of Relay and Switching Circuits, Master’s Thesis,
Massachusetts Institute of Technology, 1937.

Simonyi, C., M. Christerson and S. Clifford. Intentional Software. OOPSLA’06 October 22-26,
Portland, Oregon, USA, 2006.

Simonyi, C. The Death of Computer Languages, The Birth of Intentional Programming,
Microsoft Technical Report, MSR-TR-95-52, Microsoft Research, 1995.

Teufel, B. Organization of Programming Languages. Springer-Verlag, New York, 1991.

Copyright: Ganapathy Mahalingam, 2007 Page 1

In Formation…

The central variable and object of contention for value in Architecture is form. Architects have long
relied on innumerous methods from various disciplines to derive architectural forms. This has given
Architecture its incredible richness and diversity. It has also made the central process of Architecture –
the creation of architectural form – an open‐ended and a politically contentious process. This obsession
with architectural form has been so strong that architects have often ignored the inhabitation of the
forms and their sustainability as the real reasons for creating them in the first place. The profusion of
architectural forms being generated currently through the use of digital media belies the persistent
anxiety of architects in validating what they are creating. Reverting to divine inspiration as an
explanation is the easy recourse, but validating what we create is an unavoidable human responsibility.

There is a relatively new area of focus in human inquiry that is emerging, which has the potential to give
architects the foothold they have longed for in validating the creation of architectural forms.
Interestingly this area of inquiry links architecture to the last component in the quadrivium of
professions made up of architecture, engineering, law and medicine. Architects have engaged
engineering and law in the creation of the built environment and this engagement has served them well.
The moment has come for architects to engage the fourth profession in the quadrivium – medicine, and
with it, the world of biology. This engagement promises to resolve the persistent anxiety in the
validation of architectural form through an area of inquiry called developmental biology.

“Developmental biology is the study of the process by which organisms grow and develop. Modern
developmental biology studies the genetic control of cell growth, differentiation and "morphogenesis,"
which is the process that gives rise to tissues, organs and anatomy. The study of morphogenesis involves
an attempt to understand the processes that control the organized spatial distribution of cells that
arises during the embryonic development of an organism and which give rise to the characteristic forms
of tissues, organs and overall body anatomy.” (Wikipedia)

This last aspect of developmental biology, morphogenesis, the evolution of form, as the name implies,
may embody the architect’s salvation.

In the early part of the 20th century D’Arcy Wentworth Thompson wrote the influential book, On
Growth and Form, where he explored evolutionary frameworks for the growth of various kinds of
biological forms. His deliberations were picked up decades later in a telling manner by Alan Turing, a
pioneer in the field of computation as we have come to know it today (Saunders, 1992). Turing used
mathematical models based on reaction‐diffusion equations to suggest a methodology for pattern
formation in biology, and in doing so may have also founded the contemporary study of pattern
formation in nature. He was specifically interested in how the Fibonacci series was manifest in the
growth and development of plants. Unfortunately Turing passed away before he could build significantly
on Thompson’s work. Digital media enthusiasts in architecture have recently rediscovered the work of
Thompson, no doubt intrigued by Turing’s connection to his work, and have sought inspiration from it to
drive the creation of architectural form using digital media. This heady mixture of the early stirrings of
developmental biology and contemporary digital mediation has created the potential for unprecedented

http://en.wikipedia.org/wiki/Cell_growth
http://en.wikipedia.org/wiki/Cellular_differentiation
http://en.wikipedia.org/wiki/Morphogenesis
http://en.wikipedia.org/wiki/Biological_tissue
http://en.wikipedia.org/wiki/Organ_%28anatomy%29
http://en.wikipedia.org/wiki/Anatomy
http://en.wikipedia.org/wiki/Developmental_biology
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/Biological_tissue
http://en.wikipedia.org/wiki/Organ_%28anatomy%29
http://en.wikipedia.org/wiki/Anatomy

Copyright: Ganapathy Mahalingam, 2007 Page 2

knowledge in the creation of forms at the scale and complexity of nature. Developmental biologists are
studying morphogenesis both in vivo and in silico. They have integrated computational tools into a field
called systems biology and are now able to model aspects of morphogenesis computationally (Alon,
2006). Here we are now, at the crossroads of biology, computation, and dare we say, architecture, that
has begun to shed a new light on information seen as, in formation, that is, in the particular state of
being formed.

