MATH-265

Calculus III
21 March 2013
(points) 1. If you have something like $\sqrt{a^{2}-x^{2}}$ in your integral, you MAY want to make a substitution $x=a \sin \theta$, although this is sometimes unnecessary. This may require a little manipulation first.
(a) $\int \sqrt{16-5 x^{2}} d x$
(b) $\int_{0}^{1 / 2} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$
(c) $\int x^{3} \sqrt{9-x^{2}} d x$
(d) $\int x^{2} \sqrt{9-5 x^{2}} d x$ (compare with previous (c.))
(points) 2. If you have something like $\sqrt{x^{2}+a^{2}}$ in your integral, you MAY want to make a substitution $x=a \tan \theta$, although this is sometimes unnecessary. This may require a little manipulation first.
(a) $\int_{1 / 2}^{1} \frac{d x}{x^{2} \sqrt{x^{2}+4}}$
(b) $\int \frac{d x}{\sqrt{x^{2}+1}}$
(c) $\int \sqrt{12+4 t^{2}} d t$
(d) $\int \frac{d x}{25 x^{2}+2}$
(e) $\int_{0}^{1} \frac{d x}{\left(4+9 x^{2}\right)^{2}}$
(points) 3. If you have something like $\sqrt{x^{2}-a^{2}}$ in your integral, you MAY want to make a substitution $x=a \sec \theta$, although this is sometimes unnecessary. This may require a little manipulation first.
(a) $\int \frac{d x}{x \sqrt{x^{2}-9}}$
(b) $\int \frac{x}{\sqrt{x^{2}-9}} d x$ (compare with previous; is there a non-trig sub you can do for this one?)
(c) $\int \frac{d x}{\left(3 x^{2}-4\right)^{3 / 2}}$
(d) $\int \frac{d t}{t^{2} \sqrt{t^{2}-25}}$

