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m Start with Hatree-Fock
m Introduce Hohenberg-Kohn theorems

m Derive the DFT equations
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HF in language of second quantization

Define Hamiltonian

2 2
= / gm0 VU0 + 3 / @ / @' T Ot )w (i) + / &V (6(0)

N
N) = H c:; |0) — Slater Determinant, wT(r') = Z cl¢; (r), ¥()= Z @a(r)

a

Next, calculate (N|H|N)

(N|H|N) Z /d3rV¢ (1) - Véa(r) + = /d3 /ds' <
72 /dr/ds'r/ —

a<b

Minimize w.r.t. ¢(r) under constraint f roi(Nea(r) =1

2 2 2
_z'lv ¢a(r)+/d3r’%n(r/)¢a(r)—Z/dsr’riirl¢a(r')¢2(r')¢b(r) +
b

+ Vet (r)ga(r) = eadal(r)
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Patrick’s last slide

BVVr— ) |
Hartree-FoE?l
~ Theory )
* Write the Hamiltonian as a sum of Fock operators

A=Yf f =-—V2 Z—+

A=l Ty

Hartree Engllsh
1897-1958

where the Hartree-Fock potential is defined in Viadim
terms of coulomb and exchange operators Aleksandrovich Fock

S TCIE ) A
<Xa(l)|Jb(l)‘Xa(l)>:deldx:X;(l)xa(l)r._z]XZ(Z)Xb(ﬂ Coulomb integral
Ky 0 1) = [ s (5 (21,(2)  Exchange integral

= Use the variational and L@ng@ag@l methods to arrive at
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The Hartree-Fock Equations

-+ [ e Z/di“ ()63 )o(r) +

+ Vert(P)@a(r) = €ada(r), eq — total energy of system

¢a(r) — single particle wave functions, n(r) = Z dn(r)da(r) — density
m Variational principle applied to expectation
value of the Hamiltonian - (N|H|N)

m |N) — allows all wave functions that can be
represented by a Slater determinant = No Correlation

No Correlation
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Hohenberg-Kohn Theorem 1

The ground state density n(r) of a many-electron system
uniquely determines the many-body wave function ¥(r)

and the potential V,;(r)
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T(r) n(r)

m Unique density for each external potential Vg (r).
Dashed mapping is impossible if another mapping exists.
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Hohenberg-Kohn Theorem 1 - Proof

o o L4 o o
_\.’_\.\\_’%‘—/}/::. .
T~ | | se e |_- o o .°
. Viar(r) U(r) n(r)
H = Hy+ Ve

Hy - electron kinetic energy + electron-electron interaction (7' 4 V)
Vst - interaction with external field

¥ - ground state wave function

E = (V|Hy + Vegt|¥) - ground state energy

n(r) = (U] (r)p(r)|T) - ground state density

Could another Hamiltonian, differing only in V., (H = Hy + V),
have the same ground state density?
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Hohenberg-Kohn Theorem 1 - Proof

Suppose V.., and U’ exist such that n’(r) = n(r) with ground state
energy B — (W/|Hy + Vi,,|¥),

= (U|Hy + V[, |V) > E

= <\IJ|H() + Vézt + Vext — Vext|‘lj> > F'

= (V|Hy + Veut|¥) + (V| V!, — Vere|¥) > E’

= E+ (U|V.!, — Veu|¥) > FE

now let's start with E = (U|Hy + V| V)

= (V' |Hy+ Ven|V') > E

= (V|Hy+ Vgt + Vig — ViglV') > E

= (V'[Ho + Ve | V') + (V[ Vewr — Ve |V') > B
= B + (V| Ve — V., |V') > E

but we assumed 7/(r) = n(r) = (¥'|O(r)| ') = (T|O(r)|¥) = [ n(r)O(r)
therefore we have so far deduced:
E>E — [n(r)O(r) and E < E' — [ n(r)O(r) - contradiction
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Hohenberg-Kohn Theorem 2

The ground state energy can be obtained variationally:
the density that minimizes the total energy is the exact
ground state density.

