Math 721

Spring 2001

Exam 1

 

  1. Let be projective modules. Show that  is also a projective module.

 

  1. Let  be an module. We define the dual module of  to be:  Assume that is a field and is a finite-dimensional vector space over Show that

 

  1. Let  be an module and let  be a free module on the set  Show that

 

  1. (Adjoint associativity) Let  be commutative with identity, and let  be modules. Show that  as modules.

 

  1. Let  be commutative with identity, ideals, and  an module.

a)      Show that .

b)      Show that .

c)      Compute .