> C.A.ROGERS

AN EQUICHORDAL PROBLEM

Abstract

Two points C and C^{\prime} in the interior of a convex domain in the plane have the property that each chord of K through C^{\prime} has the same length as the parallel chord through C. Then K is necessarily centrally symmetric about the mid-point of $C C^{\prime}$.

1. Introduction

A point E in the interior of a convex domain K in the plane is said to be an equichordal point, if each chord of K through E has the same length. The infamous equichordal problem is whether or not a convex domain in the plane can have two distinct equichordal points. Despite the efforts of many mathematicians, and despite the remarkable work of E. Wirsing (1958) and of G.J. Butler (1969) proving the existence of convex domains with a pair of points C, C^{\prime} that are equichordal for all chords making a sufficiently small angle with the line $C C^{\prime}$, this problem appears to be most intractable.

Recently P. McMullen asked me about quite a different equichordal problem. He starts with the remark that, if C, C^{\prime} are inner points of a convex domain K that is centrally symmetric about the mid-point of the line segment $C C^{\prime}$, then each chord of K through C has the same length as the parallel chord of K through C^{\prime}. Here, of course, the lengths of the chords will depend on the angle that they make with the line $C C^{\prime}$. McMullen asks for a proof of the converse.

THEOREM 1. Let C, C^{\prime} be distinct inner points of a convex domain K. If each chord of K through C has the same length as the parallel chord of K through C^{\prime}, then K is centrally symmetric about the mid-point of the line segment $C C^{\prime}$.

The object of this note is to provide a simple proof of this result. D. G. Larman and N . Tamvakis have obtained an n-dimensional generalization.

2. Two lemmas

In this section we prove two lemmas. The first lemma does not make use of the equichordal property. It will be convenient to fix some notation before we state the lemma. C and C^{\prime} are to be two distinct points in the interior of the convex domain K (but we do not yet take C and C^{\prime} to be an equichordal pair). Let the points V and V^{\prime} be the points of intersection of the line through C and C^{\prime} with the boundary of K, and suppose that V and V^{\prime} are named so
that $V^{\prime}, C^{\prime}, C$ and V lie in this order on the chord $V^{\prime} V$ of K. Let (x, y) be coordinates chosen so that

$$
C^{\prime}=(-1,0), \quad C=(1,0)
$$

With each point P_{0} of the boundary of K, in the half-plane $y>0$, we associate two sequences $P_{0}, P_{1}, P_{2}, \ldots$ and $P_{0}^{\prime}, P_{1}^{\prime}, P_{2}^{\prime}, \ldots$ on the boundary of K, the first sequence in the half-plane $y>0$, and the second sequence in the halfplane $y<0$. When P_{r} has been defined, for $r \geqslant 0$, we define P_{r}^{\prime} to be the point, on the boundary of K in the half-plane $y<0$, on the line through C^{\prime} parallel to the line segment $C P_{r}$. When P_{r}^{\prime} has been defined, for $r \geqslant 0$, in the halfplane $y<0$, we define P_{r+1} to be the second intersection, necessarily in the half-plane $y>0$, of the line $P_{r}^{\prime} C$ with the boundary of K. This clearly provides an inductive definition of the required sequences $P_{0}, P_{1}, P_{2}, \ldots$ and $P_{0}^{\prime}, P_{1}^{\prime}, P_{2}^{\prime}, \ldots$ associated with P_{0}.

