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SUMMARY
cis-regulatory elements (CREs) encode the genomic blueprints of spatiotemporal gene expression programs
enabling highly specialized cell functions. Using single-cell genomics in six maize organs, we determined the
cis- and trans-regulatory factors defining diverse cell identities and coordinating chromatin organization by
profiling transcription factor (TF) combinatorics, identifying TFs with non-cell-autonomous activity, and un-
covering TFs underlying higher-order chromatin interactions. Cell-type-specific CREs were enriched for
enhancer activity and within unmethylated long terminal repeat retrotransposons. Moreover, we found
cell-type-specific CREs are hotspots for phenotype-associated genetic variants and were targeted by selec-
tion during modern maize breeding, highlighting the biological implications of this CRE atlas. Through com-
parison of maize and Arabidopsis thaliana developmental trajectories, we identified TFs and CREs with
conserved and divergent chromatin dynamics, showcasing extensive evolution of gene regulatory networks.
In addition to this rich dataset, we developed single-cell analysis software, Socrates, which can be used to
understand cis-regulatory variation in any species.
INTRODUCTION

The blueprints for development, response to environment, and

basic function in eukaryotic cells are encoded by cis-regulatory

elements (CREs) (Andersson and Sandelin, 2020; Marand

et al., 2017). CREs contain clusters of DNA binding sites recog-

nized by sequence-specific transcription factors (TFs) that coop-

eratively recruit transcriptional regulators (Gerstein et al., 2012;

Ravasi et al., 2010). CRE activity is influenced by nucleosome

occupancy; most TFs require nucleosome-depleted accessible

chromatin to bind their target sequences (Minnoye et al.,

2021). Transcriptional outcomes are dictated by interactions be-

tween core promoters and specific TFs and secondary proteins

assembled at CREs. Distinct TF expression and chromatin

accessibility patterns establish the gene expression programs

of discrete cell types. Detailed maps of CREs and TFs in diverse

cell types are essential for understanding cell function and

driving innovation in biotechnologies, such as in vivo reprogram-

ming of cells, cell-type-specific transgenesis, and induction of

phenotypic variation via genome editing. Despite this impor-

tance, a comprehensive atlas of the CREs and TFs underlining

cell identity and differentiation has yet to be realized in any plant

species.

Efforts to assay TFs and CREs in plants, in contrast to

mammalian models, have been limited by technical restraints

imposed by the cell wall and an inability to culture cell lines.
Past studies employed procedures such as isolation of nuclei

tagged in specific cell types and fluorescence-activated cell

sorting of GFP-taggedmarkers to querying plant cell types (Birn-

baum et al., 2003; Brady et al., 2007; Deal and Henikoff, 2011).

These methods require transgenesis and prior information

regarding cell-type specificity for purification that occlude unbi-

ased discovery. Epigenomic profiling of individual cells in plants

has been limited to proof-of-principle studies in the roots of Ara-

bidopsis thaliana (Dorrity et al., 2020; Farmer et al., 2020).

Systematic characterization of CREs has proven challenging,

because CREs can regulate target genes through long-range

chromatin interactions, spanning tens to hundreds of kilobases.

In metazoan genomes, a majority of chromatin interactions are

mediated by CCCTC-binding factor (CTCF) (Phillips and Corces,

2009). Plant genomes also exhibit higher-order chromatin archi-

tecture, but studied plant lineages lack an orthologous factor to

CTCF, suggesting distinct molecular rules for establishing chro-

matin architecture in plants (Heger et al., 2012).

In addition to a fundamental role in gene regulation, mounting

evidence points to genetic variation of CREs as amajor source of

phenotypic novelty, including disease and evolutionary diver-

gence (Rebeiz and Tsiantis, 2017; Villar et al., 2015). A substan-

tial proportion of phenotype-associated genetic variants have

been attributed to CREs with cell-type- and development-spe-

cific activity (Hekselman and Yeger-Lotem, 2020). The link be-

tween CREs and phenotype highlights the importance for
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understanding the elusive origins of cell-type- and development-

specific regulatory circuitries.

Here, we describe a cis-regulatory atlas at single-cell resolution

in the genetic model and crop species Zea mays. We measured

chromatin accessibility and nuclear gene expression in 72,090

nuclei across six maize organs. We define the cis-regulatory logic

underlying cell identity and detail applications of single-cell

sequencing of assay for transposase accessible chromatin (scA-

TAC-seq) to reveal TFs coordinating chromatin interactions, iden-

tify non-cell-autonomous TFs, and implicate CREs with enhancer

activity and interactive capacity as substantial sources of trait vari-

ation. Through an evolutionary lens, we uncover decayed long ter-

minal repeat (LTR) retrotransposons as contributors toward cell-

type-specific circuitry, present cell-type-specific CREs underlying

alleles targetedbymodernbreeding, andevaluate theevolutionary

impacts of cis-regulatory variation on cellular differentiation be-

tween two highly diverged angiosperms. Finally, we present the

R package ‘‘Socrates,’’ a unified framework for scATAC-seq pre-

processing, normalization, and downstream analysis.

RESULTS

Assembly of a cis-regulatory atlas in maize
To comprehensively assess cis-regulatory variation among cell

types in amajor crop, we isolated nuclei using fluorescence-acti-

vated nuclei sorting and generated single-cell chromatin acces-

sibility profiles using scATAC-seq from six major Z. mays L.

cultivar B73 organs (four out of six organs were biologically repli-

cated), including axillary buds (2), staminate (1) and pistillate

inflorescence (1), whole seedling (2), embryonic root tips (2),

and post-embryonic crown roots (2) (Figures 1A, S1A, and

S1B; Table S1). Analysis of several metrics, including biological

replicates, comparison with previous bulk ATAC-seq data,

transcription start site (TSS) enrichment, fragment size distribu-

tions, and genotyping mixing, was reflective of high-quality scA-

TAC-seq data (Figures S1C–S1L; STAR Methods). In total, we

identified 56,575 nuclei with an average of 31,660 unique Tn5 in-

tegrations (Table S1).

To reveal the genomic locations of putative CREs, we identi-

fied accessible chromatin regions (ACRs) by in silico sorting, re-

sulting in 165,913 ACRs covering ~4% of the maize genome

(STAR Methods). Because most tools for scATAC-seq analysis

are tailored toward human and mouse genomes, we developed

a flexible, species-agnostic model-based approach leveraging a

quasibinomial logistic regression framework to remove un-

wanted sources of technical variation into a freely available R

package termed Socrates (Figures S2A–S2D; STAR Methods).

Following normalization with Socrates, we visualized similarity

among nuclei by projecting into a reduced dimensional space

using uniform manifold approximation projection (UMAP). This

analysis revealed 10 major clusters resembling bulk organs

that were further partitioned into 92 reproducible subclusters

representing putative cell types with distinct chromatin profiles

(Figures 1B–1D and S2E; STAR Methods).

Cell-type annotation and in situ hybridization
To annotate clusters with corresponding cell types, we inte-

grated chromatin accessibility on a per-gene basis as a proxy
3042 Cell 184, 3041–3055, May 27, 2021
for gene expression (Spearman’s correlation coefficient [SCC]

with bulk RNA-seq = 0.54–0.58; Figure S2F; STAR Methods).

We then evaluated differential chromatin accessibility among

clusters for a manually curated list of 221 marker genes using

myriad approaches (Figures 1E, 1F, S2G, and S2H; Table S2;

STAR Methods). Differential chromatin accessibility identified

74% (28,625/38,752) of genes with significant variability be-

tween clusters and a reference set of nuclei, with known marker

genes associated with significantly greater cell-type specificity

relative to background gene sets (empirical: p < 1e-4; Figures

S2G and S2I; Table S3; STAR Methods). Cluster-restricted pat-

terns of gene accessibility were consistent with known cell-type/

domain-specific expression, such as co-localized accessibility

of bundle sheath-specific genes DICARBOXYLIC ACID TRANS-

PORTER1 (DCT2) and RIBULOSE BISPHOSPHATE CARBOX-

YLASE SMALL SUBUNIT2 (SSU2), and mesophyll-specific

genes MALATE DEHYDROGENASE6 (MDH6) and PYRUVATE

DEHYDOGENASE KINASE1 (PDK1) (Figures 1E, 1F, and S2H)

(Chang et al., 2012). In total, we identified 52 cell types for

83% (76/92) of clusters, capturing most expected cell types

from the profiled organs (Table S2). We hypothesize that unde-

scribed cell states are present in these data.

To corroborate predicted cell-type annotations, we performed

RNA in situ hybridization for a subset of differentially accessible

genes with no prior evidence of cell-type specificity. In all cases

(five out of five), in situ expression patterns matched the pre-

dicted localization based on gene accessibility (Figures 1G and

S3A). Estimates of cell-type proportions were concordant with

prior observations, such as bundle sheath and mesophyll cells

within multiple organs (Figure S3B) (Langdale et al., 1989).

