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Chapter 1

Background and
Preliminaries

1.1 Basics

Definition 1.1.1. A set (R,+, ·) equipped with two binary operations such that

1) (R,+) is an abelian group

2) r(x+ y) = rx+ ry and (x+ y)r = xr + yr for all r, x, y ∈ R

3) r(xy) = (rx)y for all r, x, y ∈ R

is called a ring.
If additionally we have:

4) There is a 1R ∈ R such that 1Rx = x1R = x for all x ∈ R

Then we say R has an identity.
If we have:

5) xy = yx for all x, y ∈ R

Then we say that R is commutative.

In this tome, we will always assume that R is commutative unless otherwise
indicated and we will usually assume that R has an identity as well (we will
use the terminology “not necessarily with identity” if we wish to drop this
assumption and by default the word “ring” will mean commutative ring with
identity).

Example 1.1.2. Z,⊕Z,
∏

Z,Zn,Z[
√
d],Q,C,R,R[x] are all rings (and most of

them have identity (which one(s) do not?). The set of continuous functions
from [0, 1] to R with pointwise multiplication is another commutative ring with
1.
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Definition 1.1.3. Let R be a ring. A subset T ⊆ R is said to be a subring if
T is itself a ring. If R has an identity, the convention is that a subring T must
contain the identity of R (and so Z does not have any proper subrings by this
convention).

Example 1.1.4. Depending on convention, the set {0, 3} may or may not be a
subring of the ring Z6.

Definition 1.1.5. Let R be a ring and I ⊆ R a nonempty subset. We say that
I is an ideal of R if

1) for all x, y ∈ I, we have x− y ∈ I and

2) for all x ∈ I, r ∈ R we have rx ∈ I.

We will say that an ideal, I ⊆ R, is proper if the containment is strict.

Definition 1.1.6. Let R, T be rings. A function f : R −→ T is said to be a
homomorphism of rings if

1) f(x+ y) = f(x) + f(y) for all x, y ∈ R and

2) f(xy) = f(x)f(y) for all x, y ∈ R.

We note here that if R and T have identity then we will require that f(1R) =
1T .

Example 1.1.7. 1. Let r ∈ R and define φr : R[x] −→ R be defined by
φ(p(x)) = p(r). This is an important class of ring homomorphisms.

2. The map ψn : Z −→ Zn defined by ψ(k) = k (reduction of k modulo n) is
a ring homomorphism.

Example 1.1.8. 1. The set of subgroups of Z given by nZ (n ∈ N
⋃
{0}) is

a set of ideals of Z. Show that this is an exhaustive list of ideals.

2. If X is an subset of R then 〈X〉 = {
∑
rixi|xi ∈ X, ri ∈ R} is called the

ideal generated by X. Show that the ideal generated by X is

〈X〉 =
⋂

I⊃X

I

where the intersection ranges over all ideals containing X.

Definition 1.1.9. Let R be a ring.

1) u ∈ R is called a unit if there is a v ∈ R such that uv = 1.

2) z ∈ R is called a zero-divisor if there is a nonzero x ∈ R such that zx = 0.

3) a ∈ R is called idempotent if a2 = a.

4) t ∈ R is called nilpotent if there is an n ∈ N such that tn = 0.



1.2. IDEALS 5

5) A ring where all the nonzero elements are units is called a field.

6) If R (a commutative ring with 1) has no nonzero zero-divisors, then R is
called an (integral) domain.

7) If R is an ring with no nonzero nilpotents, then R is said to be reduced.

The following theorem gives some justification to the standard assumption
that ring homomorphisms between commutative rings with identity preserve
identities.

Theorem 1.1.10. Suppose that φ : R −→ T is a nonzero ring homomorphism
and T is a domain. Then φ(1R) = 1T .

Proof. Let φ(1R) = a. Since φ(1R) = φ(1R)φ(1R) we have that a2 = a. Equiv-
alently, we write

a2 − a = 0 = a(a− 1T ).

Since T is a domain, we must have that either a = 0 (which, it is easy to check,
implies that φ is the zero homomorphism) or a = 1T . Since φ is assumed to be
nonzero, we obtain

φ(1R) = a = 1T

and the result is established.

Proposition 1.1.11. Let R and T be rings and φ : R −→ T a homomorphism.

1) φ(R) = im(φ) is a subring of T .

2) ker(φ) is an ideal of R.

Proof. Exercise.

1.2 Ideals

Definition 1.2.1. Let I ( R be a proper ideal and a, b, x ∈ R. We say that:

1) I is prime ab ∈ I implies that a ∈ I or b ∈ I.

2) I is maximal if given an ideal J such that I ⊆ J ( R implies that J = I.

3) I is radical if xn ∈ I implies that x ∈ I.

Ideals are precisely kernals of ring homomorphisms and are the analog of
“normal subgroups” from group theory. In a manner analogous with the situa-
tion from group theory, we make the following construction.

Proposition 1.2.2. Let I be an ideal of R. The quotient group R/I = {r+I|r ∈
R} is a ring with multiplication given by

(r1 + I)(r2 + I) = r1r2 + I.
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We leave the proof as a routine exercise, but before moving on, we note that
if R is commutative, then so is R/I and if R has an identity, then so does R/I
(what is it?).

