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Start with Hatree-Fock
Introduce Hohenberg-Kohn theorems
Derive the DFT equations



HF in language of second quantization
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Define Hamiltonian

H =

∫
d3r

~2

2m
∇ψ†(r) · ∇ψ(r) +

1
2

∫
d3r

∫
d3r′

e2

r− r′
ψ
†(r)ψ†(r′)ψ(r′)ψ(r) +

∫
d3rVext(r)ψ†(r)ψ(r)

|N〉 =
N∏
a

c†a |0〉 − Slater Determinant, ψ
†(r′) =

∑
a

c†aφ
∗
a (r), ψ(r′) =

∑
a

φa(r)ca

Next, calculate 〈N |H |N 〉

〈N |H |N〉 =
N∑
a

~2

2m

∫
d3r∇φ∗a (r) · ∇φa(r) +

1
2

∫
d3r

∫
d3r′

e2

r− r′
n(r)n(r′)−

−
N∑

a<b

[∫
d3r

∫
d3r′

e2

r− r′
φ
∗
a (r)φa(r′)φ∗b (r′)φb(r)

]
+

∫
d3rVext(r)n(r)

Minimize w.r.t. φ(r) under constraint
∫

d3rφ∗a(r)φa(r) = 1

−
~2

2m
∇2
φa(r) +

∫
d3r′

e2

r− r′
n(r′)φa(r)−

∑
b

∫
d3r′

e2

r− r′
φa(r′)φ∗b (r′)φb(r) +

+ Vext(r)φa(r) = εαφa(r)
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Patrick’s last slide



The Hartree-Fock Equations
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− ~2

2m∇
2φa(r) +

∫
d3r ′ e2

r− r′ n(r′)φa(r)−
∑
b

∫
d3r ′ e2

r− r′ φa(r′)φ∗b (r′)φb(r) +

+ Vext(r)φa(r) = εαφa(r), εα − total energy of system

φa(r)− single particle wave functions, n(r) =
N∑
a

φ∗a(r)φa(r)− density

Variational principle applied to expectation
value of the Hamiltonian - 〈N |H |N 〉
|N 〉 → allows all wave functions that can be
represented by a Slater determinant ⇒ No Correlation

No Correlation Correlation



Hohenberg-Kohn Theorem 1
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The ground state density n(r) of a many-electron system
uniquely determines the many-body wave function Ψ(r)
and the potential Vext(r)

Vext(r) Ψ(r) n(r)
E

Unique density for each external potential Vext(r).
Dashed mapping is impossible if another mapping exists.



Hohenberg-Kohn Theorem 1 - Proof
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Vext(r) Ψ(r) n(r)
E

H = H0 + Vext :
H0 - electron kinetic energy + electron-electron interaction (T + Vee)
Vext - interaction with external field
Ψ - ground state wave function
E = 〈Ψ|H0 + Vext |Ψ〉 - ground state energy
n(r) = 〈Ψ|ψ†(r)ψ(r)|Ψ〉 - ground state density

Could another Hamiltonian, differing only in Vext (H = H0 + V ′ext),
have the same ground state density?
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Suppose V ′ext and Ψ′ exist such that n′(r) = n(r) with ground state
energy E ′ = 〈Ψ′|H0 + V ′ext |Ψ′〉,
⇒ 〈Ψ|H0 + V ′ext |Ψ〉 > E ′
⇒ 〈Ψ|H0 + V ′ext + Vext −Vext |Ψ〉 > E ′
⇒ 〈Ψ|H0 + Vext |Ψ〉+ 〈Ψ|V ′ext −Vext |Ψ〉 > E ′
⇒ E + 〈Ψ|V ′ext −Vext |Ψ〉 > E ′

now let’s start with E = 〈Ψ|H0 + Vext |Ψ〉
⇒ 〈Ψ′|H0 + Vext |Ψ′〉 > E
⇒ 〈Ψ′|H0 + Vext + V ′ext −V ′ext |Ψ′〉 > E
⇒ 〈Ψ′|H0 + V ′ext |Ψ′〉+ 〈Ψ′|Vext −V ′ext |Ψ′〉 > E
⇒ E ′ + 〈Ψ′|Vext −V ′ext |Ψ′〉 > E

but we assumed n′(r) = n(r)⇒ 〈Ψ′|Ô(r)|Ψ′〉 = 〈Ψ|Ô(r)|Ψ〉 =
∫

n(r)Ô(r)
therefore we have so far deduced:
E > E ′ −

∫
n(r)Ô(r) and E < E ′ −

∫
n(r)Ô(r) - contradiction



Hohenberg-Kohn Theorem 2
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The ground state energy can be obtained variationally:
the density that minimizes the total energy is the exact
ground state density.
Proof:
The ground state energy E can be obtained
by the ground state density n(r),
but since there is a unique mapping between n(r), Vext and Ψ,

E = 〈Ψ[n(r)]|H0 + Vext |Ψ[n(r)]〉 < 〈Ψ′[n′(r)]|H0 + Vext |Ψ′[n′(r)]〉 = E ′

and since n(r) determines Vext and Ψ, and therefore E ,
the density which minimizes E [n(r)] is the exact ground state density ⇒
⇒ one can apply the variational principle to obtain exact ground state
density and energy.



