Math 857 Fall 2015

1 Orthonormal sets in Hilbert space

Let S C H. We denote by [S] the span of S, i.e., the set of all linear
combinations of elements from S. A set {uy : o € A} is called orthonormal,
if (uq,ug) =0 for all o # B and [Jua|| =1 for all . (Here A is some index
set.)

For every x € H we define a transform 7 : A — C by Z(a) = (z,u,) and
call these the Fourier coefficients of « with respect to {u, : @ € A}.

Let ' C A be finite and set Mp = [{uq : @ € F'}]. We observe the
following facts.

1. If ¢ : A — C with p(a) =0 for a ¢ F, then y € Mp defined by
Y= Z p(a)ua
acl
satisfies y(a) = p(«a). Also,

yl* =" le(e)*.

acF

2. If x € H and s is defined by
SFz = Z Z(a)uq,
acl

then
|z = spall <z — s

for every s € Mg with s # sp. Moreover,

> lE(@) <l

aclF

The first statement of these follows immediately from the orthogonality
conditions. For the second part note that s, and x have the same Fourier
coefficient for « € F', i.e., x — sp, L Mp. Since sp, € Mg, we obtain

T—8Spzs L s—8Spy



for all s € Mp. Hence for s € Mg
lz = sl* = ||z = skl + llspe — sl

and the second term on the right is zero only if s = sp,. The choice s =0
gives the last inequality. (This means in particular that sp, is the unique
best approximation to z in Mp with respect to ||.||)

Example. Rewrite these statements if H = L?([0,1]) and the orthonormal
system is given by the exponentials u,(t) = e2™*" where n € Z.

We would like to remove the finiteness condition from the previous state-
ments. Let A be an arbitrary index set and 0 < p(a) < oo for every o € A.

Then
> ()

acA
is short notation for the supremum of the set of all finite sums p(a1) + ... +
() with o € A. (In Math 750 terms: the series is the Lebesgue integral
of ¢ with respect to counting measure on A.)
We write £2(A) to indicate the class of functions ¢ with

Y le(@)? < oo

a€A
We note that this is also a Hilbert space with scalar product
(. 0) = pla)yi(a).
acA

We note that the simple functions are dense in every LP space. In par-
ticular, the set of functions ¢ that are zero on all but finitely many elements
of A is dense in ¢2(A). For completeness we include a proof of the density
statement.

Theorem 1. Let u be a Borel measure, and let S be the class of compler,
measurable, simple functions on X so that

ul({ : 5(2) £ 0}) < o0,
If 1 <p < oo, then S is dense in LP ().

Proof. Evidently S C LP(u). For the other direction, suppose first f > 0
in LP(p). Let s, be a sequence of simple functions approximating f from
below. Then s, € LP and hence in S. Since |f — s,|P < fP, dominated
convergence shows that the p-norm of the difference goes to zero, and the
complex case follows by taking real and imaginary parts, followed by taking
positive and negative parts for each. ]



Lemma 1. If ¢ € %(A), then {a € A : p(a) = 0} is at most countable.
Proof. Let A,, ={a € A:|p(a)| > 1/n}. Then

Y1) Inp@P <) e(a)f

oA, oA, acA

and the right side is finite. Hence A, is a finite set, and the set of values
where ¢ is nonzero is a countable union of finite sets. O

Definition 1. Let (Xi,d;) and (X2,d2) be two metric spaces. A map
F: X1 — X5 is called an isometry, if

da(F(a), F (b)) = di(a,b)
for all a,b € X;.

The next goal is to show that the map F : H — ¢%(A) defined by F(z) =
7 is an isometry from the span of linear combinations of an orthonormal basis

{uo} onto £2(A).

Theorem 2. Let X,Y be two metric spaces where X is complete. Assume
1. f: X =Y is continuous,
2. X has a dense subspace Xy on which f is an isometry,
3. f(Xo) is dense inY .

Then f is an isometry of X onto Y.

Proof. From continuity of f it is immediately clear that f is an isometry on
X. Let y € Y. Let (x,) C Xo be a sequence with f(z,) — y. The sequence
f(zy,) is therefore Cauchy, and since f is an isometry on Xy, (x,) is Cauchy
and by completeness of x has a limit. Continuity of f implies f(z) =y. O

Theorem 3. Let U = {u, : a € A} be an orthonormal set in H, and let P
be the space of finite linear combinations of U. Then for every x € H,

> l2@)? < =),

a€A

and F : H — (*(A) defined by F(x) = T is a continuous linear mapping

whose restriction to P is an isometry onto £2(A).



Proof. We had seen that the inequality holds for every finite set F' C A.
Theorem 1 implies that it holds for all x € H. (This is also called Bessel’s
inequality.)

It follows from this inequality that F maps H into ¢2(A). Evidently F
is linear, and an application of Bessel to x — y shows that F is continuous.

We had seen before that F is an isometry of P onto the subspace of
all elements in ¢2(A) with finite support. This subspace is dense in £(A)
(Theorem 1 again). From Theorem 2 it follows that F is an isometry of P
onto £2(A). (This is also called the Riesz-Fischer theorem.) O

Theorem 4. Fach of the following four conditions on an orthonormal set
Uq, tmplies the other three.

1. {uq} is a mazimal orthonormal set in H,

2. The set P of all finite linear combinations of elements from {uy} is
dense in H,

3. The equality

> lz@))? = )

acA
holds for all x € H,

4. The equality

holds for all x,y € H.

By defining the scalar product

(a,b)e2ay = > a(a)b(a),

a€A

the last identity can be written as (Z,y)2(4) = (z,y)n. Maximal orthonor-
mal sets are also called orthonormal bases.