Marker-agnostic gene set enrichment analysis of Gene Ontology

(GO) terms exemplified known cell-type functions, such as ‘‘root

hair cell development’’ in root epidermal initials, ‘‘regulation of

stomatal closure’’ in subsidiary cells, and ‘‘malate transmem-

brane transport’’ in mesophyll cells (Figure S3C). Cell types

were generalized by highly specific GO annotations, as most

(>51%) GO terms were enriched in only a handful of cell types

(five or fewer), implicating chromatin accessibility dynamics as

underlying the hallmarks of cell identity (Figure S3C).
Integration of chromatin accessibility and gene
expression from single nuclei
Chromatin accessibility at TSSs is a well-known prerequisite for

transcription. To evaluate the relationship between nuclear

transcription and chromatin accessibility, we sequenced the

transcriptomes of 15,515 seedling nuclei via single-nucleus

RNA-seq (snRNA-seq) and integrated with matched scATAC-

seq seedling data (Figure 2A; STAR Methods). Co-embedding

scATAC-seq (n = 11,882) and snRNA-seq (n = 15,515) nuclei re-

vealed 19 clusters with similar genome-wide profiles (Figures 2B

and 2C; STAR Methods). Comparison of gene variability high-

lighted concordant patterns of chromatin accessibility and nu-

clear transcription across clusters, exemplified by marker genes

with recognized cell-type specificity (SCC within cell types =

[0.52–0.69]; Figures 2D–2F). Analysis of aggregated cell-type

profiles indicated greater variation in chromatin accessibility

relative to RNA expression, suggesting chromatin structure
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Figure 1. Profiling single-nuclei chromatin accessibility in Zea mays

(A) Overview of experimental samples.

(B) Two-dimensional embedding of chromatin accessibility similarity among nuclei with uniform manifold approximation and projection (UMAP). Nuclei are

colored by organ identity.

(C) UMAP embedding of nuclei colored by major cluster identity.

(D) UMAP embeddings after a second round of clustering within each major cluster. Subcluster colors reflect the dominant organ of origin.

(E) Cell-type-specific gene accessibility for a subset of marker genes associated with six different cell types.

(F) Cluster-aggregated chromatin accessibility surrounding knownmarker genes for floral primordia, xylem precursors, and L1 epidermal cells. Numbers indicate

the major cluster shown in (C). ClusterIDs refer to IDs in (D).

(G) Left: cell-type annotations and gene accessibility for ZmGRFTF36. Right: RNA in situ hybridization of ZmGRFTF36 in staminate primordia. FP, floral primordia;

GP, glume primordia; IM, inflorescence meristem; LFM, lower floral meristem; SM, spikelet meristem; SPM, spikelet pair meristem; UKN, unknown.
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Figure 2. Gene accessibility reflects RNA expression at single-nuclei resolution

(A) Illustration of integrated non-negative matrix factorization (iNMF) integration of scATAC-seq and snRNA-seq data.

(B) UMAP co-embedding of scATAC-seq and snRNA-seq nuclei.

(C) Louvain clusters and cell-type annotations for co-embedded nuclei.

(D) Cluster-averaged gene accessibility (left) and RNA expression (right) among clusters.

(E) UMAP embeddings overlaid with gene accessibility (top) and RNA expression (bottom) for five cell-type-specific marker genes.

(F) Cluster-aggregated chromatin accessibility (left) and RNA expression (right) at the CARBONIC ANHYDRASE1 (CAH1) locus.

(G) Spearman correlations between clusters based on RNA expression and gene accessibility.

(H) Density scatterplot of gene accessibility (x axis) and RNA expression (y axis) for each cluster and gene.

(I) RNA expression (left), chromatin accessibility (middle), and H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq) (right) meta-profiles (relative

reads per million [RPM]) of accessible/expressed genes (n = 19,402), accessible/nonexpressed genes (n = 6,063), and nonaccessible/nonexpressed genes

(n = 4,315).

(J) Two de novo motifs enriched in proximal ACRs of accessible/nonexpressed genes (pink, H and I).
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provides additional information for dissecting cell-type hetero-

geneity (Figure 2G).

Despite the association between gene accessibility and expres-

sion, we observed a subset of accessible genes lacking evidence

of transcription (Figure 2H). Partitioning silenced genes on the ba-
3044 Cell 184, 3041–3055, May 27, 2021
sis of chromatin accessibility revealed enrichment of H3K27me3

within and flanking accessible genes, whereas nonaccessible

genes were almost entirely associated with DNAmethylation (Fig-

ures 2I and S3D). Removal of H3K27me3-modified genes

improved the average SCC between chromatin accessibility and
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nuclear transcription (0.55–0.60), suggesting that the Polycomb

repression complex (PRC) requires accessible chromatin.

Considering gene accessibility includes 1 kb upstream of TSSs,

we posited that proximal ACRs of accessible/silenced genes con-

tained Polycomb response elements (PREs) capable of directing

the PRCmachinery.De novomotif analysis of 15,073 ACRswithin

1 kb of accessible/silenced genes identified several enriched mo-

tifs relative to accessible/expressed genes, including a CNN

repeat (E-value < 2.0e-738, 83% of ACRs, 12,858/15,073) and a

CTGCAG palindromic motif (E-value < 2.4e-205, 80% of ACRs,

12,014/15,703) (Figure 2J; STAR Methods). A query with known

TF binding sites revealed a significant (false discovery rate

[FDR] < 4.09e-3) overlap between the CNN-repeat motif and se-

quences recognized by BASIC PENTACYSTEINE1 (BPC1), a

BARLEY B RECOMBINANT-BASIC PENTACYSTEINE family TF

associated with PREs and H3K27me3 silencing in A. thaliana

(STAR Methods) (Xiao et al., 2017). Extending the analysis to

accessible/silenced genes in root and pistillate inflorescence re-

vealed similar de novo BPC1-like motifs located in proximal

ACRs, suggesting PRE-based silencing may be a general regula-

tory mechanism in maize (Figure S3E). Taken together, our data

establish gene accessibility as a robust proxy for transcription

and suggests that the gene-silencing activities of certain PRCs

require accessible PREs.

Genomic features of CREs
To explore CREs defining cell identity, we cataloged ACRs with

discrete patterns of chromatin accessibility across cell types,

identifying a total of 52,520 ACRs (31%) restricted to one or a

handful of clusters (Figure S3F; STAR Methods). ACRs were

prominently hypomethylated relative to the surrounding regions,

consistent with prior studies (Figure 3A) (Crisp et al., 2020; Oka

et al., 2017, 2020). Cluster-specific ACRs were associated with

significantly greater enhancer activity determined by self-tran-

scribing active regulatory region sequencing relative to controls

and non-specific ACRs (Wilcoxon rank sum test: p < 2.2e-16;

Figure 3B; STARMethods). Deconvolution of chromatin accessi-

bility by cell type revealed an abundance of ACRs located distal

to genes (>2 kb) compared to bulk experiments (Figure 3C).

Distal ACRs with enhancer activity were flanked by chromatin

modifications associated with active transcription, despite being

>2 kb from the nearest gene (Figures S3G and S3H). Notably,

30% (22,456/73,791) of distal ACRs overlapped LTR retrotrans-

posons, including the maize domestication locus TEOSINTE-

BRANCHED 1-enhancer (Figures 3C and S1A). LTRs coinciding

with ACRs were associated with significantly lower levels of DNA

methylation and older insertion times compared to inaccessible

LTRs (empirical: p < 1e-4; Figures 3D and 3E) (Stitzer et al.,

2019). Furthermore, co-localization of ACRs and LTRswas asso-

ciated with greater cell-type specificity (empirical: p < 1e-4; Fig-

ure 3F). Thus, LTRs have played an important evolutionary role in

wiring the regulatory landscape in maize (Noshay et al., 2020;

Zhao et al., 2018).

Phenotypic variance is associated with cell-type-
specific CREs
Sequence variation underlying CREs contributes to disease

emergence and phenotypic innovation (Rebeiz and Tsiantis,
2017; Villar et al., 2015). To query the relationship between

phenotypic variance and cell-type specificity, we quantified

extant genetic variation within ACRs. Cell-type-specific ACRs

were associated with a lower density of polymorphisms

compared to nonspecific ACRs (Figure 3G). However, genetic

variants embedded within cell-type-specific ACRs were more

frequently associated with phenotypic variation determined by

genome-wide association studies (Figure 3H) (Wallace et al.,

2014). Thus, genetic perturbation of cell-type-specific CREs

may account for a substantial proportion of phenotypic variance.

In contrast to natural populations where phenotypic changes

are controlled by sexual selection, germplasm used in breeding

has been subjected to selection for traits valued by humans. To

determine if breeding-era selection has targeted alleles underly-

ing cell-type-specific CREs, we assessed the relative enrich-

ment of selection signatures from chronologically sampled elite

inbred maize lines across cell-type-specific ACRs (STAR

Methods) (Wang et al., 2020). Of the 21 cell types with significant

(FDR < 0.01) selection signature enrichment, 57% (12) corre-

sponded to staminate and pistillate cell types (Figure 3I). For

example, a single selection block encompassing two class B

TFs, ZEAMAYSMADS 29 (ZMM29) and ZMM18, exhibited inflo-

rescence-, spikelet-, floral-meristem-, and primordia-specific

ACRs at their TSSs (Figure 3J). Dissection of allele frequencies

within spikelet (pair) meristem-specific ACRs revealed signa-

tures of selection within a MADS family TF binding site in the 50

UTR of ZMM29 predicted to ablate TF binding, highlighting the

potential of genetic variants to affect cell-type-specific gene

regulation in vivo. Taken together, modern maize breeding has

resulted in the selection of alleles underlying floral-specific

CREs that confer agronomically favorable inflorescence archi-

tectures (Gage et al., 2018).

