MATH 857 SPRING 2023
 HW 2 - Due March 8

1. Let γ be a regular curve in \mathbb{R}^{3}.
(a) Assuming that γ is twice differentiable, prove that if all tangent lines to γ pass through a fixed point P, then γ is a line.
(b) Prove the same result assuming only that γ is differentiable.
(c) If γ is twice differentiable and all normal lines pass through a fixed point, then γ is contained on a sphere.
(d) If γ is twice differentiable and all the osculating planes pass through a fixed point, then γ is a plane curve.
2. Let $r(s)=(x(s), y(s))$ be the arc length parametrization of a regular plane curve γ, and $\phi(x, y)=0$ the implicit equation of another curve C. Let P be a common point to both curves. The curves γ and C have order of contact n at $P=r\left(s_{0}\right)$ iff the following equations are satisfied:

$$
\begin{aligned}
\phi\left(x\left(s_{0}\right), y\left(s_{0}\right)\right) & =0 \\
\frac{d}{d s} \phi\left(x\left(s_{0}\right), y\left(s_{0}\right)\right) & =0 \\
& \vdots \\
\frac{d^{n}}{d s^{n}} \phi\left(x\left(s_{0}\right), y\left(s_{0}\right)\right)= & 0 .
\end{aligned}
$$

Similarly, if $r(s)=(x(s), y(s), z(s))$ is the parametrization of curve in \mathbb{R}^{3} and $\phi(x, y, z)=0$ is the implicit equation of a surface, the contact of order n is defined by the same system of equations, with the additional variable $z(t)$.
(a) Prove that if the curvature $k_{1}\left(s_{0}\right) \neq 0$, then the osculating circle of γ at P (i.e. the circle with contact of order 2) has center in the normal direction at P and radius $1 / k_{1}\left(s_{0}\right)$.
(b) Prove that the equation of the osculating sphere to a curve γ at P (i.e. the sphere with contact of order 3) has radius $\sqrt{\left(\frac{1}{k_{1}}\right)^{2}+\left(\frac{k_{1}^{\prime}}{k_{1}^{2} k_{2}}\right)^{2}}$ and center $P+$ $\mathbf{n} / k 1+\mathbf{b}\left(\frac{k_{1}^{\prime}}{k_{1}^{2} k_{2}}\right)$, where \mathbf{n}, \mathbf{b} are the normal and binormal vectors of γ at P.

More problems on the back \rightarrow
3. A diameter of a convex body K is a chord of maximal length (maximal length is attained since K is compact). A convex body K may have more than one diameter (e.g. the ball).

A double normal of K is chord $[a, b]$ of K, with $a, b \in \partial K$, such that the normal vectors of K at the points a and b have the same direction as $[a, b]$.
For a strictly convex body K, a diametral chord of K is a chord joining two boundary points of K whose support hyperplanes are parallel.
Prove the following facts:
(a) A chord $[a, b]$ is a diametral chord of K iff it is the longest chord of K in the direction of the segment $[a, b]$.
(b) For every $x \in K$ there is a diametral chord of K containing x.
(c) Every diameter is a double normal.
(d) An ellipsoid in \mathbb{R}^{n} has n double normals.
4. Let K be a convex body in \mathbb{R}^{n}. Show that the following conditions are equivalent:
(a) For every direction $u \in S^{n-1}$ there is a double normal of K parallel to u.
(b) Any point $x \in K$ lies on a double normal of K.
(c) Every double normal of K is a diameter of K.
(d) K has constant width.
5. Prove that if K is strictly convex, then K is centrally symmetric with center x_{0} if and only iff all diametral chords of K pass through x_{0}.
Hint: For the converse, you may assume that K is 2-dimensional (why?). Let x_{0} be the origin, and consider a parametrization $r(t)$ of ∂K and the parametrization $r(t+\pi)$ of the boundary of the reflection of K through x_{0}. Study the condition on parallel support lines simultaneously for both figures in terms of $r(t)$.

