MATH 857 SPRING 2023 HW 1 - Due Feb 15

1. A Calculus uniqueness problem:

Let $r(s) = \langle x(s), y(s), z(s) \rangle$ be a non-planar curve in \mathbb{R}^3 , parametrized by the arclength. Let L be a fixed line in \mathbb{R}^3 . Prove that the following are equivalent:

- (a) All tangent lines to r(s) make a constant angle with L
- (b) All normal lines to r(s) are perpendicular to L
- (c) All binormal lines to r(s) make a constant angle with L.
- (d) The ratio $k(s)/\tau(s)$ between the curvature and the torsion is constant for s.

What is the curve characterized by any one of these properties?

Note: All the necessary definitions (tangent, normal, binormal, curvature and torsion) are in any Calculus III textbook, there is no need to look for a more advanced text.

- 2. A useful result for convex sets: Let A, B be convex bodies in \mathbb{R}^n such that $A \subseteq B$ and $\partial A \subseteq \partial B$. Show that A = B. Indicate with a counterexample where convexity, compactness and/or non-empty interior are needed.
- 3. Convex functions: Let $f:(a,b)\to\mathbb{R}$ be a convex function (recall that the definition of convex function is that for every $x,y\in\mathbb{R}$ and $t\in(0,1),\ f(tx+(1-t)y)\le tf(x)+(1-t)f(y)$).
 - (a) Prove that f is convex if and only if for every $x, y, u, v \in (a, b)$ such that x < u < v and x < y < v,

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(v) - f(u)}{v - u}.$$

- (b) Prove that f is convex if and only if f is absolutely continuous on every compact subinterval of (a, b) (which implies that f' exists a.e.) and f' is increasing on the set where it is defined.
- (c) Show that if f is convex and $t_0 \in (a, b)$, there exists $\beta \in \mathbb{R}$ such that $f(t) f(t_0) \ge \beta(t t_0)$ for every $t \in (a, b)$.
- (d) **Jensen's inequality:** Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) = 1$, let $g: X \to (a, b)$ be in $L^1(\mu)$, and f be convex on (a, b). Then,

$$f\left(\int_X gd\mu\right) \le \int_X f \circ gd\mu.$$

Use (c), setting t = g(x) and $t_0 = \int_X g d\mu$.

- 4. A characterization of the Euclidean ball: Let K be a convex body in \mathbb{R}^n .
 - (a) Show that K is a ball if and only if for every pair of different points $x, y \in \partial K$, there exists $b \in \mathbb{R}^n$ and $T \in O(n)$ such that T(K) + b = K and T(x) + b = y.
 - (b) Use (a) to prove that if a convex body has two different axes of revolution, it must be a ball.