
Math 857 Fall 2015

1 Orthonormal sets in Hilbert space

Let S ⊆ H. We denote by [S] the span of S, i.e., the set of all linear
combinations of elements from S. A set {uα : α ∈ A} is called orthonormal,
if 〈uα, uβ〉 = 0 for all α 6= β and ‖uα‖ = 1 for all α. (Here A is some index
set.)

For every x ∈ H we define a transform x̂ : A→ C by x̂(α) = 〈x, uα〉 and
call these the Fourier coefficients of x with respect to {uα : α ∈ A}.

Let F ⊆ A be finite and set MF = [{uα : α ∈ F}]. We observe the
following facts.

1. If ϕ : A→ C with ϕ(α) = 0 for α /∈ F , then y ∈MF defined by

y =
∑
α∈F

ϕ(α)uα

satisfies ŷ(α) = ϕ(α). Also,

‖y‖2 =
∑
α∈F
|ϕ(α)|2.

2. If x ∈ H and sF is defined by

sF,x =
∑
α∈F

x̂(α)uα,

then
‖x− sF,x‖ < ‖x− s‖

for every s ∈MF with s 6= sF . Moreover,∑
α∈F
|x̂(α)|2 ≤ ‖x‖2.

The first statement of these follows immediately from the orthogonality
conditions. For the second part note that sF,x and x have the same Fourier
coefficient for α ∈ F , i.e., x− sF,x ⊥MF . Since sF,x ∈MF , we obtain

x− sF,x ⊥ s− sF,x
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for all s ∈MF . Hence for s ∈MF

‖x− s‖2 = ‖x− sF,x‖2 + ‖sF,x − s‖2

and the second term on the right is zero only if s = sF,x. The choice s = 0
gives the last inequality. (This means in particular that sF,x is the unique
best approximation to x in MF with respect to ‖.‖)
Example. Rewrite these statements if H = L2([0, 1]) and the orthonormal
system is given by the exponentials un(t) = e2πitn where n ∈ Z.

We would like to remove the finiteness condition from the previous state-
ments. Let A be an arbitrary index set and 0 ≤ ϕ(α) ≤ ∞ for every α ∈ A.
Then ∑

α∈A
ϕ(α)

is short notation for the supremum of the set of all finite sums ϕ(α1) + ...+
ϕ(αn) with αi ∈ A. (In Math 750 terms: the series is the Lebesgue integral
of ϕ with respect to counting measure on A.)

We write `2(A) to indicate the class of functions ϕ with∑
α∈A
|ϕ(α)|2 <∞.

We note that this is also a Hilbert space with scalar product

〈ϕ,ψ〉 =
∑
α∈A

ϕ(α)ψ(α).

We note that the simple functions are dense in every Lp space. In par-
ticular, the set of functions ϕ that are zero on all but finitely many elements
of A is dense in `2(A). For completeness we include a proof of the density
statement.

Theorem 1. Let µ be a Borel measure, and let S be the class of complex,
measurable, simple functions on X so that

µ({x : s(x) 6= 0}) <∞.

If 1 ≤ p <∞, then S is dense in Lp(µ).

Proof. Evidently S ⊆ Lp(µ). For the other direction, suppose first f ≥ 0
in Lp(µ). Let sn be a sequence of simple functions approximating f from
below. Then sn ∈ Lp and hence in S. Since |f − sn|p ≤ fp, dominated
convergence shows that the p-norm of the difference goes to zero, and the
complex case follows by taking real and imaginary parts, followed by taking
positive and negative parts for each.
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Lemma 1. If ϕ ∈ `2(A), then {α ∈ A : ϕ(α) = 0} is at most countable.

Proof. Let An = {α ∈ A : |ϕ(α)| ≥ 1/n}. Then∑
α∈An

1 ≤
∑
α∈An

|nϕ(α)|2 ≤ n2
∑
α∈A
|ϕ(α)|2

and the right side is finite. Hence An is a finite set, and the set of values
where ϕ is nonzero is a countable union of finite sets.

Definition 1. Let (X1, d1) and (X2, d2) be two metric spaces. A map
F : X1 → X2 is called an isometry, if

d2(F (a), F (b)) = d1(a, b)

for all a, b ∈ X1.

The next goal is to show that the map F : H → `2(A) defined by F(x) =
x̂ is an isometry from the span of linear combinations of an orthonormal basis
{uα} onto `2(A).

