MATH 756 Qualifying Exam

Choose 5 questions. Write all your work and final answers on blank paper. Write your student ID on each paper and include this exam sheet on top.

- 1. Show that the triangle inequality fails for weak L^p spaces: Find two functions f, g in $L^p[0,1]$ (with Lebesgue measure) such that $[f]_p = 1$, $[g]_p = 1$ and $[f + g]_p > 2$.
- 2. Consider the 2π-periodic odd function defined on $[0, \pi]$ by $f(x) = x(\pi x)$.
	- (a) Draw the graph on f on $[-\pi, \pi]$.
	- (b) Compute the Fourier coefficients of f and show that

$$
f(x) = \frac{8}{\pi} \sum_{k \text{ odd}, k>0} \frac{\sin(kx)}{k^3}.
$$

3. Let $F_N(x)$ be the N-th Fejer kernel, *i.e.* 1 $N+1$ \sum N $_{k=0}$ $D_k(x)$, where $\{D_k(x)\}\$

are the Dirichlet kernels. Recall that we saw in class that the Fejer kernel can also be written as follows:

$$
F_N(x) = \frac{1}{N+1} \left(\frac{\sin((N+1)\pi x)}{\sin(\pi x)} \right)^2.
$$

- (a) Compute the Fourier coefficients of F_N .
- (b) Show that for every $j \in \mathbb{Z}$, $\lim_{N \to \infty} \widehat{F}_N(j) = 1$.
- (c) Prove that $\lim_{N \to \infty} ||F_N||_2 = \infty$.
- **4.** Let $f \in L^1(\mathbb{T})$ such that $\{\widehat{f}(n)\}_{n \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$. Show that there is a countinuous function g such that $g = f$ a.e.
- 5. Riemann-Lebesgue Lemma says that the Fourier coefficients of a function in $L^1(\mathbb{T})$ tend to zero, but they can tend arbitrarily slowly. Given a sequence of positive numbers $\{\epsilon_n\}_{n\in\mathbb{N}}$, prove that there is a function $f \in$ $C[0, 1]$ such that $|\widehat{f}(n)| + |\widehat{f}(-n)| \geq \epsilon_n$ for infinite values of n (hint: consider an appropriate subsequence of $\{\epsilon_n\}$ and use problem 4).
- **6.** Show that if $|x| < \frac{|A|}{2\pi}$ $\frac{|A|}{2\pi}$, then $\lim_{R\to\infty}\int_{-R}^R$ $sin(Ay)$ \hat{y} $e^{2\pi ixy} dy = \pi.$
- 7. Multipliers for the Fourier transform. Let $m = \{m_n\}_{n \in \mathbb{Z}}$ be a sequence of numbers. For $f \in L^2(\mathbb{T})$, we define an operator T by

$$
T_m f(x) = \sum_{n \in \mathbb{Z}} m_n \hat{f}(n) e^{2\pi i nx}.
$$

- (a) Show that if $m \in \ell^{\infty}(\mathbb{Z})$, then T_m is a bounded linear operator from $L^2(\mathbb{T})$ to $L^2(\mathbb{T})$.
- (b) Conversely, if $T_m f \in L^2(\mathbb{T}$ for every $f \in L^2(\mathbb{T})$, then $m \in \ell^{\infty}(\mathbb{Z})$.