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Abstract. Let K and L be two convex bodies in Rn such that their projections onto every
(n − 1)-dimensional subspace are translates of each other. Then K is a translate of L . We give
a very simple analytic proof of this fact.

1. INTRODUCTION. In 1932, S. Nakajima [5] and W. Süss [8] independently
proved (for n = 3) the following result.

Theorem 1. Let K and L be two convex bodies (compact convex sets with a nonempty
interior) in Rn, for n ≥ 3. Then K is a translate of L, provided the orthogonal pro-
jections of the bodies onto every (n − 1)-dimensional subspace are translates of each
other.

Presently, several nontrivial geometric proofs of this result are known, (see, for
example, the book of R. Gardner, [2], page 101 and notes on pages 126–127); in par-
ticular, we would like to mention a very elegant “high-school” proof, obtained by I.
Lieberman, ([1], Lemma I, 5).

In this note, we suggest both a very simple and short analytic proof of Theorem
1. We use only the definition of the support function hM of a compact convex set
M ⊂ Rn ,

hM(x) := sup
y∈M

x · y, for x ∈ Rn, with x · y = x1 y1 + · · · + xn yn. (1)

We also use the following well-known fact from linear algebra. If f is a linear function
in Rn , i.e.,

∀x, y ∈ Rn, ∀α, β ∈ R, with f (αx + βy) = α f (x) + β f (y), (2)

then there exists a ∈ Rn such that ∀x ∈ Rn , f (x) = a · x .

2. PROOF. To begin the proof, we introduce some notation.
Let ξ be a unit vector in Rn . We denote by ξ⊥ the (n − 1)-dimensional subspace of

Rn orthogonal to ξ ,

ξ⊥ = {y ∈ Rn : y · ξ = 0}, for |ξ | = 1,

and by K |ξ⊥ the orthogonal projection of a convex body K onto ξ⊥,

K |ξ⊥ := {x ∈ ξ⊥ : x + λξ ∈ K for some λ ∈ R}.
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Using (1), it is not hard to see that, given a compact convex set M ⊂ Rn and an arbi-
trary vector b ∈ Rn , we have

hM+b(x) = hM(x) + b · x ∀x ∈ Rn, (3)

where M + b = {x ∈ Rn : x = y + b, y ∈ M}. Moreover, given a subspace ξ⊥ of
Rn and a convex body K , we have

hK |ξ⊥(x) = hK (x) ∀x ∈ ξ⊥. (4)

Now we prove Theorem 1.

Proof. By condition of the theorem, for every unit vector ξ , there exists a vector aξ ∈
ξ⊥ such that

K |ξ⊥ = L|ξ⊥ + aξ . (5)

Using (3) and (5), we see that for every unit vector ξ there exists a vector aξ ∈ ξ⊥

such that

hK |ξ⊥(x) = hL|ξ⊥(x) + aξ · x ∀x ∈ ξ⊥. (6)

Moreover, by (4) and (6),

hK (x) = hL(x) + aξ · x ∀x ∈ ξ⊥. (7)

Our goal is to show that

∃a ∈ Rn such that hK (x) = hL(x) + a · x ∀x ∈ Rn. (8)

In other words, we need to show that f := hK − hL is a linear function, i.e., f
satisfies (2).

Since the linearity is a two-dimensional property, (8) follows immediately from (7).
Indeed, let x, y ∈ Rn and α, β ∈ R be given. Consider a two-dimensional subspace
Lx,y containing x and y. It is clear that Lx,y ⊂ ξ⊥ for some unit ξ ∈ Rn and (7) yields

f (αx + βy) = aξ · (αx + βy) = αaξ · x + βaξ · y = α f (x) + β f (y).

This result does not hold in the two-dimensional case (consider a disc and a
Reuleaux triangle of the same width, [2], page 109).

3. AN OPEN PROBLEM ABOUT CONGRUENT PROJECTIONS. It is very
natural to ask what happens if the group of translations is replaced by some larger
group, say, by the group of rigid motions. The following problem is still open, even in
the three-dimensional case. Let K and L be two convex bodies such that their projec-
tions onto every subspace are congruent. Does it follow that there exists a ∈ R3 such
that K = ±L + a (i.e., the bodies coincide up to translation and reflection)?

We refer the reader to the books of V. P. Golubyatnikov ([3], Chapters 1-3) and of
R. J. Gardner, ([2], Chapters 3 and 7) for many other related problems and results; see
also [4] and [6].
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A New Proof of Euler’s Inequality

So far the well known Euler’s inequality 2 r ≤ R connecting the inradius r and cir-
cumradius R of a triangle has seen many proofs. We present what we believe to be a
new one.

Let a, b, c denote the side lengths, s the semiperimeter, ra, rb, rc the exradii,
(ABC) the area of a triangle ABC. (ABC) =

√
s (s − a) (s − b) (s − c) = s r

= (a b c)/(4 R) = rx (s − x), x ∈ {a, b, c}. Then,

4 r ra = 4
(ABC)2

s (s − a)
= 4 (s − b) (s − c) = (a + c − b) (a + b − c) =

= a2 − (b − c)2 ≤ a2, (9)

and by similar reasoning,

4 r rb ≤ b2 and 4 r rc ≤ c2. (10)

Multiplying inequalities (1,2) by parts we take

64 r3 ra rb rc ≤ a2 b2 c2 ⇔

64 r3 (ABC)3 ≤ 16 R2 (ABC)2 (s − a) (s − b) (s − c) ⇔

4 r4 s ≤ R2 (s − a) (s − b) (s − c) ⇔

4 r4 s2 ≤ R2 (ABC)2 = R2 s2 r2 ⇔

4 r2 ≤ R2,

and Euler’s inequality follows.
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