LEMMA 1.

$$
P_{r} \rightarrow V \quad \text { and } \quad P_{r}^{\prime} \rightarrow V^{\prime} \quad \text { as } \quad r \rightarrow \infty .
$$

Proof. For each $r \geqslant 0$, the lines $C^{\prime} P_{r}^{\prime}$ and $P_{r} C$ are parallel, and the angles $C \hat{P}_{r}^{\prime} C^{\prime}$ and $P_{r+1} \hat{C} P_{r}$ are equal. Hence

$$
V \hat{C} P_{r+1}=V \hat{C} P_{r}-P_{r+1} \hat{C} P_{r}=V \hat{C} P_{r}-C \hat{P}_{r}^{\prime} C^{\prime}
$$

Furthermore, as C lies between C^{\prime} and V, the angle $C P_{r}^{\prime} C^{\prime}$ is strictly positive and $V \hat{C} P_{r+1}$ is strictly less than $V \hat{C} P_{r}$. If the sequence of angles $V \hat{C} P_{r}$, $r=0,1,2, \ldots$ were to converge to a positive limit, the points $P_{r}, r=0,1$, $2, \ldots$ would converge to a point Q on the boundary of K in the half-plane $y>0$, and the point P_{r}^{\prime} would converge to the point Q^{\prime}, on the boundary of K in the half-plane $y<0$, on the line through C^{\prime} parallel to the line $C Q$. Now $Q^{\prime} C Q$ is not a straight line, but for each $r \geqslant 0, P_{r}^{\prime} C P_{r+1}$ is a straight line and

$$
P_{r}^{\prime} \rightarrow Q^{\prime}, \quad P_{r+1} \rightarrow Q
$$

as $r \rightarrow \infty$. This contradiction shows that $V \hat{C} P_{r}$ converges to zero as $r \rightarrow \infty$. Thus $P_{r} \rightarrow V$ and $P_{r}^{\prime} \rightarrow V^{\prime}$ as $r \rightarrow \infty$.

From now on we suppose that the points C and C^{\prime} form an equichordal pair, i.e., that each chord of K through C^{\prime} has the same length as the parallel chord of K through C.

LEMMA 2.

$$
V^{\prime} C^{\prime}=C V
$$

Proof. We suppose that $V^{\prime} C^{\prime} \neq C V$ and obtain a contradiction. We suppose, as we may without loss of generality, that $V^{\prime} C^{\prime}>C V$. Consider a point P
that moves continuously from V^{\prime} to V round that part of the boundary of K lying in the half-plane $y \geqslant 0$. Let P^{\prime} be the point, on the boundary of K in the half-plane $y \leqslant 0$, on the line through C^{\prime} parallel to $C P$. Then P^{\prime} moves continuously from V to V^{\prime} along the boundary of K in the half-plane $y \leqslant 0$ as P moves from V^{\prime} to V. When P is at V^{\prime}, we have

$$
C^{\prime} P^{\prime}=C^{\prime} V=C^{\prime} C+C V<C^{\prime} C+V^{\prime} C^{\prime}=C V^{\prime}=C P
$$

When P is at V, we have

$$
C^{\prime} P^{\prime}=C^{\prime} V^{\prime}>C V=C P
$$

By continuity, for some suitable P_{0}, on the boundary of K in the half-plane $y>0$, we have

$$
C^{\prime} P_{0}^{\prime}=C P_{0}
$$

Let $P_{0}, P_{1}, P_{2}, \ldots$ and $P_{0}^{\prime}, P_{1}^{\prime}, P_{2}^{\prime}, \ldots$ be the sequences associated with this choice of P_{0}. Suppose that, for some $r \geqslant 0$, we have

$$
\begin{equation*}
C^{\prime} P_{\tau}^{\prime}=C P_{r} \tag{1}
\end{equation*}
$$

Then $C^{\prime} P_{r}^{\prime}$ is equal and parallel to $C P_{r}$. Hence $C P_{r} C^{\prime} P_{\tau}^{\prime}$ is a parallelogram and $C P_{r}^{\prime}$ is equal and parallel to $C^{\prime} P_{r}$. But $P_{r}^{\prime} C P_{r+1}$ is a chord of K. So $P_{r+1}^{\prime} C^{\prime} P_{r}$ is the parallel chord of K, through C^{\prime}, to $P_{r}^{\prime} C P_{r+1}$. As C and C^{\prime} form an equichordal pair,

$$
P_{r}^{\prime} C P_{r+1}=P_{r+1}^{\prime} C^{\prime} P_{r}
$$

Subtracting the common value $P_{r}^{\prime} C=C^{\prime} P_{r}$ we obtain

$$
C^{\prime} P_{r+1}^{\prime}=C P_{r+1}
$$

As (1) holds when $r=0$, it follows, by induction, that (1) holds for all $r \geqslant 0$. Letting $r \rightarrow \infty$ in (1) and using Lemma 1, we obtain

$$
C^{\prime} V^{\prime}=C V
$$

as required.