Proof:

The ground state energy F can be obtained

by the ground state density n(r),

but since there is a unique mapping between n(r), Ve, and ¥,

E = (U[n(0)][Ho + Veu| Y [n(n)]) < (¥'[n'(0)][Ho + Veu| V[0 (r)]) = E'
and since n(r) determines V., and U, and therefore F,
the density which minimizes E[n(r)] is the exact ground state density =

= one can apply the variational principle to obtain exact ground state
density and energy.
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Hohenberg-Kohn Theorem 3

The kinetic and electron-electron interaction energies
(Ho[n] = T[n] + Vee[n]) are described by a universal
functional.

Hy[n] = T[n] 4+ Vee[n] is independent of Ve (r)

Vet (r) is system dependent and Vg [n(r)] = [ d3r n(r) Veg(r)
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DFT from the Hohenberg-Kohn Theorems

m Express the expectation value of your Hamiltonian -
(U|Hp + Vezt| ) in terms of the density n(r)
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DFT from the Hohenberg-Kohn Theorems

m Express the expectation value of your Hamiltonian -
(U|Hp + Vezt| ) in terms of the density n(r)

m Apply the variational principle and minimize the Energy
as a functional of the density w.r.t. the density under the
constraint that you have a fixed number of particles

N = [n()d3(r). |55 — =0
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DFT from the Hohenberg-Kohn Theorems

m Express the expectation value of your Hamiltonian -
(U|Hp + Vezt| ) in terms of the density n(r)

m Apply the variational principle and minimize the Energy
as a functional of the density w.r.t. the density under the
constraint that you have a fixed number of particles

N = [n()d3(r). |55 — =0

m Obtain equations (Kohn-Sham egs.) that are exact for
the ground state energy and density regardless of your
initial ansatz for W
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DFT from the Hohenberg-Kohn Theorems

m Express the expectation value of your Hamiltonian -
(U|Hp + Vegt|¥) in terms of the density n(r)

m Apply the variational principle and minimize the Energy
as a functional of the density w.r.t. the density under the
constraint that you have a fixed number of particles

N = [n()d3(r). |55 — =0

m Obtain equations (Kohn-Sham egs.) that are exact for
the ground state energy and density regardless of your
initial ansatz for W

m You can now account for correlation effects even with
Slater determinant ansatz, provided that you find the
appropriate energy functional E[n(r)]
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Going back to HF

Define Hamiltonian

2 2

"= / &) Ve + L / d’r / d*r' —— 9 OV ) () + / V(0% (% ()
m 2 r—r
N

IN) = H c:; |0) — Slater Determinant, wT(r/) = Z Cl¢; (), Tl’(",) = Z da(r)ca

a a

Next, calculate (N|H|N)

N
_ h? 3 B « 1 3 5, €2 ,
(N|H|N) _Z%/d T%V¢a(r)-v¢a(r)+5/d r/d v n(n)n(r)—
Eln () a
N 2
-y [/d?’r/dwrf—r,qs:(r)m(r/)ab;(r’)m(r)} +/d3rvm(r)n(r)
a<b
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Going back to HF

Define Hamiltonian

2 2

"= / &) Ve + L / d’r / d*r' —— 9 OV ) () + / V(0% (% ()
m 2 r—r
N

IN) = H c:; |0) — Slater Determinant wT(r/) = Z CZ¢: (n, )= Z da(r)ca

Next, calculate (N|H|N)

N
| n* 3 B « 1 3 3, € ’
(N|H|N) _Z%/d T%V¢a(r)-v¢a(r)+5/d r/d v n(n)n(r)—
E[n(r)] a
N 2
> [/d?’r/d3r'rf—r,qs:(r)m(r/)ab;(r’)m(r)} +/d3rvm(r)n(r)
a<lb

Not functionals of the density!
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First attempt at DFT - Thomas-Fermi theory

m Rewrite kinetic term (T[qb(r)] =yN i d?’r%V@;(r) . nga(r)) in

a 2m

terms of density. Consider free electron gas and integrate single electron
kinetic energy over Fermi sphere.

Result is T[n(r)] = [ d3r-3 w /3 (r)
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First attempt at DFT - Thomas-Fermi theory

m Rewrite kinetic term (T[qb(r)] N2 Jd3rl Vqﬁ;';(r) . nga(r)) in

a2m

terms of density. Consider free electron gas and integrate single electron
kinetic energy over Fermi sphere.

