1 Orthonormal sets in Hilbert space

Let $S \subseteq H$. We denote by $[S]$ the span of S, i.e., the set of all linear combinations of elements from S. A set $\{u_{\alpha} : \alpha \in A\}$ is called orthonormal, if $\langle u_\alpha, u_\beta \rangle = 0$ for all $\alpha \neq \beta$ and $||u_\alpha|| = 1$ for all α . (Here A is some index set.)

For every $x \in H$ we define a transform $\hat{x} : A \to \mathbb{C}$ by $\hat{x}(\alpha) = \langle x, u_{\alpha} \rangle$ and call these the Fourier coefficients of x with respect to $\{u_{\alpha} : \alpha \in A\}.$

Let $F \subseteq A$ be finite and set $M_F = \{ \{u_\alpha : \alpha \in F \} \}$. We observe the following facts.

1. If $\varphi : A \to \mathbb{C}$ with $\varphi(\alpha) = 0$ for $\alpha \notin F$, then $y \in M_F$ defined by

$$
y = \sum_{\alpha \in F} \varphi(\alpha) u_{\alpha}
$$

satisfies $\hat{y}(\alpha) = \varphi(\alpha)$. Also,

$$
||y||^2 = \sum_{\alpha \in F} |\varphi(\alpha)|^2.
$$

2. If $x \in H$ and s_F is defined by

$$
s_{F,x} = \sum_{\alpha \in F} \widehat{x}(\alpha) u_{\alpha},
$$

then

$$
||x - s_{F,x}|| < ||x - s||
$$

for every $s \in M_F$ with $s \neq s_F$. Moreover,

$$
\sum_{\alpha \in F} |\widehat{x}(\alpha)|^2 \le ||x||^2.
$$

The first statement of these follows immediately from the orthogonality conditions. For the second part note that $s_{F,x}$ and x have the same Fourier coefficient for $\alpha \in F$, i.e., $x - s_{F,x} \perp M_F$. Since $s_{F,x} \in M_F$, we obtain

$$
x - s_{F,x} \perp s - s_{F,x}
$$

for all $s \in M_F$. Hence for $s \in M_F$

$$
||x - s||2 = ||x - s_{F,x}||2 + ||s_{F,x} - s||2
$$

and the second term on the right is zero only if $s = s_{F,x}$. The choice $s = 0$ gives the last inequality. (This means in particular that s_{Fx} is the unique best approximation to x in M_F with respect to $\Vert . \Vert$)

Example. Rewrite these statements if $H = L^2([0,1])$ and the orthonormal system is given by the exponentials $u_n(t) = e^{2\pi i t n}$ where $n \in \mathbb{Z}$.

We would like to remove the finiteness condition from the previous statements. Let A be an arbitrary index set and $0 \leq \varphi(\alpha) \leq \infty$ for every $\alpha \in A$. Then

$$
\sum_{\alpha\in A}\varphi(\alpha)
$$

is short notation for the supremum of the set of all finite sums $\varphi(\alpha_1) + ... +$ $\varphi(\alpha_n)$ with $\alpha_i \in A$. (In Math 750 terms: the series is the Lebesgue integral of φ with respect to counting measure on A.)

We write $\ell^2(A)$ to indicate the class of functions φ with

$$
\sum_{\alpha \in A} |\varphi(\alpha)|^2 < \infty.
$$

We note that this is also a Hilbert space with scalar product

$$
\langle \varphi, \psi \rangle = \sum_{\alpha \in A} \varphi(\alpha) \overline{\psi(\alpha)}.
$$

We note that the simple functions are dense in every L^p space. In particular, the set of functions φ that are zero on all but finitely many elements of A is dense in $\ell^2(A)$. For completeness we include a proof of the density statement.

Theorem 1. Let μ be a Borel measure, and let S be the class of complex, measurable, simple functions on X so that

$$
\mu(\{x : s(x) \neq 0\}) < \infty.
$$

If $1 \leq p < \infty$, then S is dense in $L^p(\mu)$.