Hohenberg-Kohn Theorem 3
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The kinetic and electron-electron interaction energies
(H0[n] = T [n] + Vee[n]) are described by a universal
functional.
H0[n] = T [n] + Vee[n] is independent of Vext(r)
Vext(r) is system dependent and Vext [n(r)] =

∫
d3r n(r)Vext(r)



DFT from the Hohenberg-Kohn Theorems

Deyan Mihaylov, Brendan Gifford DFT lecture talk

Express the expectation value of your Hamiltonian -
〈Ψ|H0 + Vext |Ψ〉 in terms of the density n(r)
Apply the variational principle and minimize the Energy
as a functional of the density w.r.t. the density under the
constraint that you have a fixed number of particles

N =
∫

n(r)d3(r).
[
δE[n(r)]
δn(r) − µ = 0

]
Obtain equations (Kohn-Sham eqs.) that are exact for
the ground state energy and density regardless of your
initial ansatz for Ψ
You can now account for correlation effects even with
Slater determinant ansatz, provided that you find the
appropriate energy functional E [n(r)]
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Going back to HF
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Define Hamiltonian

H =

∫
d3r

~2

2m
∇ψ†(r) · ∇ψ(r) +

1
2

∫
d3r

∫
d3r′

e2

r− r′
ψ
†(r)ψ†(r′)ψ(r′)ψ(r) +

∫
d3rVext(r)ψ†(r)ψ(r)

|N〉 =
N∏
a

c†a |0〉 − Slater Determinant, ψ
†(r′) =

∑
a

c†aφ
∗
a (r), ψ(r′) =

∑
a

φa(r)ca

Next, calculate 〈N |H |N 〉

〈N |H |N〉︸ ︷︷ ︸
E[n(r)]

=
N∑
a

~2

2m

∫
d3r

~2

2m
∇φ∗a (r) · ∇φa(r) +

1
2

∫
d3r

∫
d3r′

e2

r− r′
n(r)n(r′)−

−
N∑

a<b

[∫
d3r

∫
d3r′

e2

r− r′
φ
∗
a (r)φa(r′)φ∗b (r′)φb(r)

]
+

∫
d3rVext(r)n(r)



Going back to HF

Deyan Mihaylov, Brendan Gifford DFT lecture talk

Define Hamiltonian

H =

∫
d3r

~2

2m
∇ψ†(r) · ∇ψ(r) +

1
2

∫
d3r

∫
d3r′

e2

r− r′
ψ
†(r)ψ†(r′)ψ(r′)ψ(r) +

∫
d3rVext(r)ψ†(r)ψ(r)

|N〉 =
N∏
a

c†a |0〉 − Slater Determinant ψ
†(r′) =

∑
a

c†aφ
∗
a (r), ψ(r′) =

∑
a

φa(r)ca

Next, calculate 〈N |H |N 〉

〈N |H |N〉︸ ︷︷ ︸
E[n(r)]

=
N∑
a

~2

2m

∫
d3r

~2

2m
∇φ∗a (r) · ∇φa(r) +

1
2

∫
d3r

∫
d3r′

e2

r− r′
n(r)n(r′)−

−
N∑

a<b

[∫
d3r

∫
d3r′

e2

r− r′
φ
∗
a (r)φa(r′)φ∗b (r′)φb(r)

]
+

∫
d3rVext(r)n(r)

Not functionals of the density!



First attempt at DFT - Thomas-Fermi theory

Deyan Mihaylov, Brendan Gifford DFT lecture talk

Rewrite kinetic term
(

T [φ(r)] =
∑N

a
~2

2m
∫

d3r ~2

2m∇φ
∗
a(r) · ∇φa(r)

)
in

terms of density. Consider free electron gas and integrate single electron
kinetic energy over Fermi sphere.
Result is T [n(r)] =

∫
d3r 3

10
~2(3π2)2/3

m n5/3(r)
Neglect exchange term

Ex [φ(r)] =
∑N

a<b

[ ∫
d3r

∫
d3r ′ e2

r−r′φ
∗
a(r)φa(r′)φ∗b(r′)φb(r)

]
Obtain energy functional that only depends on density

E [n(r)] =
∫

d3r
[

3
10

~2(3π2)2/3

m n5/3(r) + 1
2
∫

d3r ′ e2

r−r′n(r)n(r′) + Vext(r)n(r)
]