Variation in TF activities defines distinct cell identities
To establish the TF signatures underlying distinct cells, we iden-

tified TF motifs across the maize genome. ACRs were highly en-

richedwith TFmotifs relative to control (n = 165,913) and flanking

regions (Figure 4A). TF motifs were strongly depleted within ACR

summits, consistent with TF-bound sequences occluding Tn5

integration (Figure 4A). To define the TF combinatorics of each

cell type, we assessed the relative enrichment of TFmotifs within

the top 2,000 differential ACRs for each cell type. A median of 43

TFmotif combinations were enriched per cell type (binomial test:

FDR < 0.05; Figure 4B; STAR Methods). We hypothesized that

the chromatin accessibility status of TF motifs and cognate TF

genes could be used to elucidate the regulatory rules governing

cell states. Comparison of TF gene accessibility with global

enrichment of their sequence-specific binding sites revealed

strikingly similar patterns across cell types and individual nuclei,

reflecting a diverse combinatorial landscape of putatively active

TFs (median SCC across cell types = 0.46; Figures 4C and 4D).

Assessment of enriched TFs and their cognate motifs identified

known regulators of cell identity, including WRKY family TFs in

root epidermal progenitors and trichoblasts, G2-like1 in paren-

chymal mesophyll, and AGAMOUS-like and SEPALLATA TFs

in floral primordia, as well as TFs with previously unrecognized

roles as cell-type regulators (Table S4) (Chang et al., 2012; Gó-

mez-Mena et al., 2005; Verweij et al., 2016). To determine the
Cell 184, 3041–3055, May 27, 2021 3045
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Figure 3. Characterization of ACRs
(A) Relative DNA methylation levels of 2-kb regions flanking ACRs.

(B) Distribution of enhancer activity for control regions (n = 165,913), nonspecific (n = 113,393), and cluster-specific ACRs (n = 52,520). The dash red line indicates

the mean. Orange lines reflect differences between the group median and overall mean.

(C) Bimodal distribution of ACR distances to the nearest gene. Inset: distribution of ACRs by genomic context and transposon type.

(D) Relative DNA methylation levels 2-kb flanking ACRs overlapping with LTR retrotransposons (top) and LTRs devoid of accessible chromatin (bottom).

(E) Distribution of LTR insertion ages (Kimura two parameter) for non-ACR-LTRs and ACR-LTRs.

(F) Average specificity for distal ACRs overlapping LTRs (purple, n = 22,456) compared to the permuted (10,0003) average specificity for ACRs not overlapping

LTRs (gray, n = 22,456).

(G) Relative SNP enrichment for 5-kb regions flanking cell-type-specific (purple) and nonspecific (gray) ACRs. Smoothed splines are shown as dark lines.

(H) Relative enrichment of genome-wide association study (GWAS) SNPs compared to all SNPs for 5-kb regions flanking cell-type-specific (purple) and

nonspecific (gray) ACRs.

(I) Enrichment of signatures of selection (XP-CLR) in the top 2,000 cell-type-specific ACRs. The 20 most enriched cell types are denoted on the left. AM, axillary

meristem; CC, companion cell; FM, floral meristem; QC, quiescent center.

(J) Cell-type-aggregate chromatin accessibility for seven floral cell types (pink rows) and 10 non-floral cell types (gray rows) at ZMM29 and ZMM18 loci. The

magnified region illustrates signatures of selection coinciding with a MADS TF binding site within a floral-specific ACR at the 50 UTR of ZMM29. CEI, cortex/

endodermis initials; GC, guard cell; GMC, guard mother cell; PP/PSEP, pre-procambial/phloem sieve element precursor.

ll
Resource
utility of TF motif signatures for discerning cell identity, we

trained a neural network (NN) on TF motif enrichment underlying

various cell types. The NNmodel achieved an overall accuracy of

0.94 and an average sensitivity and specificity of 0.93 and 0.99,

respectively, indicating that patterns of TF motif enrichment are

highly predictive of cell states (Figure 4E).

Past developmental studies have described mobile TFs

capable of influencing the identities of neighboring cells. As a

proxy for non-cell-autonomous activity, we searched for TFs

with increased motif enrichment in cell types lacking expression

of the cognate TF using the integrated snRNA-seq/scATAC-

seq embedding. Of 279 TFs, we identified 20 with putative non-

autonomous activity, including at least five TFs (PHLOEM
3046 Cell 184, 3041–3055, May 27, 2021
EARLY DOF1 [PEAR1], TEOSINTE BRANCHED1/CYCLOIDEA/

PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR4

[TCP4], TCP5, TCP14, and ETHYLENE RESPONSE FACTOR

018 [ERF018]) with predicted or known cell-cell mobility (Miya-

shima et al., 2019; Nag et al., 2009; Savaldi-Goldstein et al.,

2007; Tatematsu et al., 2008). For example, PEAR1 was recently

described as a mobile DNA BINDING WITH ONE FINGER (DOF)

family TF expressed in the procambium that promotes radial

growth in the vasculature of A. thaliana (Miyashima et al., 2019).

Consistent with predicted mobility, the maize PEAR1 homolog,

ZmDOF36, was expressed in procambial and protophloem cells,

while its target motif was enriched in procambial, bundle sheath,

phloem parenchyma, meta/protophloem, xylem, and epidermal
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Figure 4. Combinatorial accessibility of TF genes and motifs define cell identity

(A) Average motif coverage across 4-kb windows centered on ACRs (n = 165,913) and control regions (n = 165,913). Shaded polygon, 95% confidence intervals.

(B) Enrichment of TF motifs in the top 2,000 ACRs for each cell type relative to matched constitutive ACRs.

(C) Z score heatmaps of TF gene accessibility (left) and motif deviation (right).

(D) Gene accessibility for five maize TFs (top) and their associated motif deviations (bottom).

(E) Predicted versus reference cell-type annotations from a NN multinomial classifier trained on combinatorial motif deviations.

(F) Gene accessibility, expression, and motif deviation for ZmDOF36 across co-embedded seedling nuclei.
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cell types (Figure 4F; Table S4). These results indicate robust

inference of CRE and TF activity in single nuclei and reveal TF dy-

namics central to the specification of diverse cell states.

Coordinated chromatin accessibility recapitulates
in vivo chromatin interactions
Analyses of chromatin conformation capture in plants have

been instrumental in revealing chromatin organization in bulk
tissues but have failed to detangle the contribution of diverse

cell types (Dong et al., 2017; Liu et al., 2016, 2017; Peng

et al., 2019). Leveraging recent advances for predicting chro-

matin architecture from single-cell data (Pliner et al., 2018),

we identified 3.8 million (M) correlated patterns of chromatin

accessibility between nearby ACRs (co-accessible ACRs),

including known physical interactions such as tb1, maize

RELATED TO AP2.7 (ZmRAP2.7), and BENZOXAZINLESS 1
Cell 184, 3041–3055, May 27, 2021 3047
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Figure 5. Co-accessible ACRs reflect in vivo chromatin interactions

(A) Ear and seedling co-accessible ACRs for nine cell types surrounding TB1. Link height reflects co-accessibility between ACRs.

(B) Average normalized Hi-C signal across 4-kb windows centered on ACRs split into terciles, each with n = 54,904 ACRs, based on the number and strength of

participating co-accessible links.

(C) Chromatin accessibility (left) and RNA expression (right) distributions for H3K27me3- and H3K4me3-HiChIP chromatin interactions intersecting with co-

accessible ACRs.

(D) Frequency of co-accessible ACRs across clusters. Inset: genomic context of cell-type-specific co-accessible ACRs. D, distal; P, proximal; G, genic.

(E) Co-accessible link count Z scores associated with each ACR within a given cell type. ACRs near marker genes are indicated on the right.

(F) Chromatin accessibility and co-accessible ACRs surroundingUB2, the gene underlying an inflorescence row and tassel branch number quantitative trait locus

(right). The black arrow indicates a spikelet meristem-specific distal ACR. Pink, co-accessible ACRs associated withUB2; gray, non-UB2. Link height represents

co-accessibility. Chromatin accessibility of UB2 (left).

(G) Distributions of log-transformed average co-accessible ACR counts across cell types split by ACRs that do (purple) and do not overlap (gray) GWAS SNPs.

White horizontal lines indicate the median. Violin plots present the entire range.

(H) Distributions of the log-transformed average co-accessible ACR counts across cell types for ACRs with (blue) and without (gray) enhancer activity.

(I) Motifs ranked by the average co-occurrence in co-accessible ACR edges relative to randomized ACR-ACR connections across cell types.

(J) Exemplary motifs enriched in reciprocal co-accessible ACRs for TCP, AP2-EREB, and LBD TF families.
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(BX1) (Figures 5A and S4A–S4D; STAR Methods) (Clark et al.,

2006; Salvi et al., 2007; Zheng et al., 2015). To assess the

concordance of co-accessible ACRs with in vivo interactions,

we compared co-accessible ACRs from seedling cell types

with maize seedling chromatin conformation capture data,
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recovering 78% (3,313/4,265), 57% (37,712/65,691), and 44%

(17,108/38,567) of chromatin loops from chromatin conforma-

tion capture coupled sequencing (Hi-C), H3K4me3 Hi-C chro-

matin immunoprecipitation (HiChIP), and H3K27me3-HiChIP

experiments, respectively (Figure S4E). The integrated strength
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of co-accessibility per ACR was consistent with in vivo chro-

matin interaction frequencies, indicating co-accessible ACRs

are suitable proxies for chromatin loops (Figure 5B; STAR

Methods).