Proof. To say that {u,} is maximal means that no vector from H can be
added to this set in such a way that the resulting set is still orthonormal.
(See also the current homework.)

Assume that p is not dense in H. Then there exists * € H\P. By the

theorem about closed subspaces, there exists y € P of norm 1. This can
be added to {us} to yield a larger orthonormal set.



It follows that (1) impliies (2).

The previous theorem showed that the Fourier transform is an isometry
on P. If this is all of H, then (3) follows.

Polarization:

4a,y) = llz +yl* = llz =yl + iz + iy)*3 — ille — iy]*.

Hence every norm identity yields a corresponding scalar product identity.
In particular, (3) implies (4).

Finally, if (1) does not hold, then there exists u € H with (u,u,) = 0
for all @ and ||u|| = 1. The evidently every Fourier coefficient of u is zero,
hence so is the left side of (4), but the right side with z =y = u is 1. O

2 Application to the triogonmetric system

From the previous theorem we know that in order to prove that the system

{un}nez with ]
un(t) — 627rznt

is an orthonormal basis of H = L?([0, 1]), we need to prove that it is dense
in H. Recall that X can be the real line or the unit circle. We denote by

C¢(x) the continuous functions with compact support in X. One more tool
from Math 750:

Theorem 5. For 1 < p < oo, C.(X) is dense in LP(u) where u is a Borel
measure on X.

Proof. Recall that S is the set of complex, measurable, simple functions on
X. Lusin’s Theorem (Folland, Section 2.4, Exercise 44):

For every s € S and £ > 0 there exists g € C.(X) such that g = s except
on a set of measure < ¢, and |g| < [|s]|c0-

Putting this together leads to

lg = sllp < 267 s]loc-

We had seen that S is dense in LP(u), hence any f € LP(u) can be
approximated by functions in C.(X). O

For X = [0,1] this means that the continuous functions are dense in
L%([0,1]). Thus we need to prove that every continous function can be



approximated in arbitarily close in L? by trigonometric polynomials. There
is a useful connection between ||.||2 and ||.||co on compact sets:

1/2
( / \g\zdu> < liglloos

hence it suffices to approximate continuous functions by trigonometric poly-
nomials in L* norm.

Goal. Let f be continuous, and let ¢ > 0. Show that there exists a finite
sequence of coefficients a,, = a,(g) so that f. defined by

N
fs(t) — Z an€27rint
n=—N

satisfies
sup |f(z) — fe(z)| <e.
z€[0,1]
We construct f. via convolution. Some preliminary ideas: Let ¢ €
L*([0,1]) with [ ¢ = 1. Define

1
fo(z) :/0 flz —u)p(u)du.

Two crucial identities: First,

and secondly

This means that if ¢ is a trigonometric polynomial of degree N, then
automatically f, is as well, and if we want to estimate the difference, it is
sufficient to estimate the differences under the integral sign!

Assume that we can find a family {Qy} of trigonometric polynomials
with the following properties.

(i) Qk(z) >0 for all z € R,

(i) S, Qu(@)dz =1 for all ,



(iii) If 0 < 6 < 1/2, then Qi(z) — 0 uniformly for all § < |z| < 1/2 as
k — oo.

We show first that the existence of such a family implies the desired
density statement. Let € > 0. Let 6 > 0 so that

|z —t| < 6 implies |f(z) — f(t)| <e (1)

for all z and ¢. (Note that our assumptions imply uniform continuity of f.)
We obtain from property (iii) that there exists ko such that for all k > kg
and 6 < |z| < 1/2 we have

Qr(z) < M (2)
Define
1 1/2
o) = [ f@ute —wdu= [ s - w)@uwin

We note that f is a trigonometric polynomial since @, is a finite linear
combination of exponentials; plug the corresponding representation of Qy
into the first integral and change summation and integration. (The two rep-
resentations can be shown to be equal with a change of variable.) Property
(ii) implies that

1/2

ful@) — f(z) = / (Fl— ) — £(2)) Qi ()

—-1/2

Break the integral into two pieces, one over |u| < ¢ and the other over
d < |u] < 1/2. Note that (1) and property (ii) imply

<e

‘ /| (e~ @)@

and that (2) implies

[ Ua—w-s@)d <2fle [ Quudu<e.
6<|u|<1/2 0<|ul<1/2

It remains to show that a family {Qy} with the stated properties exists.

We define

k
Qu(x) = & <1 +c;s?7rx>



where ¢y, is chosen so that fol Qr(z)dx = 1. If you have seen Gamma func-

tions,
kN
Tk + 1]

but this is not necessary to know.

Expanding @)y, using the binomial theorem implies that @y is a trigono-
metric polynomial. Evidently Q > 0, and [ Q) = 1 by construction. It
remains to show that @ goes to zero uniformly away from the origin. We
note first that Qy, is decreasing on [0,1/2]. Hence for 6 > 0 and 6 <z <1/2
we have

Ck

Qr(x) < Qr(9),

and if we can show that this value goes to zero, the uniform convergence
follows. First, an inequality for cg: Since Qj is even, we have

1/2 k 1/2 k
1= 2ck/ <1+C°;(2”)> dt > 2ck/ <1+C°25(27Tt)> sin(27t)dt,
0 0

note that sin(27t) > 0 on [0,1/2]. The integral on the right hand side can
be evaluated to (7(k + 1))~!. Hence

w(k+1)

Ck > 9 ;

and we obtain

Qr(9) <

ﬂ(k; 1) <1 +co;(2w5)>’j

This goes to zero for fixed 0 < § < 1/2 as k — o0, since it is of the form
C(k + 1)n* with fixed C > 0 and 0 <7 < 1.