→ Minize w.r.t. density under constraint N =
∫

n(r)d3(r)
→ Thomas-Fermi theory

~2

m (3π2)2/3n2/3(r) +
∫

d3r ′ e2

r−r′n(r) + Vext(r)− µ = 0
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Thomas-Fermi
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Improving on Thomas-Fermi
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Express the expectation value of your Hamiltonian
- 〈Ψ|H0 + Vext |Ψ〉 in terms of the density n(r)
Apply the variational principle and minimize the Energy
as a functional of the density w.r.t. the density under the
constraint that you have a fixed number of particles

N =
∫

n(r)d3(r).
[
δE[n(r)]
δn(r) − µ = 0

]
Obtain equations (Kohn-Sham eqs.) that are exact for
the ground state energy and density regardless of your
initial ansatz for Ψ
You can now account for correlation effects even with
Slater determinant ansatz, provided that you find the
appropriate energy functional E [n(r)]



Improving on Thomas-Fermi theory
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Assume we have been able to write the kinetic energy functional in
terms of density - T [n(r)].
Assume we have been able to write the exchange term∑N

a<b

[ ∫
d3r

∫
d3r ′ e2

r−r′φ
∗
a(r)φa(r′)φ∗b(r′)φb(r)

]
in terms of density -

Eexc[n(r)].
Assume we have been able to come up with a term that accounts for
correlations which we can also express in terms of the density -
Ecorr [n(r)]
These are both ad hoc terms so in practice one introduces a term that
accounts for both - Exc[n(r)]
E [n(r)] = T [n(r)] + 1

2
∫

d3r
∫

d3r ′ e
2

r−r′ n(r)n(r′) + Exc[n(r)] +
∫

d3rVext(r)n(r)
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Express the expectation value of your Hamiltonian -
〈Ψ|H0 + Vext |Ψ〉 in terms of the density n(r)
Apply the variational principle and minimize the
Energy as a functional of the density w.r.t. the
density under the constraint that you have a fixed
number of particles N =

∫
n(r)d3(r).[

δE[n(r)]
δn(r) − µ = 0

]
Obtain equations (Kohn-Sham eqs.) that are exact for
the ground state energy and density regardless of your
initial ansatz for Ψ
You can now account for correlation effects even with
Slater determinant ansatz, provided that you find the
appropriate energy functional E [n(r)]



Improving on Thomas-Fermi theory

Deyan Mihaylov, Brendan Gifford DFT lecture talk

E [n(r)] = T [n(r)] + 1
2
∫

d3r
∫

d3r ′ e
2

r−r′ n(r)n(r′) + Exc[n(r)] +
∫

d3rVext(r)n(r)

Constraint: N =
∫

n(r)d3(r)

Euler-Lagrange Eq.: δ
δn(r)

[
E [n(r)]− µ

∫
n(r)d3(r)

]
= 0⇒ δE[n(r)]

δn(r) = µ

⇒ δT[n(r)]
δn(r) + Vext(r) +

∫
d3r ′ e

2

r−r′ n(r′) + δExc[n(r)]
δn(r) = µ

δT[n(r)]
δn(r) - we don’t need to know it’s functional form - next slides

δExc[n(r)]
δn(r) - ad hoc. Active area of research - LDA, GGA...
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Improving on Thomas-Fermi theory

Deyan Mihaylov, Brendan Gifford DFT lecture talk

E [n(r)] = T [n(r)] + 1
2
∫

d3r
∫

d3r ′ e
2

r−r′ n(r)n(r′) + Exc[n(r)] +
∫

d3rVext(r)n(r)

Constraint: N =
∫

n(r)d3(r)

Euler-Lagrange Eq.: δ
δn(r)

[
E [n(r)]− µ

∫
n(r)d3(r)

]
= 0⇒ δE[n(r)]

δn(r) = µ

⇒ δT[n(r)]
δn(r) + Vext(r) +

∫
d3r ′ e

2

r−r′ n(r′) + δExc[n(r)]
δn(r) = µ

δT[n(r)]
δn(r) - we don’t need to know it’s functional form - next slides

δExc[n(r)]
δn(r) - ad hoc. Active area of research - LDA, GGA...



Improving on Thomas-Fermi theory

Deyan Mihaylov, Brendan Gifford DFT lecture talk

E [n(r)] = T [n(r)] + 1
2
∫

d3r
∫

d3r ′ e
2

r−r′ n(r)n(r′) + Exc[n(r)] +
∫

d3rVext(r)n(r)

Constraint: N =
∫

n(r)d3(r)

Euler-Lagrange Eq.: δ
δn(r)

[
E [n(r)]− µ

∫
n(r)d3(r)

]
= 0⇒ δE[n(r)]

δn(r) = µ

⇒ δT[n(r)]
δn(r) + Vext(r) +

∫
d3r ′ e

2

r−r′ n(r′) + δExc[n(r)]
δn(r) = µ

δT[n(r)]
δn(r) - we don’t need to know it’s functional form - next slides

δExc[n(r)]
δn(r) - ad hoc. Active area of research - LDA, GGA...



