### On The Effect of Mutual Coupling on LF and UHF Tags Implemented in Dual Frequency RFID Applications

Gregory J. Owen Benjamin D. Braaten\* Robert M. Nelson Dustin Vaselaar Cherish Bauer-Reich Jacob Glower Michael Reich Aaron Reinholz



Introduction
Dual frequency tag
Test setup
Test results
Discussion
Conclusion

# Introduction

- Interest in RFID has recently grown tremendously in many areas [1]-[5]:
  - supply chain management [6]-[8]
  - RFID security [9]-[10]
  - UHF antenna design [11]
  - back-scattering analysis [12]-[14]
  - dual frequency applications
- Types of systems [1]
  - passive
  - semi-passive
  - active

# Introduction

- On a passive tag the antenna is typically connected directly to the rectifier.
  - thus antenna impedance and rectifier impedance directly effect the read range
- Antenna characteristics (gain, input impedance and resonant frequency) can be effected by nearby conducting and non-conducting objects [15]-[21]:
  - Weather-proof enclosures
  - Surface placement of tag
  - Other RFID tags (i.e., dual-frequency tags)

# Introduction

- Several advantages are gained by using a weather-proof enclosure [18]:
  - Protection against heat, physical damage, and the environment (moisture, sun)
  - Dual-frequency implementation
- Several examples include:
  - Electronic car tolling [22]
  - Livestock tracking [23]-[24]



# A Little Background

 The max theoretical read range of a passive RFID tag can be written as (using Friis's eqn.)
 [25]:

$$r_{max} = \frac{\lambda}{4\pi} \sqrt{\frac{P_t G_t G_r (1 - |s|^2)}{P_{th}}}$$

where

$$|s|^2 = \left|\frac{Z_L - Z_A^*}{Z_L + Z_A}\right|^2$$

# The Dual-Frequency Tag and Test Setup



(902-928MHz)

(125.4-134kHz)

# **Test Setup**



Table 1: LF tag read range impact with Rampart UHF tag present.

| Plane | $\operatorname{coplanar}$ | stacked |
|-------|---------------------------|---------|
| xy    | -1.24 %                   | -3.00 % |
| yz    | +13.09~%                  | -5.07~% |
| XZ    | 0.00~%                    | -5.77 % |

#### (reminder)





⊢ LF tag

Table 3: M-tag read range impact with LF tag present.

| LF     |         |        |        |
|--------|---------|--------|--------|
| coord. | z=0in   | z=-1in | z=-2in |
| (0,0)  | -67.27% | 3.17%  | 5.39%  |
| (0,.5) | 14.26%  | 3.17%  | 2.06%  |
| (0,1)  | -1.27%  | 2.06%  | 3.17%  |
| (0,2)  | 44%     | 2.06%  | 4.56%  |
| (0,3)  | 2.89%   | 1.51%  | 4.28%  |
| (1,0)  | -2.1%   | 1.51%  | 3.17%  |
| (-1,0) | -2.56%  | 3.45%  | 9%     |

#### (reminder)









### Discussion

- Table 3 showed that a LF tag placed directly on the M-tag reduced the read range by 67.27%.
- Table 4 showed that the LF tag placed near the squiggle tag reduced the read range by 91.84%.
- The Rampart-line was less affected by the LF tag.

### Discussion

 In all cases by moving the LF tag to the edge of the UHF tags the read range could be recovered.

The trade-off to moving the LF tag to the edge of the UHF tag is a larger footprint.

# Conclusion

- A dual frequency (UHF and LF) tag has been introduced.
- The read range of each tag was determined in the presence of mutual coupling.

 In several instances the read range of the UHF tag was substantially decreased (91.84%).

