MATH-265 Calculus III 21 March 2013

Trig Sub Review

(points) 1. If you have something like $\sqrt{a^2 - x^2}$ in your integral, you MAY want to make a substitution $x = a \sin \theta$, although this is sometimes unnecessary. This may require a little manipulation first.

(a)
$$\int \sqrt{16 - 5x^2} dx$$

(b)
$$\int_0^{1/2} \frac{x^2}{\sqrt{1-x^2}} dx$$

(c)
$$\int x^3 \sqrt{9 - x^2} dx$$

(d)
$$\int x^2 \sqrt{9-5x^2} dx$$
 (compare with previous (c.))

(points) 2. If you have something like $\sqrt{x^2 + a^2}$ in your integral, you MAY want to make a substitution $x = a \tan \theta$, although this is sometimes unnecessary. This may require a little manipulation first.

(a)
$$\int_{1/2}^{1} \frac{dx}{x^2 \sqrt{x^2 + 4}}$$

(b)
$$\int \frac{dx}{\sqrt{x^2+1}}$$

(c)
$$\int \sqrt{12 + 4t^2} dt$$

(d)
$$\int \frac{dx}{25x^2 + 2}$$

(e)
$$\int_0^1 \frac{dx}{(4+9x^2)^2}$$

(points) 3. If you have something like $\sqrt{x^2 - a^2}$ in your integral, you MAY want to make a substitution $x = a \sec \theta$, although this is sometimes unnecessary. This may require a little manipulation first.

(a)
$$\int \frac{dx}{x\sqrt{x^2 - 9}}$$

(b)
$$\int \frac{x}{\sqrt{x^2-9}} dx$$
 (compare with previous; is there a non-trig sub you can do for this one?)

(c)
$$\int \frac{dx}{(3x^2-4)^{3/2}}$$

$$(d) \int \frac{dt}{t^2 \sqrt{t^2 - 25}}$$