Improving on Thomas-Fermi theory

Deyan Mihaylov, Brendan Gifford DFT lecture talk

E [n(r)] = T [n(r)] + 1
2
∫

d3r
∫

d3r ′ e
2

r−r′ n(r)n(r′) + Exc[n(r)] +
∫

d3rVext(r)n(r)

Constraint: N =
∫

n(r)d3(r)

Euler-Lagrange Eq.: δ
δn(r)

[
E [n(r)]− µ

∫
n(r)d3(r)

]
= 0⇒ δE[n(r)]

δn(r) = µ

⇒ δT[n(r)]
δn(r) + Vext(r) +

∫
d3r ′ e

2

r−r′ n(r′) + δExc[n(r)]
δn(r) = µ

δT[n(r)]
δn(r) - we don’t need to know it’s functional form - next slides

δExc[n(r)]
δn(r) - ad hoc. Active area of research - LDA, GGA...



Improving on Thomas-Fermi theory

Deyan Mihaylov, Brendan Gifford DFT lecture talk

E [n(r)] = T [n(r)] + 1
2
∫

d3r
∫

d3r ′ e
2

r−r′ n(r)n(r′) + Exc[n(r)] +
∫

d3rVext(r)n(r)

Constraint: N =
∫

n(r)d3(r)

Euler-Lagrange Eq.: δ
δn(r)

[
E [n(r)]− µ

∫
n(r)d3(r)

]
= 0⇒ δE[n(r)]

δn(r) = µ

⇒ δT[n(r)]
δn(r) + Vext(r) +

∫
d3r ′ e

2

r−r′ n(r′) + δExc[n(r)]
δn(r) = µ

δT[n(r)]
δn(r) - we don’t need to know it’s functional form - next slides

δExc[n(r)]
δn(r) - ad hoc. Active area of research - LDA, GGA...



Improving on Thomas-Fermi

Deyan Mihaylov, Brendan Gifford DFT lecture talk

Express the expectation value of your Hamiltonian -
〈Ψ|H0 + Vext |Ψ〉 in terms of the density n(r)
Apply the variational principle and minimize the Energy
as a functional of the density w.r.t. the density under the
constraint that you have a fixed number of particles

N =
∫

n(r)d3(r).
[
δE[n(r)]
δn(r) − µ = 0

]
Obtain equations (Kohn-Sham eqs.) that are exact
for the ground state energy and density regardless
of your initial ansatz for Ψ
You can now account for correlation effects even with
Slater determinant ansatz, provided that you find the
appropriate energy functional E [n(r)]
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Express the kinetic terms as: T [n(r)] =
∑N

a
~2

2m
∫

d3r∇φ∗a(r) · ∇φa(r)
explicit orbital functional (but implicit density functional). Advantage: it
is exact, and makes derivation of Kohn-Sham eqs. possible.
Recall minimization of energy functional:
δT [n(r)]
δn(r) + Vext(r) +

∫
d3r ′ e2

r−r′n(r′) + δExc[n(r)]
δn(r) = µ

Consider system of non-interacting particles moving in an effective
potential Veff (r) and minimize
E [n(r)]→ µ = δE[n(r)]

δn(r) = δT [n(r)]
δn(r) + δVeff [n(r)]

δn(r) = δT [n(r)]
δn(r) + Veff (r)

The fictitious system has the same density as real system if
Veff (r) = Vext(r) +

∫
d3r ′ e2

r−r′n(r′) + δExc[n(r)]
δn(r)

But, since we chose to work with the exact kinetic energy, the
non-interacting fictitious system obeys the single-particle Shrodinger eq.[
− ~2

2m∇
2 + Veff (r)

]
φa(r) = εaφa(r)
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Therefore, the many-body problem is reduced to a one-body problem:[
− ~2

2m∇
2 + Veff (r)

]
φa(r) = εaφa(r)

where Veff (r) = Vext(r) +
∫

d3r ′ e2

r− r′n(r′) + δExc[n(r)]
δn(r)︸ ︷︷ ︸

Kohn−Sham Potential

and n(r) =
∑N

a φ
∗
a(r)φa(r)

and φa(r)’s are single-particle (Kohn-Sham) orbitals
i.e. the problem has been reduced to finding a ’good’
Exchange-Correlation functional
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Thank You !
Questions ?