Proof. Evidently $S \subseteq L^p(\mu)$. For the other direction, suppose first $f \geq 0$ in $L^p(\mu)$. Let s_n be a sequence of simple functions approximating f from below. Then $s_n \in L^p$ and hence in S. Since $|f - s_n|^p \leq f^p$, dominated convergence shows that the p -norm of the difference goes to zero, and the complex case follows by taking real and imaginary parts, followed by taking positive and negative parts for each. \Box **Lemma 1.** If $\varphi \in \ell^2(A)$, then $\{\alpha \in A : \varphi(\alpha) = 0\}$ is at most countable.

Proof. Let $A_n = \{ \alpha \in A : |\varphi(\alpha)| \geq 1/n \}$. Then

$$
\sum_{\alpha \in A_n} 1 \le \sum_{\alpha \in A_n} |n\varphi(\alpha)|^2 \le n^2 \sum_{\alpha \in A} |\varphi(\alpha)|^2
$$

and the right side is finite. Hence A_n is a finite set, and the set of values where φ is nonzero is a countable union of finite sets. \Box

Definition 1. Let (X_1, d_1) and (X_2, d_2) be two metric spaces. A map $F: X_1 \to X_2$ is called an isometry, if

$$
d_2(F(a), F(b)) = d_1(a, b)
$$

for all $a, b \in X_1$.

The next goal is to show that the map $\mathcal{F}: H \to \ell^2(A)$ defined by $\mathcal{F}(x) =$ \hat{x} is an isometry from the span of linear combinations of an orthonormal basis ${u_\alpha}$ onto $\ell^2(A)$.

Theorem 2. Let X, Y be two metric spaces where X is complete. Assume

- 1. $f: X \rightarrow Y$ is continuous,
- 2. X has a dense subspace X_0 on which f is an isometry,
- 3. $f(X_0)$ is dense in Y.

Then f is an isometry of X onto Y .

Proof. From continuity of f it is immediately clear that f is an isometry on X. Let $y \in Y$. Let $(x_n) \subseteq X_0$ be a sequence with $f(x_n) \to y$. The sequence $f(x_n)$ is therefore Cauchy, and since f is an isometry on X_0 , (x_n) is Cauchy and by completeness of x has a limit. Continuity of f implies $f(x) = y$. \Box

Theorem 3. Let $U = \{u_{\alpha} : \alpha \in A\}$ be an orthonormal set in H, and let P be the space of finite linear combinations of U. Then for every $x \in H$,

$$
\sum_{\alpha \in A} |\widehat{x}(\alpha))|^2 \le ||x||^2,
$$

and $\mathcal{F}: H \to \ell^2(A)$ defined by $\mathcal{F}(x) = \hat{x}$ is a continuous linear mapping
whose restriction to \overline{P} is an isometry onto $\ell^2(A)$ whose restriction to \overline{P} is an isometry onto $\ell^2(A)$.

Proof. We had seen that the inequality holds for every finite set $F \subseteq A$. Theorem 1 implies that it holds for all $x \in H$. (This is also called Bessel's inequality.)

It follows from this inequality that $\mathcal F$ maps H into $\ell^2(A)$. Evidently $\mathcal F$ is linear, and an application of Bessel to $x - y$ shows that F is continuous.

We had seen before that $\mathcal F$ is an isometry of P onto the subspace of all elements in $\ell^2(A)$ with finite support. This subspace is dense in $\ell^{\binom{A}{A}}$ (Theorem 1 again). From Theorem 2 it follows that $\mathcal F$ is an isometry of P onto $\ell^2(A)$. (This is also called the Riesz-Fischer theorem.) \Box

Theorem 4. Each of the following four conditions on an orthonormal set u_{α} implies the other three.

- 1. $\{u_{\alpha}\}\$ is a maximal orthonormal set in H,
- 2. The set P of all finite linear combinations of elements from $\{u_{\alpha}\}\$ is dense in H,
- 3. The equality

$$
\sum_{\alpha \in A} |\widehat{x}(\alpha)|^2 = ||x||^2
$$

holds for all $x \in H$,

4. The equality

$$
\sum_{\alpha \in A} \widehat{x}(\alpha) \overline{\widehat{y}(\alpha)} = \langle x, y \rangle
$$

holds for all $x, y \in H$.