We posited that co-accessible ACRs coinciding with

H3K4me3 and H3K27me3-HiChIP chromatin loops may be

associated with distinct transcriptional outcomes. To test this,

we imputed nuclear RNA gene expression onto seedling scA-

TAC-seq nuclei using the integrated embedding and compared

RNA expression levels between genes associated with

H3K4me3 and H3K27me3-HiChIP chromatin loops (STAR

Methods). Although ACR coverages were relatively similar,

genes associated with H3K27me3 co-accessible ACRs had

significantly lower expression, consistent with a silencing func-

tion of gene-distal CREs flanked by H3K27me3 (empirical: p <

1e-4; Figure 5C) (Cai et al., 2021; Ngan et al., 2020).

Cataloguing co-accessible ACRs identified 27% (~1 M in to-

tal), 11,069 on average, that were unique to a single cell type (Fig-

ure 5D). Proximal ACRs, rather than distal or genic ACRs, were

associated with a greater number of links (empirical: p < 1e-4;

Figure S4F). Highlighting long-range ‘‘hub’’ interactions as key

contributors toward cell identity, ACRs with cell-type-specific

co-accessibility were associated with a greater number of links

(empirical: p < 1e-4) and a greater proportion of links involving

distal ACRs (empirical: p < 1e-4; Figures S4G and S4H). Further-

more, the interactive capacity of an ACR strongly depended on

cell-type context (Figure 5E). For example, UNBRANCHED 2

(UB2), a major ear row number and tassel branch number quan-

titative trait locus (Chuck et al., 2014), demonstrated preferential

accessibility in spikelet meristems coinciding with the greatest

number of UB2 proximal-distal ACR interactions, including a

cell-type-specific ACR 150 kb upstream (Figure 5F). We hypoth-

esized that ACRs with expanded interactive capacity resemble

enhancers with the potential to influence traits. Indeed, ACRs

with enhancer activity and co-localization with phenotype-asso-

ciated genetic variants were associated with a greater number of

links (empirical: p < 1e-4; Figures 5G and 5H). These results high-

light diverse cell-type-specific regulatory configurations among

distal enhancers and their target genes and implicate highly

interactive distal enhancers asmajor contributors toward pheno-

typic variation.

The structural protein, CTCF, plays an important role in

mammalian genome organization and is absent in plant lineages

(Heger et al., 2012). We posited that chromatin structure

captured by co-accessible ACRs may be driven by distinct

TFs. Motif composition of ACRs apart of co-accessible links

were more similar compared to permuted links (empirical: p <

1e-4; Figure S4I). In addition, several TF motifs exhibited recip-

rocal enrichment in the edges of co-accessible ACRs (FDR <

0.05; Figure S4J; STAR Methods). We identified TCP, APE-

TALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING PRO-

TEINS (AP2-EREBP) and LATERAL ORGAN BOUNDARIES

DOMAIN (LBD) motifs broadly enriched in co-accessible edges

with similar GC-rich palindromic binding sites (FDR < 0.05; Fig-

ures 5I and 5J). Analysis of reciprocal TFmotifs in maize seedling

Hi-C chromatin loops indicated similar enrichment profiles as

co-accessible ACRs (SCC = 0.86; Figures S4K and S4L). TCP

motifs have been previously implicated in topologically associ-
ated domain-like boundaries inOryza sativa andMarchantia pol-

ymorpha, and the distal edges of chromatin loops in Z. mays

(Karaaslan et al., 2020; Liu et al., 2017; Peng et al., 2019; Sun

et al., 2020). Our results implicate independently evolved TF fam-

ilies with CTCF-like function capable of organizing chromatin ar-

chitecture through DNA-protein interactions.
Dynamic chromatin accessibility underlies
developmental trajectories
The apical domains of maize enclose a pool of undifferentiated

meristematic cells that give rise to differentiated cells. To define

a cis-regulatory catalog of temporal cell fate progressions, we

ordered nuclei along pseudotime trajectories for 18 develop-

mental continuums. We then identified ACRs, TF loci, and TF

motifs with significant variation across each pseudotime trajec-

tory (Figures 6A and S5; Table S5; STARMethods). To showcase

the power of trajectory analysis to characterize a relatively

understudied process, we focused on root phloem companion

cell (PCC) development (Figure 6B). We identified 8,004 ACRs,

440 TFmotifs, 7,955 genes, and 402 TF loci with differential chro-

matin accessibility across the PCC trajectory (Figure 6C; STAR

Methods). Several known meristem and phloem developmental

genes, including AT-RICH INTERACTIVE DOMAIN-CONTAIN-

ING 8, SUPPRESSOR OF MAX2 1-LIKE3, and SUCROSE

TRANSPORTER 1, were identified among the top differentially

accessible genes throughout PCC development (Figure 6D)

(Baker et al., 2016; Jiang et al., 2010; Wallner et al., 2017).

Studies of root cell fate decisions have focused on the role of

the cell cycle in establishing patterns of asymmetric cell division,

as quiescent center (QC) and meristematic cells divide slower

than cells in transition and elongation zones (Ten Hove and Heid-

stra, 2008). To investigate the contribution of cell cycling in PCC

development, we annotated nuclei using known cell-cycle

marker genes (STAR Methods) (Nelms and Walbot, 2019). A

consequence of slower DNA replication, the majority of QC

and meristem/initial-like nuclei were in S phase, while differenti-

ated PCCswere largely in G1 (Figure 6E). Ordering nuclei by PCC

pseudotime revealed sequential progression of cycle stages

within each cell type, implicating the cell-cycle context preced-

ing cell fate transitions during PCC development (Figure 6F).

Evaluation of accessibility across pseudotime illustrated a global

decrease in chromatin accessibility (F-test: p < 2.2e-16; Fig-

ure 6G). Thus, cell cycling and cell fate transitions in the context

of PCC development accompany global decreases in chromatin

accessibility, a consequence we posit is associated with acqui-

sition of specialized functions in PCCs relative to meristematic

progenitors.
Evolutionary innovation in root development
To explore the degree of regulatory conservation in root develop-

ment, we profiled chromatin accessibility in 4,655 nuclei from

7-day-old root tissues of A. thaliana, integrated single-nuclei

chromatin profiles with published A. thaliana root single-cell

RNA-seq (scRNA-seq) data (n = 12,606) and constructed eight

cis-regulatory pseudotime trajectories encompassing vascular,

dermal, and ground development (Figures 7A–7C, S6, and

S7A; Tables S1 and S6).
Cell 184, 3041–3055, May 27, 2021 3049
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Figure 6. Chromatin accessibility is dynamic across pseudotime

(A) Overview of pseudotime trajectory analysis.

(B) UMAP embedding of the PCC developmental trajectory depicting cell types (left) and pseudotime (right).

(C) Relative motif deviations for 440 TF motifs (left), gene accessibility for 402 TFs (middle), and accessibility of 8,094 ACRs (right) associated with pseudotime (x

axis). Four motifs enriched along the trajectory gradient are shown on the left.

(D) Cell-type-specific chromatin accessibility profiles along the developmental trajectory for QC, PP/PSEP, and PCC for three marker genes.

(E) Proportion of cells at various stages of the cell-cycle in QC, PP/PSEP, and PCC annotated clusters.

(F) Top, cell state ordered by pseudotime. Middle, proportion of nuclei with the corresponding cell-type annotation. Bottom, proportion of nuclei with various cell-

cycle stage annotations.

(G) Left, average proportion of ACRs accessible across pseudotime. The gray polygon indicates standard deviation. Right, heatmap of relative accessibility (row

maximum) for each ACR across pseudotime.
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Extending our analysis of PCC development, we first validated

the utility of the integrated datasets by visualizing gene expression

and accessibility of known marker genes of QC (WUSCHEL-

RELATED HOMEOBOX 5), procambial (WUSCHEL-RELATED

HOMEOBOX 4), and PCC (SUCROSE TRANSPORTER 2) cell

types (Figures 7D and 7E). To enable direct comparison of gene

accessibility dynamics in a common space, we aligned Z. mays

and A. thaliana gene orthologs from the PCC trajectories using a

dynamic time-warping algorithm (STAR Methods). Consistent

with comparative analysis of vascular development in O. sativa,

A. thaliana, and Solanum lycopersicum (Kajala et al., 2020), only

206 out of 10,976 putative orthologs were associated (FDR <

0.01) with PCC pseudotime in both species, indicating that the

majority of PCC-trajectory-associated genes are unique to each

lineage (97% Z. mays and 83% A. thaliana). However, of the 206

PCC-trajectory-associated orthologs, ~50% (102/206) exhibited

similar gene accessibility patterns across pseudotime (Figures

7F, 7G, and S7B). Several orthologs with matching gene accessi-
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bility patterns have been previously attributed to PCC develop-

ment, such as SCARECROW-LIKE8 (Figure 7H) (Brady et al.,

2007). The remaining orthologs (n = 104) clustered into two groups

that reflect changes in timing of gene accessibility across the PCC

trajectory, underscoring putative functional novelty in PCC devel-

opment between Z. mays and A. thaliana.