Why is this important? It may be urgently so, because understanding how genomes evolve, and

morphogens (form generators) enable the creation of tissues and organs, will give architects a far more

sophisticated set of form‐making tools than the Cartesian grid and Euclidean geometry to take on the

complex imperative of sustainability of the built environment. Our very survival may be dependent

upon being able to understand and master these form‐making techniques.

“Morphogens are substances governing the pattern of tissue development and, in particular, the

positions of the various specialized cell types within a tissue. Morphogens spread from a localized

source and form a concentration gradient across a developing tissue.” (Wikipedia) This concentration

gradient in turn drives the differentiation in the developing tissue required for the emergence of form.

The processes of diffusion, activation and deactivation in cell structures, collectively called gastrulation,

becomes the dynamic environment in which form is created. Understanding this dynamic process will

enable architects to eventually attain a facility in form‐making similar to ones found in nature. “Well‐

known morphogens include: Decapentaplegic / Transforming growth factor beta, Hedgehog / Sonic

Hedgehog, Wingless / Wnt, Epidermal growth factor, and Fibroblast growth factor.” (Wikipedia) Many

of these morphogens were identified through the study of the fruit fly embryo. These morphogens are

defined conceptually, not chemically, based on how they create or influence different forms. For

example, the Sonic Hedgehog morphogen influences the creation of digits (fingers and toes) in limbs,

the midline structures in the brain and the spinal cord. How these morphogens actually work in

specificity is still being charted by developmental biologists.

The really intriguing set of questions is: What lessons do morphogens have for architects? What would

be the equivalent of morphogens in the creation of various kinds of architectural form? For example, is

there an Auditorium morphogen in architecture? What would it be, and how would it function?

The case has been made for Acoustic Sculpting and the Algorithmic Auditorium (Mahalingam, 1998).

Acoustic Sculpting, identified by Professor Mahalingam (in the sense of giving it identity), is the process

of creation of architectural form, specifically the spatial form of an auditorium, based on acoustical

parameters such as reverberation time, the time delay gap of sound reflections and inter‐aural cross

correlation. Using geometric, mathematical and statistical functions, it is a method to generate

architectural form that performs according to optimized criteria, acoustical criteria in this case. Through

Acoustic Sculpting, sound becomes a form‐giver (a morphogen?) for Architecture. The process of

http://en.wikipedia.org/wiki/Decapentaplegic
http://en.wikipedia.org/wiki/Transforming_growth_factor_beta
http://en.wikipedia.org/wiki/Hedgehog_%28cell_signaling%29
http://en.wikipedia.org/wiki/Sonic_Hedgehog
http://en.wikipedia.org/wiki/Sonic_Hedgehog
http://en.wikipedia.org/wiki/Wingless
http://en.wikipedia.org/wiki/Wnt_signaling_pathway
http://en.wikipedia.org/wiki/Epidermal_growth_factor
http://en.wikipedia.org/wiki/Fibroblast_growth_factor

Copyright: Ganapathy Mahalingam, 2007 Page 3

Acoustical Sculpting was used in the Algorithmic Auditorium project. The Algorithmic Auditorium is the

project in which an algorithm was created for the preliminary spatial design (the design of the three‐

dimensional spatial envelope) of a proscenium‐type auditorium based on acoustical, programmatic,

performance and visual criteria, and implemented as a functioning piece of software. (Mahalingam,

1995). These two concepts were a precursor to a new way of looking at architectural form‐making. They

also anticipated the role of morphogens in architecture by almost a decade. Evolution has now brought

us to a point where practical tools such as Bentley’s Generative Components (released commercially in

2007) are now making such considerations of architectural form‐making viable and accessible.