Theorem 2. Let X,Y be two metric spaces where X is complete. Assume

1. f : X → Y is continuous,

2. X has a dense subspace X0 on which f is an isometry,

3. f(X0) is dense in Y .

Then f is an isometry of X onto Y .

Proof. From continuity of f it is immediately clear that f is an isometry on
X. Let y ∈ Y . Let (xn) ⊆ X0 be a sequence with f(xn)→ y. The sequence
f(xn) is therefore Cauchy, and since f is an isometry on X0, (xn) is Cauchy
and by completeness of x has a limit. Continuity of f implies f(x) = y.

Theorem 3. Let U = {uα : α ∈ A} be an orthonormal set in H, and let P
be the space of finite linear combinations of U . Then for every x ∈ H,∑

α∈A
|x̂(α))|2 ≤ ‖x‖2,

and F : H → `2(A) defined by F(x) = x̂ is a continuous linear mapping
whose restriction to P is an isometry onto `2(A).
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Proof. We had seen that the inequality holds for every finite set F ⊆ A.
Theorem 1 implies that it holds for all x ∈ H. (This is also called Bessel’s
inequality.)

It follows from this inequality that F maps H into `2(A). Evidently F
is linear, and an application of Bessel to x− y shows that F is continuous.

We had seen before that F is an isometry of P onto the subspace of
all elements in `2(A) with finite support. This subspace is dense in `(A)
(Theorem 1 again). From Theorem 2 it follows that F is an isometry of P
onto `2(A). (This is also called the Riesz-Fischer theorem.)

Theorem 4. Each of the following four conditions on an orthonormal set
uα implies the other three.

1. {uα} is a maximal orthonormal set in H,

2. The set P of all finite linear combinations of elements from {uα} is
dense in H,

3. The equality ∑
α∈A
|x̂(α)|2 = ‖x‖2

holds for all x ∈ H,

4. The equality ∑
α∈A

x̂(α)ŷ(α) = 〈x, y〉

holds for all x, y ∈ H.

By defining the scalar product

〈a, b〉`2(A) =
∑
α∈A

a(α)b(α),

the last identity can be written as 〈x̂, ŷ〉`2(A) = 〈x, y〉H . Maximal orthonor-
mal sets are also called orthonormal bases.

Proof. To say that {uα} is maximal means that no vector from H can be
added to this set in such a way that the resulting set is still orthonormal.
(See also the current homework.)

Assume that p is not dense in H. Then there exists x ∈ H\P . By the

theorem about closed subspaces, there exists y ∈ P⊥ of norm 1. This can
be added to {uα} to yield a larger orthonormal set.
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It follows that (1) impliies (2).
The previous theorem showed that the Fourier transform is an isometry

on P . If this is all of H, then (3) follows.
Polarization:

4〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖23− i‖x− iy‖2.

Hence every norm identity yields a corresponding scalar product identity.
In particular, (3) implies (4).

Finally, if (1) does not hold, then there exists u ∈ H with 〈u, uα〉 = 0
for all α and ‖u‖ = 1. The evidently every Fourier coefficient of u is zero,
hence so is the left side of (4), but the right side with x = y = u is 1.

2 Application to the triogonmetric system

From the previous theorem we know that in order to prove that the system
{un}n∈Z with

un(t) = e2πint

is an orthonormal basis of H = L2([0, 1]), we need to prove that it is dense
in H. Recall that X can be the real line or the unit circle. We denote by
Cc(x) the continuous functions with compact support in X. One more tool
from Math 750:

Theorem 5. For 1 ≤ p < ∞, Cc(X) is dense in Lp(µ) where µ is a Borel
measure on X.

Proof. Recall that S is the set of complex, measurable, simple functions on
X. Lusin’s Theorem (Folland, Section 2.4, Exercise 44):

For every s ∈ S and ε > 0 there exists g ∈ Cc(X) such that g = s except
on a set of measure < ε, and |g| ≤ ‖s‖∞.

Putting this together leads to

‖g − s‖p ≤ 2ε1/p‖s‖∞.

We had seen that S is dense in Lp(µ), hence any f ∈ Lp(µ) can be
approximated by functions in Cc(X).

For X = [0, 1] this means that the continuous functions are dense in
L2([0, 1]). Thus we need to prove that every continous function can be
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approximated in arbitarily close in L2 by trigonometric polynomials. There
is a useful connection between ‖.‖2 and ‖.‖∞ on compact sets:(∫

|g|2dµ
)1/2

≤ ‖g‖∞,

hence it suffices to approximate continuous functions by trigonometric poly-
nomials in L∞ norm.