To reveal innovative cis regulation along the pseudotime con-

tinuum, we aligned Z. mays and A. thaliana TF motif profiles

associated with PCC progression (Figures S7C and S7D). Of

the 440motifs, 142 demonstrated highly conserved cis-regulato-

ry dynamics between species (Figures S7E–S7G). Indeed, the

top four motifs ranked by normalized distances (HOMEOBOX25,

HOMEOBOX18, NAC DOMAIN CONTAINING PROTEIN 55, and

NACDOMAIN CONTAINING PROTEIN 83) have been previously

implicated in regulation of hormonal responses and vascular

development (STAR Methods) (Jiang et al., 2009; Yamaguchi

et al., 2010; You et al., 2019). Gene expression of these TFs

from published data was consistent with motif enrichment
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Figure 7. cis-regulatory dynamics in A. thaliana and Z. mays PCC development

(A) UMAP embedding of chromatin accessibility profiles for 4,655 A. thaliana root nuclei.

(B) UMAP embedding of A. thaliana PCC developmental trajectories depicting cell types (left) and pseudotime progression (right). Motifs, TFs, and ACRs

associated with pseudotime are shown as heatmaps.

(C) UMAP embedding of integrated scRNA-seq and scATAC-seq profiles derived from A. thaliana roots.

(D) Marker gene expression for QC (WOX5), PP/PSEP (WOX4), and PCC (SUC2).

(E) Cluster-aggregated chromatin accessibility for QC, PP/PSEP, and PCC across three marker genes.

(F) Per-gene pseudotime shift scores from alignments between Z. mays and A. thaliana PCC development progressions clustered by k-means (k = 3).

(G) Distribution of gene-gene distances from k-mean groups.

(H) Exemplary one-to-one homologs betweenA. thaliana and Z. mays for the three pseudotime shift groups. LRC, lateral root cap; LRP, lateral root primordia. SE,

sieve elements.
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dynamics in Z. mays and A. thaliana ontogenies (Figure S7H)

(Brady et al., 2007). These findings signify a high degree of con-

servation in the cis-regulatory specification of PCC development

between Z. mays and A. thaliana and provide a framework to

realize the core TFs necessary for development of evolutionary

conserved plant cells, tissues, and organs.

DISCUSSION

A comprehensive understanding of CREs and TFs across

distinct cell types, developmental trajectories, and species is

essential for detangling the determinants of cellular identity

and the sources of regulatory variation. From an applied

perspective, a catalog of CREs at single-cell resolution paves
the way for new applications in biotechnology and empowers

the generation of de novo phenotypic variation in crops. Here,

we coupled droplet-based profiling of native nuclei with quasibi-

nomial logistic regression for scATAC-seq data analysis in our

species-agnostic software, Socrates, to enable fine-scale inves-

tigation of cis-regulatory variation across diverse plant cell types.

The identification of CREs and TFs with distinct signatures

throughout differentiation and within specific cell types provides

an inclusive roadmap for interrogating regulatory dynamics across

space and time in a global crop. Our results suggest that cellular

identity in plants is established by combinatorial TF activity and

accessibility of their target binding sites. These findings have major

implications for reprogramming of plant cells into desired cell types

and/ororgans,a long-soughtgoal.BycomparingTFexpressionand
Cell 184, 3041–3055, May 27, 2021 3051
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cognatemotif accessibility, we found a number of non-autonomous

mobile TFs, an approach that can be extended to other species.

Many of the findings presented here will be particularly useful

for innovations in synthetic biology. For example, sequences

associated with CRE/PRE activity can be used to tailor the cell-

type-specificity of transgene expression cassettes or to direct

endogenous gene-silencing via PRC-deposited H3K27me3. TF

motifs associated with chromatin architecture could be used to

prevent crosstalk among discrete regulatory elements within

transgenes. Genome editing of plant CREs results in both loss-

and gain-of-function alleles and is proving highly valuable for ex-

panding the phenotypic range of traits associated with yield and

architecture (Liu et al., 2021; Rodrı́guez-Leal et al., 2017). Cell-

type-specific CREs and co-accessible ACRs provide a high-con-

fidence list of sequences that can be targetedwith genomeediting

to improve maize performance. These efforts will be further

enhanced by focusing on CREs that possess phenotype-associ-

ated genetic variation.

Our analysis of cis-regulatory dynamics through an evolu-

tionary perspective has implications for future experiments in

other species. We revealed that LTR retrotransposons are a

significant source of cis-regulatory variation and played a cen-

tral role in shaping regulatory circuitries across evolutionary

timescales. We demonstrate that alleles underlying floral cell-

type-specific ACRs were historical targets of modern agro-

nomic selection, useful for informing breeding strategies and

prioritizing candidates for trait engineering. Comparison of

PCC differentiation between maize and A. thaliana revealed a

greater proportion of TF motifs with consistent spatiotemporal

patterns relative to gene orthologs, suggesting regulatory dy-

namics are key for developmental conservation. These findings

indicate that an organism’s evolutionary history plays an impor-

tant role in shaping extant cis-regulatory networks, the under-

standing of which is critical for unlocking novel phenotypic

variation.

Despite the extensive analyses presented here, there is much

more to discover. We provide pseudotime reconstruction for 26

cell differentiation processes. Researchers have access to prepro-

cessed data matrices partitioned by cell type for convenient rean-

alysis of cell-type-specific ACRs, genes, and TF motifs for any

cell type(s) of interest. To facilitate data exploration, we generated

accompanying genome browsers of chromatin accessibility for

cell types in both maize and A. thaliana (http://epigenome.

genetics.uga.edu/PlantEpigenome/index.html). Our analyses can

bereadily reproducedby leveraging the freelyavailablecode imple-

mented throughout the study (https://github.com/plantformatics/

maize_single_cell_cis_regulatory_atlas). Researchers analyzing

scATAC-seq data can benefit from extensive documentation and

tutorials accompanying our R package, Socrates (https://github.

com/plantformatics/Socrates). We anticipate these data and soft-

ware will lead to myriad discoveries spanning diverse disciplines,

enable innovations in biotechnology, and further the basic under-

standing of cellular specification and plasticity.

Limitations of study
Although we provide evidence supported by RNA in situ hybrid-

ization and snRNA-seq for the use of chromatin accessibility as a

robust proxy of gene expression, the activity of PREs, limitations
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in per-nucleus sequencing depth, and dropouts can impact the

ability to detect significant marker gene enrichment, particularly

for cell types with few known markers. Thus, cell-type annota-

tions should be considered preliminary. We anticipate that the

cell-type classifications will become refined as single-cell

methods become more widely adopted and as more cells are

sequenced across various modalities.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Robert J.

Schmitz (schmitz@uga.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All raw and processed data associated with this study has been deposited in the NCBI GEO database under accession code GEO:

GSE155178. The genome-wide chromatin accessibility cell-type profiles for Arabidopsis thaliana and Zea mays are available in a

JBrowse genome browser (Hofmeister and Schmitz, 2018): http://epigenome.genetics.uga.edu/PlantEpigenome/index.html. R

code used throughout the analysis can be found freely available in the following GitHub repository: https://github.com/

plantformatics/maize_single_cell_cis_regulatory_atlas.We also released anR package for pre-processing, normalization, clustering,

and other downstream analytical steps into streamlined toolkit of scATAC-seq data that can be found in the following GitHub repos-

itory: https://github.com/plantformatics/Socrates.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Growth conditions
For libraries derived from seedlings, kernels from genotypes B73 and Mo17 were obtained from USDANational Plant Germplasm Sys-

tem (https://npgsweb.ars-grin.gov) and sown in Sungro Horticulture professional growing mix (Sungro Horticulture Canada Ltd.). Soil

was saturatedwith tapwater and placedunder a 50/50mixture of 4100K (Sylvania SupersaverCoolWhite Delux F34CWX/SS, 34W) and

3000K (GE Ecoluxw/ starcoat, F40CX30ECO, 40W) lighting. Seedlings were grown under a photoperiod of 16 hours of light, eight hours

of dark. The temperature was approximately 25�C during light hours with a relative humidity of approximately 54%.

Maize seedlings
Above ground seedling tissues were harvested between 8 and 9 AM six days (V1-stage) after sowing. We used both fresh (B73/Mo17

pooled) and flash frozen (B73 only) seedling tissue to construct scATAC-seq libraries (Table S1).

Maize roots
Maize root samples were obtained as follows: B73 kernels were sterilized with 70% EtOH treatment for 5 minutes. After removing the

ethanol solution, kernels were suspended with 50% bleach for 30minutes, followed by five washeswith autoclavedMilli-Q water. Ster-

ilizedkernelswere thensownontomeshplateswithhalf strengthMS (Phytotech laboratories, catalog:M519)mediaandwrapped inMilli-

pore tape. Plates were incubated in a Percival growth chamber with a photoperiod of 16 hours of light, eight hours of dark. The growth

chamber temperature was set to 25�Cwith a relative humidity of approximately 60%. Apical root tips (bottom 2 cm) of seminal and pri-

mary root sampleswereharvestedsixdays (V1-stage) after sowingbetween8and9am.Crown root samples (21daysafter sowing)were

derived from the three developmental zones of greenhouse grown B73 plants between 8 and 9 am and rinsed with sterile water 3 times.

Maize inflorescence
Data generated from young inflorescence (ear and tassel primordia) were derived from B73maize grown in the greenhouse. Inflores-

cence primordia were extracted from shoots harvested approximately one month (V7-stage, 2-4 mm) after sowing, between 8 and 9

AM. Inflorescence primordia between three and eight millimeters from the base to the apical tip were placed in sterile water and used

for nuclei isolation.

