Analysis Preliminary Examination August 2024

Submit six of the following problems. Start every problem on a new page, number your pages and write your student ID on each page. **Do not** write your name.

Lebesgue measure is denoted m and unless stated otherwise (X, \mathcal{M}, μ) is a generic measure space.

- 1. Let $E \in \mathcal{F}$ be a bounded set with $m(E) \ge 0$. Prove that if $\Lambda \subset \mathbb{R}$ is a countably infinite set such that $\bigcup_{\lambda \in \Lambda} \lambda + E$ is a bounded disjoint union, then m(E) = 0.
- 2. Let $\{f_n\}$ be a sequence of measurable functions on X. Prove that the set

 $\{x \in X : \lim_{n} f_n(x) \text{ exists}\}\$ is measurable.

- 3. a) Give the definition of a measurable function.
 b) Show that if f is measurable and g = f a.e., then g is also measurable.
 c) True or false: if f² is measurable, then so is f. Justify your answer.
- 4. a) State monotone convergence theorem.b) Is monotonicity necessary? Justify your answer (with an example).
- 5. For a > 0 we define the function

$$f(a) = \int_0^\infty e^{-at} \frac{\sin t}{t} \, dt.$$

Justify the existence of the limit $\lim_{a\to\infty} f(a)$ and find its value. (Say which convergence theorem you are using).

6. Let $X = Y = \mathbb{N}$, $\mathcal{M} = \mathcal{N} = \mathcal{P}(\mathbb{N})$, and $\mu = \nu$ be counting measure. Consider the function $f : X \times Y \to \mathbb{R}$, where

$$f(m,n) = \begin{cases} 1 & \text{if } m = n, \\ -1 & \text{if } m = n+1, \\ 0 & \text{otherwise.} \end{cases}$$

Prove that $\int |f| d(\mu \times \nu) = \infty$, and both the iterated integrals $\int \int f d\mu d\nu$ and $\int \int f d\nu d\mu$ exist and are unequal.

- 7. Prove that if $f : [a, b] \to \mathbb{R}$ is absolutely continuous, then its of bounded variation (hence differentiable almost everywhere).
- 8. On \mathbb{R} we consider the Lebesgue-Stieltjes measure μ_F with distribution function

$$F(x) = \begin{cases} x + [x] & x > 0\\ 0 & \text{otherwise,} \end{cases}$$

where [x] is the integer part of x.

- (a) Show that F is right-continuous.
- (b) Calculate $\mu_F[4, 8]$ and $\mu_F[3, 7)$.
- (c) Find a set $A \subset \mathbb{R}$ with Lebesgue measure 0 such that $\mu_F(A) > 0$.