Goal. Let f be continuous, and let ε > 0. Show that there exists a finite
sequence of coefficients an = an(ε) so that fε defined by

fε(t) =

N∑
n=−N

ane
2πint

satisfies
sup
x∈[0,1]

|f(x)− fε(x)| < ε.

We construct fε via convolution. Some preliminary ideas: Let ϕ ∈
L2([0, 1]) with

∫
ϕ = 1. Define

fϕ(x) =

∫ 1

0
f(x− u)ϕ(u)du.

Two crucial identities: First,

f̂ϕ(n) = f̂(n)ϕ̂(n),

and secondly

fϕ(x)− f(x) =

∫ 1

0
ϕ(u)(f(x)− f(x− u))du.

This means that if ϕ is a trigonometric polynomial of degree N , then
automatically fϕ is as well, and if we want to estimate the difference, it is
sufficient to estimate the differences under the integral sign!

Assume that we can find a family {Qk} of trigonometric polynomials
with the following properties.

(i) Qk(x) ≥ 0 for all x ∈ R,

(ii)
∫ 1/2
−1/2Qk(x)dx = 1 for all k,
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(iii) If 0 < δ < 1/2, then Qk(x) → 0 uniformly for all δ ≤ |x| ≤ 1/2 as
k →∞.

We show first that the existence of such a family implies the desired
density statement. Let ε > 0. Let δ > 0 so that

|x− t| < δ implies |f(x)− f(t)| < ε (1)

for all x and t. (Note that our assumptions imply uniform continuity of f .)
We obtain from property (iii) that there exists k0 such that for all k ≥ k0

and δ ≤ |x| ≤ 1/2 we have

Qk(x) ≤ ε

2‖f‖∞
. (2)

Define

fk(x) =

∫ 1

0
f(u)Qk(x− u)du =

∫ 1/2

−1/2
f(x− u)Qk(u)du.

We note that fk is a trigonometric polynomial since Qk is a finite linear
combination of exponentials; plug the corresponding representation of Qk
into the first integral and change summation and integration. (The two rep-
resentations can be shown to be equal with a change of variable.) Property
(ii) implies that

fk(x)− f(x) =

∫ 1/2

−1/2
(f(x− u)− f(x))Qk(u)du.

Break the integral into two pieces, one over |u| ≤ δ and the other over
δ ≤ |u| ≤ 1/2. Note that (1) and property (ii) imply∣∣∣∣∣

∫
|u|≤δ

(f(x− u)− f(x))Qk(u)du

∣∣∣∣∣ ≤ ε
and that (2) implies∣∣∣∣∣
∫
δ≤|u|≤1/2

(f(x− u)− f(x))Qk(u)du

∣∣∣∣∣ ≤ 2‖f‖∞
∫
δ≤|u|≤1/2

Qk(u)du ≤ ε.

It remains to show that a family {Qk} with the stated properties exists.
We define

Qk(x) = ck

(
1 + cos 2πx

2

)k
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where ck is chosen so that
∫ 1
0 Qk(x)dx = 1. If you have seen Gamma func-

tions,

ck =
k!
√
π

2Γ[k + 1
2 ]
,

but this is not necessary to know.
Expanding Qk using the binomial theorem implies that Qk is a trigono-

metric polynomial. Evidently Qk ≥ 0, and
∫
Qk = 1 by construction. It

remains to show that Qk goes to zero uniformly away from the origin. We
note first that Qk is decreasing on [0, 1/2]. Hence for δ > 0 and δ ≤ x ≤ 1/2
we have

Qk(x) ≤ Qk(δ),

and if we can show that this value goes to zero, the uniform convergence
follows. First, an inequality for ck: Since Qk is even, we have

1 = 2ck

∫ 1/2

0

(
1 + cos(2πt)

2

)k
dt > 2ck

∫ 1/2

0

(
1 + cos(2πt)

2

)k
sin(2πt)dt,

note that sin(2πt) ≥ 0 on [0, 1/2]. The integral on the right hand side can
be evaluated to (π(k + 1))−1. Hence

ck ≤
π(k + 1)

2
,

and we obtain

Qk(δ) ≤
π(k + 1)

2

(
1 + cos(2πδ)

2

)k
.

This goes to zero for fixed 0 < δ < 1/2 as k → ∞, since it is of the form
C(k + 1)ηk with fixed C > 0 and 0 < η < 1.
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