One of the many nice applications of quotient rings is that they provide a nice
way to characterize some types of ideals. Additionally, sometimes studying R
can be made “easier” if one studies R/I which is oftentimes a simpler structure
that preserves important properties (if the ideal, I, is chosen sagaciously).

Theorem 1.2.3. Let R be a commutative ring with identity and I ⊂ R a proper
ideal.

1. I is maximal if and only R/I is a field.

2. I is prime if and only if R/I is a domain.

3. I is radical if and only if R/I is reduced.

Proof. Suppose that I is maximal and a /∈ I. We have to show that the coset
a + I is a unit in R/I. By the maximality of I, we have that (a, I) = R and
hence there is an r ∈ R and m ∈ I such that ra+m = 1. It is now easy to see
that (a+ I)(r + I) = 1 + I and hence R/I is a field.

On the other hand, suppose that R/I is a field and let J be an ideal in R
such that I ⊆ J ( R. We have to show that J = I. Let j ∈ J \ I. Since j /∈ I
and R/I is a field, j + I is a unit in R/I and so there is a coset x+ I such that

(j + I)(x+ I) = 1 + I = jx+ I.

We conclude that there is an α ∈ I ⊆ J such that jx+ α = 1 and hence 1 ∈ J .
This is a contradiction. Hence J \ I = ∅, and so J = I.

The other parts are similar and left as exercises.

Corollary 1.2.4. Any maximal ideal is prime and any prime ideal is radical.

A direct proof of this result is striaghtforward, but we use the above.

Proof. Field =⇒ integral domain =⇒ reduced.

The next result shows that any commutative ring with identity possess a
maximal (hence prime, hence radical) ideal. This result depends on a spe-
cial case of the axiom of choice called Zorn’s Lemma. We briefly recall Zorns’
Lemma.

Zorn’s Lemma: Let S be a partially ordered set with the property that
any chain in S has an upper bound in S. Then S has a maximal element.

Theorem 1.2.5. Let R be a commutative ring with identity. Then R has a
maximal ideal. More specifically, is I ⊂ R is a proper ideal, then I is contained
in a maximal ideal.
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Proof. We begin by proving the second, slightly stronger statement.
Let I ⊂ R be a proper ideal and S = {J ( R|J is an ideal with I ⊆ J}.

Note that the set S is nonempty since I ∈ S.
To apply Zorn, we must show that any chain in S has an upper bound in S.

To this end, let C = {Jα}α∈Λ be a chain in S (that is, if Jα and Jβ are elements
of C, then Jα ⊆ Jβ or Jβ ⊆ Jα). Let M =

⋃
α∈Λ Jα. It is clear that if M is an

element of S, then M is our desired upper bound.
To see that M is an element of S, we must show that it is a proper ideal

containing I. To see that M is an ideal, we first let x, y ∈M . Since M
⋃
α ∈ Λ

we have that for some α, beta, x ∈ Jα and y ∈ Jβ without loss of generality, we
will assume that Jalpha ⊆ Jβ and hence x, y ∈ Jβ . Since Jβ is an ideal, we have
that x− y ∈ Jβ ⊆M . Also since x ∈ Jβ and Jβ is an ideal, then rx ∈ Jβ ⊆M
for all r ∈ R. This establishes the fact that M is an ideal.

Now we have to establish that M is a proper ideal. If M is not proper, then
1 ∈M =

⋃
α∈Λ Jα and hence 1 ∈ Jα for some α ∈ Λ, but this is a contradiction

since each Jα is assumed to be proper.
Since any chain has an upper bound, we apply Zorn’s lemma to obtain that

the set S has a maximal element M, hence I ⊆ M where M is a maximal ideal.
The weaker statement now follows since we can take I to be the zero ideal

(which is proper, since R has an identity).

1.3 Operations on Ideals and the Homomorphism
Theorems

Theorem 1.3.1. Let A1, A2, · · · , An, B be ideals of R. Then the following sets
form ideals of R.

1. A1 +A2 + · · ·+An = {a1 + a2 + · · ·+ an|ai ∈ Ai}.

2. A1A2 · · ·An = {
∑k

i=1 a1a2 · · · an|ai ∈ Ai}.

Additionally, we have the following.

a) (A1 +A2) +A3 = A1 + (A2 +A3).

b) (A1A2)A3 = A1(A2A3).

c) B(A1 +A2 + · · ·+An) = BA1 +BA2 + · · ·+BAn.

Proof. Exercise.

Theorem 1.3.2. If φ : R −→ T is a ring homomorphism, then φ induces an
isomorphism

φ : R/ker(φ) −→ im(φ).
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Proof. We define φ(r + ker(φ)) = φ(r). We will first show that phi is well-
defined.

Suppose that x+ ker(φ) = y + ker(φ). This means that x− y ∈ ker(φ) and
hence φ(x − y) = 0 (equivalently, φ(x) = φ(y)), and hence φ(x + ker(φ)) =
φ(y + ker(φ)).

With this in hand, it is easy to see that φ is a homomorphism. It remains to
show that φ is one to one and onto. The “onto” part is easy (since the target is
im(φ)). To see that φ is one to one, we assume that x+ker(φ) is in the kernal of
φ. This means that φ(x) = 0 and hence x ∈ ker(φ) and so the coset x+ ker(φ)
is the zero coset.
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