Math 720 – Preliminary Exam August 2024

- 1. Write your student ID number at the top of each page of your exam solutions.
- 2. Write only on the front page of each solution sheet.
- 3. Start each question on a new sheet of paper. Each question is worth 10 points.
- 4. In answering any part of a question, you may assume the results in the previous parts.
- 5. To receive full credit, answers must be justified.
- 6. You can do the problems in any order! If you get stuck, move on and come back to it.
- 7. In this exam, "ring" means "ring with unit" and "module" means "unital (unitary) module". Further, if $\phi : R \to S$ is a ring homomorphism, we assume $\phi(1_R) = 1_S$.

Student ID Number: _

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
Total:	70	

1. (10 points) (a) Consider the function $f_A : \mathbb{Z}^3 \to \mathbb{Z}^3$ given by left multiplication by the matrix

$$A = \begin{bmatrix} 0 & 3 & 6 \\ 1 & -2 & -6 \\ 2 & 5 & 0 \end{bmatrix}.$$

Compute the \mathbb{Z} -module structure of $\mathbb{Z}^3/\text{Im}(f_A)$, i.e., express $\mathbb{Z}^3/\text{Im}(f_A)$ as a direct sum of cyclic \mathbb{Z} -modules (using its invariant factors).

(b) Now consider the similar function $h_A : \mathbb{Q}^3 \to \mathbb{Q}^3$ given by left multiplication by the matrix

$$A = \begin{bmatrix} 0 & 3 & 6 \\ 1 & -2 & -6 \\ 2 & 5 & 0 \end{bmatrix}.$$

Compute the Jordan canonical form of A over \mathbb{Q} or show one does not exist. Make sure to fully justify your answer.

Hint: It may help to know that 1 *is an eigenvalue*

- 2. (10 points) Let k be a field and consider a linear map $g: k^6 \to k^6$ given by a matrix B. Give all possible rational canonical forms of B given the following information.
 - The minimal polynomial of B is $(x-1)^2(x+2)$.
 - Three of the invariant factors of B are constant.
- 3. (10 points) Let I and J be ideals of a commutative ring R.
 - (a) Prove that every element of $M = R/I \otimes_R R/J$ can be written as a simple tensor of the form $[1]_I \otimes [r]_J$ where $[-]_I$ denotes the equivalence class in R/I (and similarly for J).
 - (b) Prove that the *R*-module homomorphism $f: M \to R/(I+J)$ given by $[1]_I \otimes [r]_J \mapsto [r]_{I+J}$ is an isomorphism.
- 4. (10 points) Let R be a PID and suppose Q is an R-module. Prove that Q is injective if and only if rQ = Q for every nonzero $r \in R$.
- 5. (10 points) (a) Compute all maximal ideals of $R = k[x]/(x^3 1)$ where $k = \mathbb{Z}/2\mathbb{Z}$.
 - (b) Using Part (a), give all fields F, up to isomorphism, for which there exists a surjective ring homomorphism $f: R \to F$.
- 6. (10 points) Prove that $\mathbb{Z}[\sqrt{-7}]$ is not a UFD.
- 7. (10 points) An ideal I of a commutative ring R is called *primary* if whenever $xy \in I$ then $x \in I$ or $y^n \in I$ for some positive integer n.

Suppose R is a PID and $I \subseteq R$ is an ideal. Prove that I is primary if and only if $I = P^n = P \cdot P \cdots P$ for some positive integer n and some prime ideal P.