Maize axillary buds
Axillary buds (~30 samples per library) were taken from B73 maize plants grown in the greenhouse at approximately the same devel-

opmental stage (V7) as tassel and ear primordia.

Arabidopsis roots
Seven-day old A. thaliana roots were prepared similarly as for maize with the exception of deriving nuclei from whole roots.

METHOD DETAILS

Single cell ATAC-seq library preparation
Each library was prepared by mixing at least three independent biological samples (3-4 seedlings, 3 tassel or ear primordia, 12-14

root tips, 12-14 crown root samples, ~30 axillary buds, and 100-200 A. thalianawhole roots). One scATAC-seq library (B73 seedling)
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was derived from flash frozen tissue (liquid nitrogen, followed by 7-day �80�C storage), while the remaining libraries were con-

structed with freshly harvested tissue (Table S1).

To isolate individual plant nuclei, fresh or flash frozen tissue from multiple biological samples were placed on Petri dishes and

vigorous chopped with a No. 2 razor blade for two minutes in ~500 uL LB01 buffer (15mM Tris pH 7.5, 2mM EDTA, 0.5mM Spermine,

80mM KCl, 20mM NaCl, 15mM 2-ME, 0.15% TrixtonX-100). Homogenized tissue was then filtered through two layers of miracloth,

stained with DAPI to a final concentration of ~1uM and loaded onto a Beckman Coulter MoFlo XDP flow cytometer instrument. A total

of 120,000 nuclei were sorted for each sample across four catch tubes (30,000 nuclei each) containing 200 uL LB01. Isolated nuclei

were spun down in a swinging-bucket (5 minutes, 500 rcf.) centrifuge resuspended in 10uL LB01, pooled, and then visualized on a

hemocytometer with a fluorescent microscope. Nuclei suspensions were then spun down (5 minutes, 500 rcf.) and resuspended in

diluted nuclei buffer (10X Genomics) to a final concentration of 3,200 nuclei per uL and used as input for scATAC-seq library prep-

aration (5 uL; 16,000 nuclei total). Samples were kept on ice for all intermittent steps. For B73/Mo17 mixed library, we pooled 8,000

nuclei from both B73 and Mo17 that were independently isolated. Single-cell ATAC-seq libraries were constructed according to the

manufacturer’s instruction (10X Genomics, catalog: 1000176). Libraries were sequenced with Illumina NovaSeq 6000 in dual-index

mode with eight and 16 cycles for i7 and i5 index, respectively.

Single nuclei RNA-seq library preparation
We prepared snRNA-seq libraries from two biological replicates, each composed of three independent 7-day old B73 seedlings.

Seedlings were vigorously chopped with a No. 2 razor blade on a Petri dish in 500 uL of nuclei isolation buffer (Phosphate-Buffered

Saline [PBS; ThermoFisher], 500U SUPERase RNase inhibitor [Invitrogen], 1mM 1,4-Dithiothreitol [DTT; Millipore Sigma], and 0.05%

Triton X-100 [Millipore Sigma]). Homogenized tissue in nuclei isolation buffer was filtered through a 40-um cell strainer (pluriSelect)

and spun at 500 rcf. for 5 minutes. The supernatant was discarded, followed by two more wash (500 uL nuclei isolation buffer) and

centrifugation steps (500 rcf. for 5 minutes), discarding the supernatant and resuspending in 10 uL nuclei isolation buffer lacking

Triton X-100. The concentration of nuclei in solution was estimated on a hemocytometer under a fluorescent microscope and

adjusted to 2,000 nuclei per uL with nuclease-free water. Single-nuclei RNA-seq libraries were prepared from a total of 16,000 nuclei

per library following the manufactures instructions for the Single Cell Gene Expression 30 V3 library kit (10X Genomics, catalog:

1000269). Libraries were sequenced on an Illumina NovaSeq 6000 in dual-index mode.

In situ hybridizations
3-4mm tassel and ear primordia and young seedlings from the maize B73 inbred line were dissected and fixed in a cold paraformal-

dehyde acetic acid solution (4% PFA) for 48 hours. Following dehydration through a graded ethanol series and clearing of the tissue

with a Histo-clear II solution (ElectronMicroscopy Sciences), samples were embedded using Paraplast Plus tissue embeddingmedia

(McCormick Scientific). 8mmsectionswere hybridized at 56�Cwith antisense probes labeledwith digoxigenin (DIGRNA labelingmix,

Roche), and detected using NBT/BCIP (Roche). Probes were synthesized by in vitro transcription (T7 RNA polymerase, Promega) of

PCR products obtained from embryo cDNA or from digested full-length cDNA clones. The vectors and primers used for probe design

are listed in Table S7.

QUANTIFICATION AND STATISTICAL ANALYSIS

scATAC-seq raw reads processing
The following data processing was performed using each tissue and/or replicate independently unless noted otherwise. Raw BCL

files were demultiplexed and convert into fastq format using the default settings of the 10X Genomics tool cellranger-atac make-

fastq (v1.2.0). Partial raw read processing (adaptor/quality trimming, mapping and barcode attachment/correction) was carried out

with cellranger-atac count (v1.2.0) using AGPv4 of the maize B73 reference genome (Jiao et al., 2017). Properly paired, uniquely

mapped reads with mapping quality greater than 10 were retained using samtools view (v1.6; -f 3 -q 10) and by filtering reads with

XA tags (Li et al., 2009). Duplicate fragments were collapsed on a per-nucleus basis using picardtools (http://broadinstitute.github.

io/picard) MarkDuplicates (v2.16; BARCODE_TAG = CB REMOVE_DUPLICATES = TRUE). Reads mapping to mitochondrial and

chloroplast genomes were counted for each barcode, then excluded from downstream analysis. We removed reads representing

potential artifacts by excluding alignments coincident with a blacklist of regions composed of low-complexity and homopolymeric

sequences (RepeatMasker v4.07) (Smit et al., 2013-2015), nuclear sequences with homology (greater than 80% identity and

coverage) to mitochondrial and chloroplast genomes (BLAST+ v2.7.1) (Camacho et al., 2009), regions exhibiting Tn5 integration

bias from Tn5-treated genomic DNA (1-kb windows with greater than 2-fold coverage over the genome-wide median), and poten-

tial collapsed sequences in the reference (1-kb windows with greater than 2-fold coverage over the genome-wide median using

ChIP-seq input). Genomic Tn5 and ChIP input data were acquired from Ricci, Lu and Ji et al. BAM alignments were then converted

to single base-pair Tn5 integration sites in BED format by adjusting coordinates of reads mapping to positive and negative strands

by +4 and �5, respectively, and retaining only unique Tn5 integration sites for each distinct barcode. Sequencing saturation was

calculated as the proportion of unique reads relative to the estimated library complexity output by the MarkDuplicates function

apart of picardtools.
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Comparing scATAC-seq between fresh and frozen samples
Flash-freezing samples prior to nuclei isolation and scATAC-seq library preparation may expand the ability to profile various tissues

and developmental stages that are otherwise difficult to sample, time, or coordinate with other experiments. Thus, we compared

various single-cell and bulk ATAC-seq quality metrics between libraries prepared from fresh and frozen B73 seedlings. Data quality

in fresh versus frozen library preparations were not significantly different (Welch’s t test; P value = 0.14) in a comparison between the

distributions of unique Tn5 integration sites per nucleus from the two preparations. On a genome-wide scale, ACRs were identified

(macs2–nomodel–extsize 150–shift�75) from unique Tn5 integration sites reflective of each preparation method and merged (union

of ACRs) using bedtools merge (Quinlan and Hall, 2010). This merged set of ACRs was used to count the number of unique Tn5 inte-

gration sites overlapping ACRs. Raw counts were scaled with the R function, cpm, a part of the edgeR package (log = T, prior = 5) and

quantile normalized using normalize.quantiles from the R package ‘‘preprocessCore.’’ The concordance between fresh and frozen

preparation methods was then assessed using Spearman’s rho using the cor function in base R (Spearman’s rho = 0.90).

Cell calling
To identify high-quality nuclei (a term used interchangeably with ‘‘barcodes’’) using the filtered set of alignments, we implemented

heuristic cutoffs for genomic context and sequencing depth indicative of high-quality nuclei. Specifically, we fit a smoothed spline

to the log10 transformed unique Tn5 integration sites per nucleus (response) against the ordered log10 barcode rank (decreasing

per-nucleus unique Tn5 integration site counts) using the smooth.spline function (spar = 0.01) from base R (Team, 2013). We then

used the fitted values from the smoothed spline model to estimate the first derivative (slope), taking the local minima within the first

16,000 barcodes as a potential knee/inflection point (16,000 was selected to match the maximum number of input nuclei). We set the

unique Tn5 library depth threshold to the lesser of 1,000 reads and the knee/inflection point, excluding all barcodes below the

threshold. Spurious integration patterns throughout the genome can be representative of incomplete Tn5 integration, fragmented/

low-quality nuclei, or poor sequence recovery, among other sources of technical noise. In contrast, high quality nuclei often demon-

strate a strong aggregate accessibility signal near TSSs. Therefore, we implemented two approaches for estimating signal-noise ra-

tios in our scATAC-seq data. First, nuclei below two standard deviations from the mean fraction of reads mapping to within 2-kb of

TSSswere removed on a per-library basis. Then, we estimated TSS enrichment scores by calculating the average per-bp coverage of

2-kb windows surrounding TSSs, scaling by the average per-bp coverage of the first and last 100-bp in the window (background

estimate; average of 1-100-bp and 1901-2000-bp), and smoothing the scaled signal with rolling-means (R package; Zoo). Per bar-

code TSS enrichment scores were taken as the maximum signal within 250-bp of the TSS. Lastly, for each library, we removed any

barcodewith a proportion of readsmapping to chloroplast andmitochondrial genomes greater than two standard deviations from the

mean of the library.