3. Proof of Theorem 1

We suppose that our coordinates are chosen as in the last section. As the situation is invariant under any affine transformation, we may suppose further that the half-tangent to K, at the point V lying in the half-plane $y>0$, is parallel to the y-axis. Consider any point $P_{0}=\left(x_{0}, y_{0}\right)$ on the boundary of K, with

$$
1<x_{0}, \quad 0<y_{0}
$$

Suppose further that x_{0} is so large that the slopes of the half-tangents to K at any point (x, y) with

$$
x \geqslant x_{0}, \quad y>0
$$

are negative, perhaps having the value $-\infty$. Let $P_{0}, P_{1}, P_{2}, \ldots$ and $P_{0}^{\prime}, P_{1}^{\prime}$, P_{2}^{\prime}, \ldots be the sequences of points on the boundary of K associated with the point P_{0}. Let P_{r} and P_{r}^{\prime} have coordinates (x_{r}, y_{r}) and ($x_{r}^{\prime}, y_{r}^{\prime}$) for $r \geqslant 0$.

We prove that $x_{0}+x_{0}^{\prime}=0$. To do this, we suppose that $x_{0}+x_{0}^{\prime} \neq 0$ and seek a contradiction. We use induction to prove that, if $x_{0}+x_{0}^{\prime}>0$, then

$$
\begin{equation*}
x_{r}+x_{r}^{\prime} \geqslant x_{0}+x_{0}^{\prime}, \text { for } r \geqslant 0 \tag{2}
\end{equation*}
$$

and if $x_{0}+x_{0}^{\prime}<0$, then

$$
\begin{equation*}
x_{r}+x_{r}^{\prime} \leqslant x_{0}+x_{0}^{\prime}, \text { for } r \geqslant 0 \tag{3}
\end{equation*}
$$

Suppose that for some value $r \geqslant 0$ we either know that

$$
x_{r}+x_{r}^{\prime} \geqslant x_{0}+x_{0}^{\prime}>0
$$

or that

$$
x_{r}+x_{r}^{\prime} \leqslant x_{0}+x_{0}^{\prime}<0 .
$$

Let the line $P_{r+1}^{\prime} C^{\prime}$ meet the boundary of K at a second point Q_{r+1} with coordinates (ξ_{r+1}, η_{r+1}), and let this line $P_{r+1}^{\prime} C^{\prime}$ meet the line $C P_{r}$ at a point R_{r+1}. Then $C R_{r+1} C^{\prime} P_{r}^{\prime}$ is a parallelogram. If

$$
x_{r}+x_{r}^{\prime}>0
$$

then $C P_{r}$ is longer than $P_{r}^{\prime} C^{\prime}$, and R_{r+1} is an inner point of the line segment $C P_{r}$, so that Q_{r+1} lies on $C^{\prime} R_{r+1}$ produced beyond R_{r+1}. As the slopes of the half-tangents to K at P_{r} are negative, it follows that

$$
\xi_{r+1} \geqslant x_{r}
$$

On the other hand, if

$$
x_{r}+x_{r}^{\prime}<0
$$

then $C P_{r}$ is shorter than $P_{r}^{\prime} C^{\prime}$, and R_{r+1} is on $C P_{r}$ produced beyond P_{r}, so so that Q_{r+1} is an inner point of the line segment $C^{\prime} R_{r+1}$. As the slopes of the half-tangents to K at P_{r} are negative, it follows, in this case, that

