Math 726

Fall 2002

Homework 4

 

Due on the last day of class. Do not forget to mark your “favorite” problem.

 

1.      Compute the all of the homology groups for the following space:

 

                                                    b

 

 


                           a                               a

 


                                                                                 

 

                                                             b

 

2.      a) Compute all the homology group of the 5-fold dunce cap:

 

                                             a                a  

                                                                         

                                                                    

                                          a                       a

 

                                                     a

   b) Compute the homology of the analogously defined k-fold dunce cap.

3.      Let  be a chain map. We define  and we define  by  We call this sequence of modules and maps (the mapping cylinder of ).

a)      Show that  is a complex.

b)      If  is a complex, let  obtained by increasing all indices by 1. Show that

c)      If  is a chain map, then show there is an exact sequence of complexes:

d)      Show there is a long exact sequence:

where  is induced by

e)      Show that  is an isomorphism for all  if and only if  is acyclic (that is  forms an exact sequence).