Where is this leading us as architects? Is the Auditorium morphogen an evolutionary extension of the

Algorithmic Auditorium? Does it point to a convergence of the fields of biology, computation and

architecture? Will current inquiry resolve these questions? In a paper presented at a conference in 2003,

Professor Mahalingam suggested that a uniform connections‐based representation of all aspects of

architecture could be used to map the architectural genome and understand the myriad architectural

forms that exist in the world. (Mahalingam, 2003) What if we could map both the architectural genome

and, at the same time, identify all the morphogens that differentiate architecture? Could the study of

form‐making in architecture run parallel to the field of study of the developmental biologists? Could

architects’ understanding of form‐making inform the work of developmental biologists? Could the work

of architects be profoundly significant, beyond the world of inhabitation and sensory experience? Could

Architecture enhance Medicine? This is what is decidedly in formation…

References:

• Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological Circuits.

Chapman & Hall.

• Mahalingam, G. (1995). The Application of Object‐Oriented Computing in the Development of

Design Systems for Auditoria. Ph.D. Dissertation. University of Florida, Gainesville, Florida.

• Mahalingam, G. (1998). The Algorithmic Auditorium. Proceedings of The Third Conference on

Computer‐Aided Architectural Design Research in Asia (CAADRIA ’98), Osaka, Japan, pp. 143‐

152.

• Mahalingam, G. (2003). Representing Architectural Design Using a Connections‐based Paradigm.

Proceedings of Annual Conference of the Association for Computer‐Aided Design In Architecture

(ACADIA 22), Indianapolis, Indiana, pp. 269‐277.

• Saunders, P.T. (1992). Editor. Collected Works of A. M. Turing: Morphogenesis. North Holland.

• Thompson, D. W. (1992). On Growth and Form: The Complete Revised Edition. Dover

Publications.

	CF07 Paper Mahalingam Final.pdf
	1. Introduction
	2. Methodology
	2.1. ANALYSIS
	2.2. CODING
	2.3. VFSM GENERATION
	2.1. SIMULATION
	2.1. TESTING

	3. Implementation
	4. Intellectual Merit of the Project
	5. Conclusion
	Acknowledgements
	References

	A Case for Architectural Computing Final Version.pdf
	1. Introduction
	2. Architectural Computing
	3. An Architectural Programming Language
	3.1 THE DEFINITION OF AN ARCHITECTURAL PROGRAMMING LANGUAGE
	3.2 THE POTENTIAL OF AN ARCHITECTURAL PROGRAMMING LANGUAGE

	4. Intentional Programming
	5. Conclusion
	References

	mahaling11.pdf
	1. Introduction
	2. Sensors and Effectors
	2.1 NANOBLOCKS AND ULTRA-SMALL SENSORS
	2.2 SENSOR ARRAYS AND NETWORKS
	2.3 EFFECTORS

	3. Environmental Performance
	3.1 ENVIRONMENTAL PERFORMANCE CRITERIA
	3.2 STEADY-STATE AND DYNAMIC ENVIRONMENTAL PERFORMANCE CRITERIA

	4. Optimization
	4.1 OPTIMIZATION OF ENVIRONMENTAL PERFORMANCE CRITERIA
	4.2 RESOLVING THE SPATIAL EFFECTS OF SOURCES AND EFFECTORS
	4.3 OPTIMIZATION FUNCTIONS
	4.4 COMMON FRAMEWORK

	5. Conclusion
	References

	mahaling4.pdf
	1. ARCHITECTURAL ENTITIES AS POLYHEDRAL OBJECTS
	2. EFFECTORS
	2.1 Homomorphic and heteromorphic effectors

	3. POCHÉ
	3.1 Application of effectors in architectural design
	3.2 Application of effectors in architectural practice
	3.3 Future directions

	4. REFERENCES

	mahaling10.pdf
	1. Introduction
	2. Methodology
	2.1. NEURONAL MODEL

	3. Results
	References