### Conclusion

In all instances is was shown that most of the read range could be recovered by moving the LF tag to the same plane of the UHF tag

### Questions

### Thank you for listening

- K. Finkenzeller, RFID Handbook:Fundamentals and Applications in Contactless Smart Cards and Identification, John Wiley and Sons, West Sussex, England, 2003.
- [2] J.-P. Curty, M. Declercq, C. Dehollain and N. Joehl, *Design and Optimization of Passive UHF RFID Systems*, Springer-Verlag New York, LLC, 2006.
- [3] E. Cooney, RFID+: The Complete Review of Radio Frequency Identification, Cengage Delmar Learning, 2006.
- [4] D. Paret, R. Riesco and R. Riesco, *RFID and Contactless Smart Card Applications*, John Wiley and Sons, Inc., 2005.
- [5] V.D. Hunt, A. Puglia and M. Puglia, RFID-A Guide to Radio Frequency Identification, John Wiley and Sons, Inc., 2007.
- [6] E.W. Schuster, S.J. Allen and D.L. Brock, Global RFID: The Value of the EPCglobal Network for Supply Chain Management, Springer-Verlag New York, LLC, 2006.
- [7] L. Boglione, "RFID Technology Are you ready for it?", IEEE Microwave Magazine, Vol. 8, No. 6, December 2007, pp. 30-32.
- [8] R.A. Kleist, D.A. Sakai, B.S. Jarvis, T. Chapman and D. Sakai, RFID Labeling: Smart Labeling Concepts and Applications for the Consumer Packaged Goods Supply Chain, Banta Book Group, 2005.
- [9] B. Rosenberg, *RFID: Applications, Security, and Privacy*, Pearson Education, 2006.
- [10] F. Thornton, B.R. Haines, A. Das, A. Campbell and B. Haines, *RFID Security*, Syngress Publishing, 2006
- [11] K.V.S. Rao, P.V. Nikitin and S.F. Lam, "Antenna Design for UHF RFID Tags: A Review and a Practical Application," *IEEE Transactions* On Antennas and Propagation, Vol. 53, No. 12, December 2005, pp. 3870-3876.

- [12] C.-C. Yen, A.E. Gutierrez, D. Veeramani, and D. van der Weide, "Radar Cross-Section Analysis for Backscattering RFID Tags," *IEEE Antennas and Wireless Propagation Letters*, Vol. 6, 2007, pp. 279-281.
- [13] B.D. Braaten, Y. Feng and R.M. Nelson, "High-frequency RFID tags: an analytical and numerical approach for determining the induced currents and scattered fields," *IEEE International Symposium on Electromagnetic Compatibility*, August 14-18, 2006, pp.58-62.
- [14] Y. Feng, B.D. Braaten and R.M. Nelson, "Analytical expressions for small loop antennas-with application to EMC and RFID systems," *IEEE International Symposium on Electromagnetic Compatibility*, August 14-18, 2006, pp.63-68.
- [15] C.A. Balanis, Antenna Theory: Analysis and Design, Harper and Row, Publishers, New York, 1982.
- [16] W.L. Stutzman and G.A. Thiele, Antenna Theory and Design, 2nd ed., John Wiley and Sons, Inc., New York, 1998.
- [17] V. Hansen and M. Patzold, "Input impecdance and mutual coupling of rectangular microstrip patch antennas with a dielectric cover," 16th European Microwave Conference, 1986, October 1986, pp. 643-648.
- [18] I.J. Bahl, P. Bhartia and S.S. Stuchly, "Design of microstrip antennas covered with a dielectric layer," *IEEE Transactions on Antennas and Propagation*, Vol. 30, No. 2, March 1982, pp. 314-318.
- [19] J.R.S. Oliveira and A.G. D'Assuncao, "Input impedance of microstrip patch antennas on anisotropic dielectric substrates," *Antennas and Propagation Society International Symposium*, 1996. AP-S. Digest, Vol. 2, July 21-26, 1996, pp. 1066-1069.
- [20] R.M. Nelson, D.A. Rogers and A.G. D'Assuncao, "Resonant frequency of a rectangular microstrip patch on several uniaxial substrates," *IEEE Transactions on Antennas and Propagation*, Vol. 38, No. 7, July 1990, pp. 973-981.
- [21] A.K. Verma and Nasimuddin, "Input impedance of rectangular microstrip patch antenna with iso/anisotropic substrate-superstrate," *IEEE Microwave and Wireless Components Letters*, Vol. 11, No. 11, November 2001, pp. 456-458.

