Papers:

  1. C. Ciupercă,  First coefficient ideals and the S2-ification of a Rees algebra , J. Algebra 242 (2001), 782-794, https://doi.org/10.1006/jabr.2001.8835

  2. C. Ciupercă, A numerical characterization of the S2-ification of a Rees algebra , J. Pure Appl. Algebra 178 (2003), 25-48, https://doi.org/10.1016/S0022-4049(02)00157-3

  3. C. Ciupercă, F. Enescu,  An inequality involving tight closure and parameter ideals , Bull. London Math. Soc. 36 (2004), 351-357, https://doi.org/10.1112/S0024609303002923

  4. C. Ciupercă, W. Heinzer, L. J. Ratliff, Jr., D. Rush, Projectively equivalent ideals and Rees valuations, J. Algebra 282 (2004), 140-156, https://doi.org/10.1016/j.jalgebra.2004.08.010

  5. C. Ciupercă, Integrally closed almost complete intersection ideals, J. Algebra 302 (2006), 720-728, https://doi.org/10.1016/j.jalgebra.2005.12.032
 
  6. C. Ciupercă, W. Heinzer, L. J. Ratliff, Jr., D. Rush, Projectively full ideals in Noetherian rings , J. Algebra 304 (2006), 73-93, https://doi.org/10.1016/j.jalgebra.2005.01.015

  7. C. Ciupercă, W. Heinzer, L. J. Ratliff, Jr., D. Rush, Projectively full ideals in Noetherian rings II, J. Algebra 305 (2006), 974-992, https://doi.org/10.1016/j.jalgebra.2006.06.028

  8. C. Ciupercă, F. Enescu, S. Spiroff, Asymptotic growth of powers of ideals, Illinois Journal of Mathematics 51 (2007), 29-39,  https://doi.org/10.1215/ijm/1258735322

  9. C. Ciupercă, W. Heinzer, L. J. Ratliff, Jr., D. Rush,  Projectively full ideals in Noetherian rings, a survey, Contemp. Math. 448 (2007), 33-42.

10. J. Brennan, C. Ciupercă, Sequences that preserve the homological degree, Comm. Algebra 37 (2009), 1647-1655, https://doi.org/10.1080/00927870802209995

11. C. Ciupercă,  Integral closure and generic elements, J. Algebra 328 (2011), 122–131, https://doi.org/10.1016/j.jalgebra.2010.07.025

12. C. Ciupercă,  Asymptotic growth of multiplicity functions, J. Pure Appl. Algebra 219 (2015), 1045-1054, https://doi.org/10.1016/j.jpaa.2014.05.032

13. C. Ciupercă,  Degrees of multiplicity functions for equimultiple ideals, J. Algebra 452 (2016), 106-117, https://doi.org/10.1016/j.jalgebra.2015.11.046

14. C. Ciupercă, Reduction numbers of equimultiple ideals, Proc. Amer. Math. Soc. 145 (2017), 2361-2371, https://doi.org/10.1090/proc/13402

15. C. Ciupercă, Asymptotic prime ideals of S2-filtrations, J. Algebra 503 (2018), 356-371,  https://doi.org/10.1016/j.jalgebra.2018.01.040

16. C. Ciupercă, Weak normalization in graded extensions and weak subintegral closure of ideals, J. Pure Appl. Algebra 224 (2020), 732-746, https://doi.org/10.1016/j.jpaa.2019.06.007

17. C. Ciupercă, Derivations and rational powers of ideals, Archiv der Mathematik 114 (2020), 135-145, https://doi.org/10.1007/s00013-019-01388-5

18. C. Ciupercă, Integral closure of strongly Golod ideals, Nagoya Mathematical Journal 241 (2021), 204-216, http://dx.doi.org/10.1017/nmj.2019.22

19. E. Celikbas, O. Celikbas, C. Ciupercă, N. Endo, S. Goto, R. Isobe, N. Matsuoka, On the ubiquity of Arf rings, J. Commut. Algebra 15 (2023), 177-231, http://dx.doi.org/10.1216/jca.2023.15.177

20. C. Ciupercă, J. Forsman, M. Marmorstein, Derivations and root closures of graded ideals, J. Algebra Appl. 23 (2024), https://doi.org/10.1142/S0219498824502050