Result is T[n(r)] = [ d3r-3 G2 1573 )

m Neglect exchange term

B0 = S | [ 1 a1 63 (00u(r)63(¢)6n(e)
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First attempt at DFT - Thomas-Fermi theory

m Rewrite kinetic term (T[qb(r)] =yN i d?’r%V@;(r) . nga(r)) in

a 2m

terms of density. Consider free electron gas and integrate single electron
kinetic energy over Fermi sphere.

Result is T[n(r)] = [ d3r-3 G2 1573 )
m Neglect exchange term

B0 = S | [ 1 a1 63 (00u(r)63(¢)6n(e)

m Obtain energy functional that only depends on density
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First attempt at DFT - Thomas-Fermi theory

a2m

Rewrite kinetic term (T[qb(r)] R [ d3rd Vqﬁ;';(r) . qua(r)) in

terms of density. Consider free electron gas and integrate single electron
kinetic energy over Fermi sphere.

Result is T[n(r)] = [ d3r-3 G2 0573 )

Neglect exchange term

B0 = S | [ 1 [ a1 63 (00u(r)63()6n(r)

Obtain energy functional that only depends on density

Bln(e)) = [ dr | O 0) 1 4 [ P n(n(e) + Vi)l

— Minize w.r.t. density under constraint N = [ n(r)d>(r)
— Thomas-Fermi theory

B2 (302)2/302/3(r) + [ &3¢ E5n(r) + Ve(r) —pp =0
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Thomas-Fermi

platinum atomic ionization potential
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Improving on Thomas-Fermi

m Express the expectation value of your Hamiltonian
- (U|Hp + Vert| V) in terms of the density n(r)

m Apply the variational principle and minimize the Energy
as a functional of the density w.r.t. the density under the
constraint that you have a fixed number of particles

N = [ n()d3(r). |55 — =0

m Obtain equations (Kohn-Sham egs.) that are exact for
the ground state energy and density regardless of your
initial ansatz for W

m You can now account for correlation effects even with
Slater determinant ansatz, provided that you find the
appropriate energy functional E[n(r)]
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Improving on Thomas-Fermi theory

m Assume we have been able to write the kinetic energy functional in
terms of density - T'[n(r)].

Deyan Mihaylov, Brendan Gifford DFT lecture talk



Improving on Thomas-Fermi theory

m Assume we have been able to write the kinetic energy functional in
terms of density - T'[n(r)].

m Assume we have been able to write the exchange term
SN @B [ dPr 'rer,¢>*( )0a(r) o5 (F)dp(r)| in terms of density -
Eezen(r)].
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Improving on Thomas-Fermi theory

m Assume we have been able to write the kinetic energy functional in
terms of density - T'[n(r)].

m Assume we have been able to write the exchange term
SN @B [ B dE(0)6a(F) 95 )dp(r)| in terms of density -
Eezen(r)].
m Assume we have been able to come up with a term that accounts for

correlations which we can also express in terms of the density -
Eeorr[n(r)]
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Improving on Thomas-Fermi theory

m Assume we have been able to write the kinetic energy functional in
terms of density - T'[n(r)].

m Assume we have been able to write the exchange term
SN @B [ B dE(0)6a(F) 95 )dp(r)| in terms of density -
Eezen(r)].
m Assume we have been able to come up with a term that accounts for
correlations which we can also express in terms of the density -
Eeorr[n(r)]

m These are both ad hoc terms so in practice one introduces a term that
accounts for both - E,.[n(r)]
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Improving on Thomas-Fermi theory

m Assume we have been able to write the kinetic energy functional in
terms of density - T'[n(r)].

Assume we have been able to write the exchange term

N . .
Socy | [ Br [ dPr 'rer,¢>*( )0a(r) o5 (F)dp(r)| in terms of density -
Eezen(r)].
Assume we have been able to come up with a term that accounts for
correlations which we can also express in terms of the density -
Eeorr[n(r)]

These are both ad hoc terms so in practice one introduces a term that
accounts for both - E,.[n(r)]

Eln(r)] = Tln(n)] + 3 [ &®r [ &' Zonn)n() + Ege[n(0)] + [ d®rVeu(r)n(r)
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Improving on Thomas-Fermi

m Express the expectation value of your Hamiltonian -
(U|Hy + Veyt|P) in terms of the density n(r)

m Apply the variational principle and minimize the
Energy as a functional of the density w.r.t. the
density under the constraint that you have a fixed
number of particles N = [ n(r)d3(r).