- [22] P. Blythe, "RFID for road tolling, road-use pricing and vehicle access control," *IEE Colloquium on RFID Technology (Ref. No. 1999/123)*, Oct. 25, 1999, pp. 811-816.
- [23] RFID Journal, www.rfidjournal.com.
- [24] M.L. Ng, K.S. Leong, D.M. Hall and P.H. Cole, "A small passive UHF RFID tag for livestock identification," *IEEE International Symposium* on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2005, Vol. 1, Aug. 8-12, 2005, pp. 67-70.
- [25] P.V. Nikitin, K.V.S. Rao, S.F. Lam, V. Pillai, R. Martinez, and H. Heinrich "Power Reflection Coefficient Analysis for Complex Impedances in RFID Tag Design," *IEEE Transactions On Microwave Theory and Techniques*, Vol. 53, No. 9, September 2005.
- [26] EPC Global, www.epcglobalinc.org.
- [27] A. Sundaram, M. Maddela and R. Ramados, "Koch-Fractal Folded-Slot Antenna Characteristics," *IEEE Antennas and Wireless Propagation Letters*, Vol. 6, 2007, pp. 219-222.
- [28] K.-L. Wong, C.-H. Chang, and Y.-C. Lin, "Printed PIFA EM Compatible with Nearby Conducting Elements," *IEEE Transactions on Antennas and Propagation*, Vol. 55, No. 10, October 2007, pp. 2919-2922.
- [29] I.J. Bahl and P. Bhartia, *Microstrip Antennas*, Artech House, Inc. Dedham, MA, 1980, pp.214-215.
- [30] D.M. Pozar and D.H. Schaubert, Microstrip Antennas: The analysis and Design of Microstrip Antennas and Arrays, IEEE Press, Piscataway, NJ, 1995.
- [31] S.S. Basat, S. Bhattacharya, L. Yang, A. Rida, M.M. Tentzeris, J. Laskar, "Design of a novel high-efficiency UHF RFID antenna on flexible LCP substrate with high read-range capability," *IEEE Antennas and Propagation Society International Symposium*, July 9-14, 2006, pp.1031-1034.

- [32] C.T. Rodenbeck "Planar miniature RFID antennas suitable for integration with batteries," *IEEE Transactions on Antennas and Propagation*, Vol. 54, No. 12, December 2006, pp. 3700-3706.
- [33] Q. Jinghui, S. Bo, Y. Qidi, "Study on RFID antenna for railway vehicle identification," 6th International Conference on ITS Telecommunications Proceedings, June, 2006, pp.237-240.
- [34] M. Stupf, R. Mittra, J. Yeo and J.R. Mosig, "Some novel design for RFID antennas and their performance enhancement with metamaterials," *IEEE Antennas and Propagation Society International Symposium 2006*, July 9-14, 2006, pp.1023-1026.
- [35] S.Y. Leung, D.C.C. Lam, "Performance of printed polymer-based RFID antenna on curvilinear surface," *IEEE Transactions on Electronics Packaging Manufacturing*, Vol. 30, Issue 3, July 2007, pp. 200-205.
- [36] G. Marrocco, "RFID antennas for the UHF remote monitoring of human bodies," IET Seminar on Antennas and Propagation for Body-Centric Wireless Communications, April 24, 2007, pp. 51-56.
- [37] D. Bechevet, T.-P. Vuong and S. Tedjini, "Design and measurements of antennas for RFID, made by conductive ink on plastics," *IEEE Antennas and Propagation Society International Symposium 2005*, July 3-8, 2005, pp.345-348.
- [38] A. Galehdar, D.V. Thiel and S.G. O'Keefe, "Antenna efficiency calculations for electrically small, RFID antennas," *IEEE Antennas* and Wireless Propagation Letters, Vol. 6, 2007, pp. 156-159.