falls between the texts on Euclidean or projective geometry currently available. Borsuk's book [85] is possibly the most comprehensive text for this purpose, but its notation is quite outdated.

If A is an $n \times n$ matrix, the inverse and transpose of A are denoted by A^{-1} and A^t . We call A singular or nonsingular according to whether det A = 0 or det $A \neq 0$, respectively; A^{-1} exists precisely when A is nonsingular. We also adopt the abbreviation A^{-t} for $(A^{-1})^t$. Note that if A is nonsingular, then A^t is also, and $(A^t)^{-1} = (A^{-1})^t$.

For transformations ϕ of \mathbb{E}^n and \mathbb{P}^n , we shall permit ourselves the shorthand $\phi x = \phi(x)$. The reader may find Figure 0.1 useful in interpreting the definitions given below.

Figure 0.1. Transformations of a set K.

A linear transformation (or affine transformation) of \mathbb{E}^n is a map ϕ from \mathbb{E}^n to itself such that $\phi x = Ax$ (or $\phi x = Ax + t$, respectively), where A is an $n \times n$ matrix and $t \in \mathbb{E}^n$. (Here x is considered as a column vector, of course.) We call ϕ singular or nonsingular according to whether A is singular or nonsingular, respectively. The group of nonsingular linear (or affine) transformations is denoted by GL_n (or GA_n); its members are, in particular, bijections of \mathbb{E}^n onto itself. The group of special linear (or special affine) transformations of \mathbb{E}^n is denoted by SL_n (or SA_n , respectively). These are the members of GL_n (or GA_n) whose determinant is one. We shall write det ϕ instead of det A, and ϕ^{-1} , ϕ^t , and ϕ^{-t} for the affine transformations with corresponding matrices A^{-1} , A^t , and A^{-t} , respectively.

If A is the identity matrix, then $\phi x = x + t$, and the map ϕ is called a *translation*. Each affine transformation is composed of a linear transformation followed by a translation.

Any set of n + 1 points in general position in \mathbb{E}^n can be mapped onto any second set of n + 1 points by a suitable affine transformation, and the latter is nonsingular if the second set is also in general position (see [595, Theorem 7, p. 16]).

If $\phi \in GA_n$, then ϕ takes parallel k-dimensional planes onto parallel k-dimensional planes (cf. [85, p. 156]).

An *isometry* of \mathbb{E}^n is a map ϕ such that $\|\phi x - \phi y\| = \|x - y\|$; in other words, a distance-preserving bijection. Isometries are also called congruences, and the image and pre-image under an isometry are said to be *congruent*. Every isometry is affine (see, for example, [85, p. 150] or [839, p. 139]). Examples of isometries are the translations and the *reflections*, which map all points to their mirror images in some fixed point, line, or plane. (In particular, $\phi x = -x$ is the reflection in the origin.)

If $F = S + x_0$ (where $S \in \mathcal{G}(n, k)$, $x_0 \in \mathbb{E}^n$, and $1 \le k \le n - 1$) is a k-dimensional plane, and $x \in \mathbb{E}^n$, then there are unique points $y \in S$ and $z \in S^{\perp}$ such that x = y + z, and we can define a map taking x to $y + x_0 \in F$. This map is the (orthogonal) *projection* on the plane F. It is a singular affine transformation. If E is an arbitrary subset of \mathbb{E}^n , the image of E under a projection on a plane E is called the *projection of* E on E and denoted by $E \mid F$. Since $E \mid S$ is a translate of $E \mid F$ when $E \mid S \mid F$, we almost always work with the former.

If $\phi \in GL_n$, then

$$x \cdot \phi y = \phi^t x \cdot y,\tag{0.1}$$

for all $x, y \in \mathbb{E}^n$. The *orthogonal group* O_n of orthogonal transformations consists of those isometries of \mathbb{E}^n that are also linear transformations; these are precisely the maps ϕ preserving the scalar product, that is, $\phi x \cdot \phi y = x \cdot y$. (An orthogonal matrix satisfies $A^t = A^{-1}$ and by (0.1) we have $\phi^t = \phi^{-1}$, hence the name.) It follows from this that orthogonal transformations have determinants with absolute value one. As is shown in [85, Theorem 50.6], every isometry is an orthogonal transformation followed by a translation, and for this reason isometries are sometimes also called *rigid motions*. The *special orthogonal group* SO_n of *rotations* about the origin consists of those orthogonal transformations with determinant one. A *direct rigid motion* is a rotation followed by a translation; these do not allow reflection.

A dilatation is a map $\phi x = rx$, for some r > 0. A homothety is a map $\phi x = rx + t$, for some r > 0 and $t \in \mathbb{E}^n$, that is, a composition of a dilatation with a translation (this is sometimes referred to as a direct homothety). A similarity is a composition of a dilatation with a rigid motion. We say two sets are homothetic

(or *similar*) if one of them is an image of the other under a homothety (or similarity, respectively), or if one of the sets is a single point.

We find occasional use for projective transformations of \mathbb{P}^n . Such a transformation is given in terms of homogeneous coordinates by $\phi w = Aw + t$, where A is an $(n+1) \times (n+1)$ matrix and $t \in \mathbb{E}^{n+1}$, and where ϕ is called nonsingular if det $A \neq 0$. Since we can regard \mathbb{P}^n as \mathbb{E}^n with a hyperplane H_{∞} adjoined, we can also speak of a projective transformation of \mathbb{E}^n . In this regard, another formulation is useful. A *projective transformation* ϕ of \mathbb{E}^n has the form

$$\phi x = \frac{\psi x}{x \cdot y + t},\tag{0.2}$$

where $\psi \in GA_n$, $y \in \mathbb{E}^n$, and $t \in \mathbb{R}$, and ϕ is nonsingular if the associated linear map

$$\bar{\psi}(x,1) = (\psi x, x \cdot y + t)$$

is nonsingular. If y = o, then ϕ is affine, but if $y \neq o$, ϕ maps the hyperplane $H = \{x : x \cdot y + t = 0\}$ onto H_{∞} . To avoid points in a set E being mapped into H_{∞} , we may insist that ϕ be *permissible* for E; this simply means that $E \cap H = \emptyset$.

Projective transformations map planes onto planes (neglecting the points mapping to or from infinity); see [595, pp. 19–20]. They also preserve cross ratio; a proof is given in [85, Corollary 96.11]. (The *cross ratio* of four points x_i , $1 \le i \le 4$ on a line is defined by

$$\langle x_1,\ldots,x_4\rangle=\frac{(x_3-x_1)(x_4-x_2)}{(x_4-x_1)(x_3-x_2)},$$

where x_i also denotes the coordinate of the point x_i in a fixed Cartesian coordinate system on the line.) Affine transformations are also projective transformations, so the former also preserve cross ratio.

The sets E and F are called *linearly*, *affinely*, or *projectively equivalent* if there is a nonsingular transformation ϕ , linear, affine, or projective and permissible for E, respectively, such that $\phi E = F$. Suppose that E and F are bounded centered sets affinely equivalent via a nonsingular transformation ϕ . If $\phi o = p$, then p is the center of F; but since o is the unique center of F, we have p = o. Therefore ϕ is linear, proving that E and F are linearly equivalent.

0.3. Basic convexity

There are several possibilities for an introduction to the basic properties of convex sets. For the absolute beginner, the books of Lay [499] and Webster [827] are recommended. The first chapter of [595], by McMullen and Shephard, is terse, but very informative, as is the first chapter of [737], by Schneider. The text of [845], by Yaglom and Boltyanskiĭ, is set out in the form of exercises and solutions, with