$$
\xi_{r+1} \leqslant x_{r}
$$

As the chords $P_{r+1}^{\prime} C^{\prime} Q_{r+1}$ and $P_{r}^{\prime} C P_{r+1}$ are parallel, they have equal lengths, by the equichordal property. Hence

$$
\xi_{r+1}-x_{r+1}^{\prime}=x_{r+1}-x_{r}^{\prime}
$$

or

$$
x_{r+1}+x_{r+1}^{\prime}=\xi_{r+1}+x_{r}^{\prime} .
$$

In the first case, when $x_{0}+x_{0}^{\prime}>0$, we have

$$
x_{r+1}+x_{r+1}^{\prime} \geqslant x_{\tau}+x_{r}^{\prime} \geqslant x_{0}+x_{0}^{\prime}
$$

and in the second case, when $x_{0}+x_{0}^{\prime}<0$, we have

$$
x_{r+1}+x_{r+1}^{\prime} \leqslant x_{r}+x_{r}^{\prime} \leqslant x_{0}+x_{0}^{\prime} .
$$

Thus, by induction, we either have $x_{0}+x_{0}^{\prime}>0$ and (2) holds for all $r \geqslant 0$, or we have $x_{0}+x_{0}^{\prime}<0$ and (3) holds for all $r \geqslant 0$.

By Lemmas 1 and 2 we see that

$$
x_{r}+x_{r}^{\prime} \rightarrow 0
$$

as $r \rightarrow \infty$. In either of the two cases, this gives a contradiction. Hence we must have $x_{0}+x_{0}^{\prime}=0$. Thus P_{0}^{\prime} is the reflection of P_{0} in the origin. As the argument applies to any point P on the arc $P_{0} V$ of the boundary of K, in the half-plane $y \geqslant 0$ joining P_{0} to V, it follows that the $\operatorname{arc} P_{0}^{\prime} V^{\prime}$ of the boundary of K, in the half-plane $y<0$ joining P_{0}^{\prime} to V^{\prime}, is the reflection of the arc $P_{0} V$ in the origin.

Now consider any point S_{0} on the boundary of K in the half-plane $y>0$. Let $S_{0}, S_{1}, S_{2}, \ldots$, and $S_{0}^{\prime}, S_{1}^{\prime}, S_{2}^{\prime}, \ldots$ be the sequences associated with S_{0}. By Lemma 1, we have

$$
S_{r} \rightarrow V, \quad S_{r}^{\prime} \rightarrow V^{\prime}
$$

as $r \rightarrow \infty$. Provided r is sufficiently large, we have

$$
S_{\tau} \in P_{0} V \quad \text { and } \quad S_{\tau}^{\prime} \in P_{0}^{\prime} V^{\prime}
$$

Hence S_{r}^{\prime} is the reflection of S_{r} in the origin, and

$$
C^{\prime} S_{r}^{\prime}=C S_{r}
$$

for all sufficiently large r. Using the argument of Lemma 2 backwards, we obtain

$$
C^{\prime} S_{r}^{\prime}=C S_{r}, \quad \text { for all } r \geqslant 0
$$

Hence $C^{\prime} S_{0}^{\prime}=C S_{0}$, and S_{0}^{\prime} is the reflection of S_{0} in the origin. Thus K is itself centrally symmetric in the mid-point of the segment $C C^{\prime}$.

BIBLIOGRAPHY

1. Wirsing, E. 'Zur Analytizität von Doppelspeichenkurven'. Arch. Math., 9 (1958), 300-307.
2. Butler, G.J. 'On the "equichordal curve" problem and a problem of packing and covering'. Thesis (London, 1969).
3. Larman D.G. and Tamvakis, N. K. "A characterisation of centrally symmetric convex bodies in E^{n}." to appear in Geometriae Dedicata.

Author's address

C.A. Rogers
Department of Mathematics, University College London, Gower Street, London WCIE 6BT. England