Detection of multiplet droplets
To estimate the empirical proportion of doublets present in our data, we demultiplexed the two-genotype (B73 and Mo17) pooled

seedling scATAC-seq sample and assessed the proportion of barcodes reflecting a mixtures of reads derived from both genotypes.

Specifically, B73 andMo17 whole genome short read resequencing data were acquired from PRJNA338953. Paired-end reads were

quality and adaptor trimmed with fastp (v0.19.5) (Chen et al., 2018) and aligned to the B73 v4 maize reference genome (Jiao et al.,

2017) using BWA mem (Li, 2013) with non-default settings (-MT 1). Duplicate reads were removed using samtools rmdup (Li et al.,

2009) (v1.6). The genomic coordinates of short nucleotide variants (SNVs; single nucleotide polymorphisms [SNPs] and small inser-

tions/deletions [INDELs]) for both genotypes were identified using freebayes (Garrison andMarth, 2012) (v1.0.0) with non-default set-

tings (–min-repeat-entropy 1–min-alternate-fraction 0.05). Only biallelic SNPs – requiring at least 5 reads per genotype where B73

and Mo17 were homozygous for reference and alternate nucleotides, respectively – were retained. Genotypes were called by

modeling allele counts as a binomial distribution with a term accounting for the sequencing error rate, Et (determined empirically

as the fraction of SNPs failing tomatch either allele), estimating posterior probabilities via Bayes theorem, and assigning the genotype

(or mixture of genotypes) with the greatest probability (Equations 1, 2, 3, 4, 5, 6, and 7). Specifically, the probability to observe k out of

n SNPs from B73 can be modeled as a binomial distribution for each B73 ðAlÞ, Mo17 ðA2Þ, and doublet barcode state ðNÞ (Equations
1, 2, and 3):

PðkjA1Þ =
�n
k

�
3Et

n�k 3 ð1� EtÞk 1
PðkjA2Þ =
�n
k

�
3 ð1� EtÞn�k

3Et
k 2
PðkjNÞ =
�n
k

�
3 ð0:5Þk 3 ð0:5Þn�k

3
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Let PðA1jkÞ, PðA2jkÞ, and PðNjkÞ reflect posterior probabilities for genotypes B73, Mo17, and doublet barcodes given k allele counts

from B73; posterior probabilities can be estimated as follows (Equations 4, 5, and 6):

PðA1jkÞ = PðkjA1Þ 3 PðA1ÞPn
i = 0PðkjAiÞ 3 PðAiÞ

4

PðA2jkÞ = PðkjA2Þ 3 PðA2ÞPn
i = 0PðkjAiÞ 3 PðAiÞ

5

PðNjkÞ = PðkjNÞ 3 PðNÞPn
i =0PðkjAiÞ 3 PðAiÞ

6

Finally, the genotype called for each barcode was determined as
 the event with the greatest posterior probability (Equation 7):

maxfPðA1jkÞ; PðA2jkÞ;PðNjkÞg 7

In silico sorting
To provide sufficient sensitivity for peak calling prior to clustering, we followed an in-silico sorting strategy to identify crude clusters of

similar cells within each organ (Cusanovich et al., 2018). To do so, we generate a binary matrix representing the presence/absence of

Tn5 integration sites in 1-kbwindows across all cells in a given organ. Binswith less than1%accessible cells and cellswith less than100

accessible bins were removed. This binary matrix was then transformed using the matrix normalization method term-frequency inverse

document-frequency (TF-IDF). Briefly, the TF term was estimated by weighting binary counts at each bin by the total number of bins

containing Tn5 integration sites in a given cell, scaling each cell to sum to 100,000, adding a pseudo-count of one, and log transforming

the resulting values to reduce the effects of outliers in downstreamprocessing. The IDF termwas calculated as the log transformed ratio

of the total number of nuclei to the number of nuclei thatweremarked as accessible for a given bin.Weadd a pseudo-count of one to the

inverse frequency term to avoid taking the log of zero. The TF-IDF scaledmatrix was estimated by taking the dot product of the TF and

IDF matrices. To enable faster downstream computation, we kept the top 25,000 bins with the greatest TF-IDF variance across nuclei.

The reduced TF-IDF matrix was denoised with singular value decomposition (SVD), retaining the 2nd – 11th dimensions (termed Latent

Semantic Indexing, LSI). Each row was centered and standardized, capping the values at ± 1.5. Crude clusters were visually identified

using ward.D2 hierarchical bi-clustering on the cosine distances of LSI nuclei and bin embeddings.

ACR identification
ACRswere identified by treating each bulk and single-cell ATAC-seq library as a traditional bulk ATAC-seq library. Aligned readswere

filtered bymapping quality greater than 10, and duplicate reads were removed via samtools rmdup.We then identified ACRs for each

library by converting the BAM alignments in BED format, adjusting the coordinates to reflect single-base Tn5 integrations, and

running MACS2 (Zhang et al., 2008) with non-default parameters: --extsize 150 --shift -75 --nomodel --keep-dup all. A final set of

ACRs for comparing bulk and aggregate scATAC-seq libraries (Figure S1) was constructed by taking the union of ACRs across all

libraries. To leverage the increased sensitivity afforded by cell-type resolved cluster information while ensuring robust reproducibility

in ACR identification, we generated pseudo-replicated bulk alignments using the LSI-based crude clusters (see above, ‘‘In-silico sort-

ing’’). Pseudo-replicates were constructed by randomly allocating nuclei from each cluster into two groups, with a third group

composed of all cells from the cluster (cluster bulk). These groupings were used to concatenate Tn5 integration sites corresponding

to the nuclei from each group into three BED files. ACRs were then identified from the enrichment of Tn5 integration sites from the

pseudo-replicate or cluster bulk aggregates using MACS2 run with non-default parameters: --extsize 150 --shift �75 --nomodel–

keep-dup all. ACRs from both pseudo-replicates and the cluster bulk were intersected with BEDtools, retaining ACRs on the condi-

tional intersection of all three groupings (both pseudo-replicates and the cluster bulk) by at least 25% overlap. The remaining ACRs

were then redefined as 500-bp windows centered on the ACR coverage summit. To integrate information across all clusters, ACRs

from each cluster were concatenated into a single master list. Lastly, overlapping ACRs were filtered recursively to retain the ACR

with the greater normalized kernel Tn5 integration density as previously described (Satpathy et al., 2019).

Nuclei clustering
Starting with a binary nucleus x ACR matrix, we first removed ACRs that were accessible in less than 0.5% of all nuclei, and filtered

nuclei with less than 50 accessible ACRs. Inspired by recent developments in modeling single-cell RNA-seq data (Hafemeister and

Satija, 2019), we developed a regularized quasibinomial logistic framework that overcomes noise inherent to sparse, binary scATAC-

seq data by pooling information across ACRs while simultaneously removing variation due to technical effects, particularly those

stemming from differences in barcode sequencing depths. First, a subset of 5,000 representative ACRs selected by kernel density

sampling of ACR usage (fraction nuclei that are accessible at a given ACR) were used to model the parameters of each ACR, using
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ACR usage as a covariate in a generalized linear model. Specifically, the expected accessibility of an ACR, yi, can be estimatedwith a

generalized linear model containing a binomial error distribution and logit-link function, and an overdispersion term with a quasibi-

nomial probability density function (Equation 8).

EðyiÞ � b0 + b1log10ðtÞ 8
Where t is a vector of the sums of accessible ACRs across cell j
 (Equation 9):

t =
X
i

yij 9
To prevent over-fitting and ensure robust estimates in light of sam
pling noise, we learned the global regularized model parameters,

including overdispersion, using the representative ACRs by fitting each parameter against the log10 fraction of accessible nuclei via

kernel regression, resulting in smoothed parameter estimates across the spectrum of ACR accessibility penetrance present in these

data. The learned global regularized model parameters were then used to constrain fitted values across all ACRs for each nucleus

with a simple affine transformation. To account for technical variation among nuclei (variation in barcode log10 transformed read-

depth, in particular) we calculated Pearson residuals for each ACR, scaling the residuals by the regularized dispersion estimate

and centering values via mean subtraction, representing variance-stabilized and read-depth normalized values of accessibility for

a nucleus at a given ACR. We note that this method is amenable to calculating residuals that account for additional sources of tech-

nical variation, including categorical and numeric covariates, that may obscure biological signal, such as batch effects, proportion of

mitochondrial reads, etc.