By defining the scalar product

$$
\langle a, b \rangle_{\ell^2(A)} = \sum_{\alpha \in A} a(\alpha) \overline{b(\alpha)},
$$

the last identity can be written as $\langle \hat{x}, \hat{y} \rangle_{\ell^2(A)} = \langle x, y \rangle_H$. Maximal orthonor-
mal acts are also salled orthonormal bases. mal sets are also called orthonormal bases.

Proof. To say that $\{u_{\alpha}\}\$ is maximal means that no vector from H can be added to this set in such a way that the resulting set is still orthonormal. (See also the current homework.)

Assume that p is not dense in H. Then there exists $x \in H\backslash \overline{P}$. By the theorem about closed subspaces, there exists $y \in \overline{P}^{\perp}$ of norm 1. This can be added to $\{u_{\alpha}\}\)$ to yield a larger orthonormal set.

It follows that (1) impliies (2).

The previous theorem showed that the Fourier transform is an isometry on \overline{P} . If this is all of H, then (3) follows.

Polarization:

$$
4\langle x,y\rangle = \|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2.
$$

Hence every norm identity yields a corresponding scalar product identity. In particular, (3) implies (4).

Finally, if (1) does not hold, then there exists $u \in H$ with $\langle u, u_{\alpha} \rangle = 0$ for all α and $||u|| = 1$. The evidently every Fourier coefficient of u is zero, hence so is the left side of (4), but the right side with $x = y = u$ is 1. \Box

2 Application to the triogonmetric system

From the previous theorem we know that in order to prove that the system $\{u_n\}_{n\in\mathbb{Z}}$ with

$$
u_n(t) = e^{2\pi int}
$$

is an orthonormal basis of $H = L^2([0,1])$, we need to prove that it is dense in H . Recall that X can be the real line or the unit circle. We denote by $C_c(x)$ the continuous functions with compact support in X. One more tool from Math 750:

Theorem 5. For $1 \leq p < \infty$, $C_c(X)$ is dense in $L^p(\mu)$ where μ is a Borel measure on X.

Proof. Recall that S is the set of complex, measurable, simple functions on X. Lusin's Theorem (Folland, Section 2.4, Exercise 44):

For every $s \in S$ and $\varepsilon > 0$ there exists $g \in C_c(X)$ such that $g = s$ except on a set of measure $\langle \varepsilon, \text{ and } |g| \leq ||s||_{\infty}$.

Putting this together leads to

$$
||g - s||_p \le 2\varepsilon^{1/p} ||s||_{\infty}.
$$

We had seen that S is dense in $L^p(\mu)$, hence any $f \in L^p(\mu)$ can be approximated by functions in $C_c(X)$. \Box

For $X = [0, 1]$ this means that the continuous functions are dense in $L^2([0,1])$. Thus we need to prove that every continuous function can be

approximated in arbitarily close in L^2 by trigonometric polynomials. There is a useful connection between $\|.\|_2$ and $\|.\|_{\infty}$ on compact sets:

$$
\left(\int |g|^2 d\mu\right)^{1/2} \leq \|g\|_{\infty},
$$

hence it suffices to approximate continuous functions by trigonometric polynomials in L^{∞} norm.

Goal. Let f be continuous, and let $\varepsilon > 0$. Show that there exists a finite sequence of coefficients $a_n = a_n(\varepsilon)$ so that f_ε defined by

$$
f_{\varepsilon}(t) = \sum_{n=-N}^{N} a_n e^{2\pi int}
$$

satisfies

$$
\sup_{x \in [0,1]} |f(x) - f_{\varepsilon}(x)| < \varepsilon.
$$

We construct f_{ε} via convolution. Some preliminary ideas: Let $\varphi \in$ $L^2([0,1])$ with $\int \varphi = 1$. Define

$$
f_{\varphi}(x) = \int_0^1 f(x - u)\varphi(u)du.
$$

Two crucial identities: First,

$$
\widehat{f}_{\varphi}(n) = \widehat{f}(n)\widehat{\varphi}(n),
$$

and secondly

$$
f_{\varphi}(x) - f(x) = \int_0^1 \varphi(u)(f(x) - f(x - u))du.
$$

This means that if φ is a trigonometric polynomial of degree N, then automatically f_{φ} is as well, and if we want to estimate the difference, it is sufficient to estimate the differences under the integral sign!