SE[n(r)] _
sn(ny M= 0

m Obtain equations (Kohn-Sham egs.) that are exact for
the ground state energy and density regardless of your
initial ansatz for W

m You can now account for correlation effects even with
Slater determinant ansatz, provided that you find the
appropriate energy functional E[n(r)]
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Improving on Thomas-Fermi theory

m E[n(r)] = T[n(0)] + L [ &r [ & Zon(e)n(r) + Eue[n(r)] + [ drVeu(r)n(r)
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Improving on Thomas-Fermi theory

m E[n(r)] = T[n(0)] + L [ &r [ & Zon(e)n(r) + Eue[n(r)] + [ drVeu(r)n(r)

m Constraint: N = [ n(r)d3(r)
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Improving on Thomas-Fermi theory

m Eln(n)] = T(n(0)]+ § [ &r [ &2 n(0)n(e) + Exe[n(n)] + [ drVes(r)n(r)

m Constraint: N = fn(r)d?’(r)

m Euler-Lagrange Eq.: IEnM] _

6n(r) —pf n =0= =, = H
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Improving on Thomas-Fermi theory

m Eln(n)] = T(n(0)]+ § [ &r [ &2 n(0)n(e) + Exe[n(n)] + [ drVes(r)n(r)

m Constraint: N = fn(r)d?’(r)

m Euler-Lagrange Eq.: M(r) —u [ n( —0= 5?[:;5;)] =4
n e? ze [N
| = 6(7;75(5;)] + Vea:t f d3 /r r,n ) + 5E5n[(r§r)] = U
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Improving on Thomas-Fermi theory

m Eln(n)] = T(n(0)]+ § [ &r [ &2 n(0)n(e) + Exe[n(n)] + [ drVes(r)n(r)

m Constraint: N = fn(r)d?’(r)

m Euler-Lagrange Eq.: M(r) —u [ n( —0= 5?[:;5;)] =4
n e? ze [N

= 6(7;75(5;)] + Vea:t )+ f dgrlﬁn(r') + 5E5n[(r§r)] =U

m 76?;3;5)')] - we don’t need to know it's functional form - next slides
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Improving on Thomas-Fermi theory

m Eln(n)] = T(n(0)]+ § [ &r [ &' 2n(0)n(e) + Exe[n(n)] + [ drVea(r)n(r)

m Constraint: N = fn(r)d?’(r)

m Euler-Lagrange Eq.: M(r) —u [ n( —0= 5?[:25;)] =4
n e? ze [N

. = 6(751(5;)] + Vezt )+fd3’f’/ﬁn(l’/) + JEén[(r;r)] =u

m 76?;3;5)')] - we don’t need to know it's functional form - next slides

%{:gr)] - ad hoc. Active area of research - LDA, GGA...
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Improving on Thomas-Fermi

m Express the expectation value of your Hamiltonian -
(V|Hp + Vegt|¥) in terms of the density n(r)

m Apply the variational principle and minimize the Energy
as a functional of the density w.r.t. the density under the
constraint that you have a fixed number of particles

N = [ n()d3(r). |55 — =0

m Obtain equations (Kohn-Sham eqs.) that are exact
for the ground state energy and density regardless
of your initial ansatz for ¥

m You can now account for correlation effects even with
Slater determinant ansatz, provided that you find the
appropriate energy functional E[n(r)]
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Improving on Thomas-Fermi theory

m Express the kinetic terms as: T'[n(r)] = >, 2m f d3rV @i (r) - Vea(r)
explicit orbital functional (but implicit density functional). Advantage: it
is exact, and makes derivation of Kohn-Sham eqs. possible.
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Improving on Thomas-Fermi theory

m Express the kinetic terms as: T'[n(r)] = >, 2m f d3rV @i (r) - Vea(r)
explicit orbital functional (but implicit density functional). Advantage: it
is exact, and makes derivation of Kohn-Sham eqs. possible.

