Due January 30th Choose 5 problems to solve
1.2.17) Let G_{n} be the graph whose vertices are permutations of $\{1, \ldots, n\}$, where two permutations are adjacent if they differ by interchanging a pair of adjacent entries (See book for G_{3}). Prove that G_{n} is connected.
1.2.18) Let G be the graph whose vertex set is the set of k-tuples with elements in $\{0,1\}$, and edges between tuples that differ in exactly two positions.
1.2.21) Let G be a self-complementary graph. Prove that G has a cut-vertex if and only if G has a vertex of degree 1 .
1.2.22) Prove that a graph is connected if and only if for every partition of its vertices into two non-empty sets, there is an edge with endpoints in both sets.
1.2.24) Let G be a graph having no isolated vertices, and no induced subgraphs with exactly two edges. Prove that G is a complete graph.
1.2.27) Let G_{n} be the graph who vertices are the permutations of $\{1, \ldots n\}$, with two permutations adjacent if they differ by swapping a pair of entries (not necessarily adjacent entries, as in Problem 7). Prove that G_{n} is bipartite. (Hint: count the number of pairs $i<j$ with $a_{i}>a_{j}$. These are called inversions.).
1.2.30) Let G be a simple graph with vertices v_{1}, \ldots, v_{n}. Let A^{k} be the k th power of the adjacency matrix A under matrix multiplication. Prove that the i, j entry of A^{k} is the number of v_{i} to v_{j} walks of length k in G. Prove that G is bipartite if and only if, for the nearest odd integer r to n, the diagonal entries of A^{r} are all 0 .
1.2.39) Suppose that every vertex of a loopless graph G has degree at least 3 . Prove that G has a cycle of even length. (Hint: consider a maximal path).
1.2.42) Let G be a connected simple graph that does not have C_{4} or P_{4} as induced subgraphs. Prove that G has a vertex adjacent to all other vertices. (Hint: consider a vertex of maximum degree)

Bonus) Suppose that one knows $\left(\lambda_{1}+\ldots+\lambda_{n}\right),\left(\lambda_{1}^{2}+\ldots+\lambda_{n}^{2}\right), \ldots,\left(\lambda_{1}^{k}+\ldots+\lambda_{n}^{k}\right)$, \ldots for arbitrarily many k (though I believe up to $k=n$ suffices). Prove that you can recover what $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are (up to reordering).

