4 Background material

falls between the texts on Euclidean or projective geometry currently available.
Borsuk’s book [85] is possibly the most comprehensive text for this purpose, but
its notation is quite outdated.

If A is an n X n matrix, the inverse and transpose of A are denoted by Al
and A’. We call A singular or nonsingular according to whether det A = 0 or
det A # 0, respectively; A~! exists precisely when A is nonsingular. We also
adopt the abbreviation A~* for (A~1)’. Note that if A is nonsingular, then A’ is
also, and (A")~! = (A~ )",

For transformations ¢ of E” and P”, we shall permit ourselves the shorthand
¢x = ¢(x). The reader may find Figure 0.1 useful in interpreting the definitions
given below.
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Figure 0.1. Transformations of a set K.

A linear transformation (or affine transformation) of E" is a map ¢ from E”
to itself such that px = Ax (or ¢px = Ax + t, respectively), where A is an
n x n matrix and ¢ € [E”. (Here x is considered as a column vector, of course.)
We call ¢ singular or nonsingular according to whether A is singular or nonsin-
gular, respectively. The group of nonsingular linear (or affine) transformations is
denoted by GL, (or G A,); its members are, in particular, bijections of E” onto
itself. The group of special linear (or special affine) transformations of E” is de-
noted by SL, (or SA,, respectively). These are the members of GL, (or GA,)
whose determinant is one. We shall write det ¢ instead of det A, and ¢!, ¢’, and
¢~ for the affine transformations with corresponding matrices A~1, A’, and A=/,
respectively.
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If A is the identity matrix, then ¢x = x + ¢, and the map ¢ is called a transla-
tion. Each affine transformation is composed of a linear transformation followed
by a translation.

Any set of n + 1 points in general position in E” can be mapped onto any
second set of n 4+ 1 points by a suitable affine transformation, and the latter is
nonsingular if the second set is also in general position (see [595, Theorem 7,
p- 16]).

If ¢ € GA,, then ¢ takes parallel k-dimensional planes onto parallel k-
dimensional planes (cf. [85, p. 156]).

An isometry of E" is a map ¢ such that ||¢px — ¢y| = ||x — y|; in other words,
a distance-preserving bijection. Isometries are also called congruences, and the
image and pre-image under an isometry are said to be congruent. Every isometry
is affine (see, for example, [85, p. 150] or [839, p. 139]). Examples of isometries
are the translations and the reflections, which map all points to their mirror images
in some fixed point, line, or plane. (In particular, ¢x = —x is the reflection in the
origin.)

If F =84 x9(where S € G(n, k), xo € E*,and 1 < k < n—1)is a k-
dimensional plane, and x € E”, then there are unique points y € S and z € S+
such that x = y + z, and we can define a map taking x to y +xo € F. This map is
the (orthogonal) projection on the plane F. It is a singular affine transformation.
If E is an arbitrary subset of E”, the image of E under a projection on a plane F
is called the projection of E on F and denoted by E|F. Since E|S is a translate
of E|F when F = S + xg, we almost always work with the former.

If ¢ € GL,, then

x-¢py=¢'x-y, (0.1)

for all x, y € E". The orthogonal group O, of orthogonal transformations con-
sists of those isometries of [E” that are also linear transformations; these are pre-
cisely the maps ¢ preserving the scalar product, that is, ¢x - ¢y = x - y. (An
orthogonal matrix satisfies A’ = A~! and by (0.1) we have ¢’ = ¢!, hence
the name.) It follows from this that orthogonal transformations have determinants
with absolute value one. As is shown in [85, Theorem 50.6], every isometry is an
orthogonal transformation followed by a translation, and for this reason isome-
tries are sometimes also called rigid motions. The special orthogonal group S O,
of rotations about the origin consists of those orthogonal transformations with de-
terminant one. A direct rigid motion is a rotation followed by a translation; these
do not allow reflection.

A dilatation is a map ¢x = rx, for some r > 0. A homothety is a map
¢x =rx+t,forsomer > 0andt € E", thatis, a composition of a dilatation with
a translation (this is sometimes referred to as a direct homothety). A similarity is
a composition of a dilatation with a rigid motion. We say two sets are homothetic
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(or similar) if one of them is an image of the other under a homothety (or similar-
ity, respectively), or if one of the sets is a single point.

We find occasional use for projective transformations of P”. Such a transfor-
mation is given in terms of homogeneous coordinates by ¢w = Aw + ¢, where
Aisan (n+ 1) x (n + 1) matrix and r € E"*!, and where ¢ is called nonsingu-
lar if det A # 0. Since we can regard P" as [E" with a hyperplane H, adjoined,
we can also speak of a projective transformation of E". In this regard, another
formulation is useful. A projective transformation ¢ of E" has the form

Ux

Y 0.2
" 0.2)

ox
where € GA,, y € E", and t € R, and ¢ is nonsingular if the associated linear
map

Yx, 1) =Wx,x-y+1)

1s nonsingular. If y = o, then ¢ is affine, but if y # o0, ¢ maps the hyperplane
H ={x:x-y+t=0}onto Hy. To avoid points in a set £ being mapped into
H,, we may insist that ¢ be permissible for E; this simply means that ENH = §.

Projective transformations map planes onto planes (neglecting the points map-
ping to or from infinity); see [595, pp. 19-20]. They also preserve cross ratio;
a proof is given in [85, Corollary 96.11]. (The cross ratio of four points x;,
1 <i <4 onaline is defined by

_ (x3 — x1) (x4 — x2)
(x4 — x1)(x3 — x2)’

(x1y...,x4)

where x; also denotes the coordinate of the point x; in a fixed Cartesian coordinate
system on the line.) Affine transformations are also projective transformations, so
the former also preserve cross ratio.

The sets E and F are called linearly, affinely, or projectively equivalent if there
is a nonsingular transformation ¢, linear, affine, or projective and permissible for
E, respectively, such that 9 £ = F. Suppose that E and F are bounded centered
sets affinely equivalent via a nonsingular transformation ¢. If ¢o = p, then p is
the center of F; but since o is the unique center of F, we have p = o. Therefore
¢ is linear, proving that £ and F are linearly equivalent.

0.3. Basic convexity

There are several possibilities for an introduction to the basic properties of convex
sets. For the absolute beginner, the books of Lay [499] and Webster [827] are
recommended. The first chapter of [S95], by McMullen and Shephard, is terse, but
very informative, as is the first chapter of [737], by Schneider. The text of [845],
by Yaglom and Boltyanskii, is set out in the form of exercises and solutions, with