| I?ecall minimization of energy functlon(;al:
Tn - B n
5,,[1(5;)] + Vezt( )+ f d3r! r,’n,( )_|_ 5n[(r)(r)] =u
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Improving on Thomas-Fermi theory

m Express the kinetic terms as: T'[n(r)] = >, 2m f d3rV @i (r) - Vea(r)
explicit orbital functional (but implicit density functional). Advantage: it
is exact, and makes derivation of Kohn-Sham eqs. possible.

m Recall minimization of energy functional:
6T 2 6ET[’
L V) + ] 1 Son(e) + Sl
m Consider system of non-interacting particles moving in an effective

potential Veg(r) and minimize

n n 6 Vegr[n n
Eln(r)] — p= 557[10(’;)} _ 651;7[1(())] + ﬁEr)( Nl _ 5:&{1(5))} T Vie)
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Improving on Thomas-Fermi theory

m Express the kinetic terms as: T'[n(r)] = >, 2m f d3rV @i (r) - Vea(r)
explicit orbital functional (but implicit density functional). Advantage: it
is exact, and makes derivation of Kohn-Sham eqs. possible.

m Recall minimization of energy functional:
ST V(1) 4 ] dir Eyn?) + Bl —

m Consider system of non-interacting particles moving in an effective
potential Veg(r) and minimize

n n 6 Vegr[n n
Eln(r)] — p= 557[10(’;)} _ 651;7[1(())] + ﬁEr)( Nl _ 5:&{1(5))} T Vie)

m The fictitious system has the2 same der;5|ty as real system if
€ Eycln
Veﬁ(r> = Veu(r) + f d3r’ r/n(r )+ #
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Improving on Thomas-Fermi theory

m Express the kinetic terms as: T'[n(r)] = >, 2m f d3rV @i (r) - Vea(r)
explicit orbital functional (but implicit density functional). Advantage: it
is exact, and makes derivation of Kohn-Sham eqs. possible.

m Recall minimization of energy functional:
6T 6EZ)C
Sl Vg (r) + [ v/ () + 25l —
m Consider system of non-interacting particles moving in an effective
potential Veg(r) and minimize

n n 6 Vegr[n n
Eln(r)] — p= 557[10(’;)} _ 651;7[1(())] + ﬁEr)( Nl _ 5:&{1(5))} T Vie)

m The fictitious system has the same density as real system if
2 5Ezc
Ve () = Veaulr) + [ a3 ;5 m(r') + Exzlnlel
m But, since we chose to work with the exact kinetic energy, the
non-interacting fictitious system obeys the single-particle Shrodinger eq.

— %VQ + Veﬁ(l’) ¢a(r) = Ea¢a(r)
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The Kohn-Sham Equations

m Therefore, the many-body problem is reduced to a one-body problem:

- BV Vg )] 6a(6) = 0
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The Kohn-Sham Equations

m Therefore, the many-body problem is reduced to a one-body problem:
| B4 V0] a0 = ot

dEzc[n(r)]
dn(r)

Kohn—Sham Potential

2
m where Vg (r) = Veg(r) +/d3r’ri7r,n(r’) +
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The Kohn-Sham Equations

m Therefore, the many-body problem is reduced to a one-body problem:
| B4 V0] a0 = ot

dEzc[n(r)]
dn(r)

Kohn—Sham Potential

2
m where Vg (r) = Veg(r) +/d3r’ri7r,n(r’) +

= and n(r) = 323 ¢ (r)da(r)
m and ¢,(r)’s are single-particle (Kohn-Sham) orbitals
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The Kohn-Sham Equations

m Therefore, the many-body problem is reduced to a one-body problem:
| B4 V0] 6u(0) = ot

O Ege[n(r)]
dn(r)

Kohn—Sham Potential

2
m where Vg (r) = Veg(r) +/d3r’ri7r,n(r’) +

= and n(r) = 323 ¢ (r)da(r)
m and ¢,(r)’s are single-particle (Kohn-Sham) orbitals

m ie. the problem has been reduced to finding a 'good’
Exchange-Correlation functional
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Thank You !
Questions ?
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