Assume that we can find a family $\{Q_k\}$ of trigonometric polynomials with the following properties.

- (i) $Q_k(x) \geq 0$ for all $x \in \mathbb{R}$,
- (ii) $\int_{-1/2}^{1/2} Q_k(x) dx = 1$ for all k,

(iii) If $0 < \delta < 1/2$, then $Q_k(x) \to 0$ uniformly for all $\delta \leq |x| \leq 1/2$ as $k \to \infty$.

We show first that the existence of such a family implies the desired density statement. Let $\varepsilon > 0$. Let $\delta > 0$ so that

$$
|x - t| < \delta \text{ implies } |f(x) - f(t)| < \varepsilon \tag{1}
$$

for all x and t. (Note that our assumptions imply uniform continuity of f .)

We obtain from property (iii) that there exists k_0 such that for all $k \geq k_0$ and $\delta \leq |x| \leq 1/2$ we have

$$
Q_k(x) \le \frac{\varepsilon}{2\|f\|_{\infty}}.\tag{2}
$$

Define

$$
f_k(x) = \int_0^1 f(u)Q_k(x-u)du = \int_{-1/2}^{1/2} f(x-u)Q_k(u)du.
$$

We note that f_k is a trigonometric polynomial since Q_k is a finite linear combination of exponentials; plug the corresponding representation of Q_k into the first integral and change summation and integration. (The two representations can be shown to be equal with a change of variable.) Property (ii) implies that

$$
f_k(x) - f(x) = \int_{-1/2}^{1/2} (f(x - u) - f(x)) Q_k(u) du.
$$

Break the integral into two pieces, one over $|u| \leq \delta$ and the other over $\delta \leq |u| \leq 1/2$. Note that (1) and property (ii) imply

$$
\left| \int_{|u| \le \delta} (f(x - u) - f(x)) Q_k(u) du \right| \le \varepsilon
$$

and that (2) implies

$$
\left| \int_{\delta \leq |u| \leq 1/2} (f(x - u) - f(x)) Q_k(u) du \right| \leq 2 \|f\|_{\infty} \int_{\delta \leq |u| \leq 1/2} Q_k(u) du \leq \varepsilon.
$$

It remains to show that a family ${Q_k}$ with the stated properties exists. We define k

$$
Q_k(x) = c_k \left(\frac{1 + \cos 2\pi x}{2}\right)^k
$$

where c_k is chosen so that $\int_0^1 Q_k(x)dx = 1$. If you have seen Gamma functions, √

$$
c_k = \frac{k! \sqrt{\pi}}{2\Gamma[k + \frac{1}{2}]},
$$

but this is not necessary to know.

Expanding Q_k using the binomial theorem implies that Q_k is a trigonometric polynomial. Evidently $Q_k \geq 0$, and $\int Q_k = 1$ by construction. It remains to show that Q_k goes to zero uniformly away from the origin. We note first that Q_k is decreasing on [0, 1/2]. Hence for $\delta > 0$ and $\delta \leq x \leq 1/2$ we have

$$
Q_k(x) \le Q_k(\delta),
$$

and if we can show that this value goes to zero, the uniform convergence follows. First, an inequality for c_k : Since Q_k is even, we have

$$
1 = 2c_k \int_0^{1/2} \left(\frac{1 + \cos(2\pi t)}{2}\right)^k dt > 2c_k \int_0^{1/2} \left(\frac{1 + \cos(2\pi t)}{2}\right)^k \sin(2\pi t) dt,
$$

note that $sin(2\pi t) \geq 0$ on [0, 1/2]. The integral on the right hand side can be evaluated to $(\pi(k+1))^{-1}$. Hence

$$
c_k \le \frac{\pi (k+1)}{2},
$$

and we obtain

$$
Q_k(\delta) \le \frac{\pi (k+1)}{2} \left(\frac{1 + \cos(2\pi \delta)}{2} \right)^k.
$$

This goes to zero for fixed $0 < \delta < 1/2$ as $k \to \infty$, since it is of the form $C(k+1)\eta^k$ with fixed $C>0$ and $0<\eta<1$.