MATH 857 SPRING 2023

HW 1 - Due Feb 15

1. A Calculus uniqueness problem:

Let $r(s)=\langle x(s), y(s), z(s)\rangle$ be a non-planar curve in \mathbb{R}^{3}, parametrized by the arclength. Let L be a fixed line in \mathbb{R}^{3}. Prove that the following are equivalent:
(a) All tangent lines to $r(s)$ make a constant angle with L
(b) All normal lines to $r(s)$ are perpendicular to L
(c) All binormal lines to $r(s)$ make a constant angle with L.
(d) The ratio $k(s) / \tau(s)$ between the curvature and the torsion is constant for s.

What is the curve characterized by any one of these properties?
Note: All the necessary definitions (tangent, normal, binormal, curvature and torsion) are in any Calculus III textbook, there is no need to look for a more advanced text.
2. A useful result for convex sets: Let A, B be convex bodies in \mathbb{R}^{n} such that $A \subseteq B$ and $\partial A \subseteq \partial B$. Show that $A=B$. Indicate with a counterexample where convexity, compactness and/or non-empty interior are needed.
3. Convex functions: Let $f:(a, b) \rightarrow \mathbb{R}$ be a convex function (recall that the definition of convex function is that for every $x, y \in \mathbb{R}$ and $t \in(0,1), f(t x+(1-$ $t) y) \leq t f(x)+(1-t) f(y))$.
(a) Prove that f is convex if and only if for every $x, y, u, v \in(a, b)$ such that $x \leq u<v$ and $x<y \leq v$,

$$
\frac{f(y)-f(x)}{y-x} \leq \frac{f(v)-f(u)}{v-u} .
$$

(b) Prove that f is convex if and only if f is absolutely continuous on every compact subinterval of (a, b) (which implies that f^{\prime} exists a.e.) and f^{\prime} is increasing on the set where it is defined.
(c) Show that if f is convex and $t_{0} \in(a, b)$, there exists $\beta \in \mathbb{R}$ such that $f(t)-$ $f\left(t_{0}\right) \geq \beta\left(t-t_{0}\right)$ for every $t \in(a, b)$.
(d) Jensen's inequality: Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)=1$, let $g: X \rightarrow(a, b)$ be in $L^{1}(\mu)$, and f be convex on (a, b). Then,

$$
f\left(\int_{X} g d \mu\right) \leq \int_{X} f \circ g d \mu
$$

Use (c), setting $t=g(x)$ and $t_{0}=\int_{X} g d \mu$.
4. A characterization of the Euclidean ball: Let K be a convex body in \mathbb{R}^{n}.
(a) Show that K is a ball if and only if for every pair of different points $x, y \in \partial K$, there exists $b \in \mathbb{R}^{n}$ and $T \in O(n)$ such that $T(K)+b=K$ and $T(x)+b=y$.
(b) Use (a) to prove that if a convex body has two different axes of revolution, it must be a ball.