The dimensionality of the Pearson residual matrix was reduced using singular value decomposition (SVD) implemented by the R

package irlba (Witten et al., 2009), retaining the first 25 left singular vectors scaled by singular values (hereafter referred to as nuclei

embeddings), analogous to principal components (PCs) on an uncenteredmatrix. Nuclei embeddings were then standardized across

components and filtered to remove components correlated with barcode read depth (Spearman’s rho > 0.7). We further reduced the

dimensionality of the nuclei embedding with Uniform Manifold Approximation Projection (UMAP) via the R implementation of umap-

learn (min_dist = 0.1, k = 50, metric = ’’euclidean’’). Nuclei were clustered with the Seurat v3 (Stuart et al., 2019) framework and Lou-

vain clustering on a k = 50 nearest neighborhood graph at a resolution of 0.02 with 100 iterations and 100 random starts. Clusters with

aggregated read depths less than 1.5Mwere removed. To filter outliers in the UMAP embedding, we estimated themean distance for

each nucleus with its k (k = 50) nearest neighbors and removed nuclei greater than 3 standard deviations from the mean.

We observed fine-scale heterogeneity within major clusters, thus we repeated our clustering pipeline for each major cluster inde-

pendently by partitioning the SVD embedding into the top 20 components, L2 normalizing nuclei embeddings across components,

and projecting the L2-normalized embeddings into the UMAP space. Subclusters of nuclei were identified by Louvain clustering on

the L2 normalized SVD embedding (resolution set manually, range = 0.6 – 1.0) with 20 nearest neighbors, filtering outlier nuclei more

than 2 standard deviations from the mean distance of 25 nearest neighbors within each cluster.

For analysis of chromatin accessibility across clusters, we assembled a matrix of clusters by ACRs by aggregating the number of

single-base resolution Tn5 integration sites from nuclei within the same cluster for each ACR, analogous to normalizing by the pro-

portion of reads in peaks for each cluster. To account for differences in read depth and other technical factors, the raw counts were

transformed with edgeR’s ‘‘cpm’’ (log = T, prior.count = 5) as previously described (Corces et al., 2018). Log-transformed ACR

coverage scores were quantile normalized using ‘‘normalize.quantiles’’ with the R package, preprocessCore. Finally, to aid data visu-

alization, we estimated per ACR Z-scores across clusters by mean subtraction and standardization (identical to row-wise execution

of the R function, ‘‘scale’’).

Identification of co-accessible ACRs
Recent experiments of population-level chromatin accessibility found that pairwise correlations of accessibility among ACRs reca-

pitulates higher-order chromatin interactions observed in Hi-C and other chromatin architecture experiments (Gate et al., 2018). A

similar framework was applied to populations of single cells, which showed that co-accessible ACRs are typically more conserved

and functionally associated (Buenrostro et al., 2015). To identify potentially functional co-accessible ACRs, we applied a recently

developed method, Cicero (Pliner et al., 2018), that estimates regularized correlation scores (ranging from �1 to 1) among nearby

ACRs with graphical LASSO to penalize potential interactions by physical distances. Using the binary nuclei x ACR matrix as input,

we subset nuclei by their subcluster IDs and estimated co-accessibility among ACRs within 500-kb for each of the 92 clusters, inde-

pendently. Cicero was run by applying a background sample of 100 random regions, and 15 nuclei pseudo-aggregates based on k-

nearest-neighbors derived from the UMAP coordinates. To control the false discovery rate (FDR) of co-accessible ACR calls, we

shuffled the nuclei x ACR matrix such that the total number of reads per ACR and reads per nucleus were identical to the original

matrix. We then repeated co-accessible ACR identification with the shuffled matrix, keeping the original parameters to Cicero un-

changed. Empirical FDR cluster-specific cut-offs were constructed by identifying the minimum positive co-accessibility score in

the background where the FDR < 0.05. Co-accessible links below cluster-specific thresholds were removed. Co-accessible

ACRs passing thresholds were compared with previously published HiC and HiChIP datasets derived frommaize seedling and pistil-

late inflorescence primordia (Ricci et al., 2019).
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Estimation of gene accessibility scores
Chromatin accessibility at TSSs and gene bodies exhibit marked correlation with transcription output in bulk samples (Extended Data

Figure 3F). To aid the identification of marker genes underlying distinct cell-types, we used Cicero to estimate gene activity scores.

Ciceromodels gene activity as a weighted accessibility score that integrates both proximal and distal regulatory elements linked to a

single gene by co-accessibility analysis (see above section ‘‘Identification of co-accessible ACRs’’). Relative gene accessibility

scores per nucleus were estimated by taking a weighted average (3:1, gene body score to proximal/distal activity) of the scaled num-

ber of reads mapping to gene bodies for each barcode (summing to 1) with the Cicero estimate of gene activity derived from ACRs

mapping to 1-kb upstream of gene TSSs and their associated distal ACRs linked by co-accessible ACRs passing FDR < 0.05 thresh-

olds (connected ACRs were constrained to a minimum and maximum intervening distance of 1- and 500-kb, respectively). These

weighted gene accessibility scores were rescaled such that gene accessibility scores for a given nucleus summed to 1.

Relative gene accessibility scores exhibited a bimodal distribution with relative gene accessibility values near zero resembling low

or non-expressed genes. We applied a Gaussian mixture-model (two distributions) based scaling step per cluster to reduce noise

introduced by genes with low gene accessibility. Briefly, the average gene accessibility across nuclei was fit to a two distribution

Gaussian mixture model in each cluster using the R package mclust. We estimated cluster-specific scaling parameters determined

as the 5% quantile of non-zero gene accessibility values of genes from the Gaussian distribution with the larger mean, for each clus-

ter. This parameter was then used to scale gene accessibility scores for all genes in each nucleus within the cluster. Scaled gene

accessibility scores were rounded to the nearest integer and normalized across all nuclei and clusters using nucleus-specific size

factors estimated as the total gene accessibility of a nucleus divided by the exponential of the mean of log-transformed gene acces-

sibility sums across nuclei. To aid visualization, we smoothed normalized gene accessibility scores by estimating a diffusion nearest

neighbor graph (k = 15) using the SVD embedding with 3 steps similar to previously proposed methods (Fang et al., 2020; van Dijk

et al., 2018). Downstream analyzes based on binarized gene accessibility were conducted by simply converting normalized (non-

smoothed) accessibility scores to 1 for all positive values.

Cell-type annotation
To identify and annotate cell types for each barcode, we identified marker genes known to localize to discrete cell types or domains

expected in the sampled tissues/organs based on extensive review of the literature (Table S2). To enable gene accessibility compar-

isons among clusters, we generated three pseudo-replicates for each cluster by resampling nuclei within the cluster such that all

cluster pseudo-replicates contained the mean number of nuclei across clusters (number of nuclei per pseudo-replicate = 552)

without replacement when possible. To identify genes with increased accessibility relative to other clusters, we constructed a refer-

ence panel with three pseudo-replicates by uniformly sampling nuclei without replacement from each organ (number of nuclei per

organ = 92), with a total of 552 nuclei per reference panel pseudo-replicate. We then aggregated read counts across nuclei for

each gene and pseudo-replicate. Using the DESeq2 R package, we identified genes with significantly different (FDR < 0.01) acces-

sibility profiles between each cluster and the reference panel.

The list of significantly differentially accessible genes was filtered to retain the genes on our list of cell type specific markers. We

initially ranked the top three marker genes in each cluster by their test statistics. To account for clusters containing small proportions

of contaminating nuclei of a different cell type, we adjusted the test statistics using a previously describedmethod (Cusanovich et al.,

2018), effectively scaling marker activity scores by the proportion of nuclei in the cluster that were derived from an organ in which the

marker gene i is an expected cell type. Clusters where the top three markers corresponded to the same cell type were annotated with

the consensus cell type.

As an independent method for cell-type annotation, we devised a resampling and normalization procedure on the log2 fold-change

values of marker genes to evaluate cell-type enrichment across all possible cell types for each cluster, normalizing enrichment scores

by random permutations accounting for different numbers of markers associated with each cell type. Briefly, starting with differential

gene accessibility information for each cluster, we iterated over all cell types, extractingmarkers associatedwith the cell type of interest.

Then, we summed the log2 fold-changes values of all markers and multiplied the sum by the proportion of markers passing heuristic

thresholds (fold-change > 2 and FDR < 0.01). This score was subtracted by the average of 1,000 random permuted scores from combi-

nations ofmarkers from the remaining cell types (selecting the same number of random genes as the cell type of interest) and divided by

the standard deviationof thepermuted scores.Cell-type enrichment scores in eachclusterwere scaled fromzero toonebydividingeach

cell-typeenrichment scoreby themaximumscoresacrosspossiblecell types. Thisapproach iseffective in normalizingdifferencesarising

fromvaryingnumbersofmarkers specified for eachcell type. Additionally, cell-type annotation scores for clusterswithmixedor unknown

identity are approximately equally distributed, thus controlling ascertainment bias stemming from marker gene selection. Stated differ-

ently, anadvantageof this approach is that clusters corresponding tocell typeswith fewornomarkers in the tested list are left unassigned

as their enrichment scoresdonotdeviate significantly frombackground levels. Finally, scaledcell-typeenrichmentscoresgreater than0.9

were taken as possible annotations and intersected with putative cell-type labels from the marker ranking approach described above.

For clusters with ambiguous marker gene labels, we developed a logistic regression classifier to identify putative cell types based on

whole-genome gene accessibility scores of well-annotated cells. First, we counted the number of Tn5 integration sites per cell overlap-

ping2-kbupstream to500-bpdownstreamof eachgene. Readcountswere transformedby trimmedmeanofM-values (TMM) to enable

intra and inter-nucleus comparisons using edgeR (Robinson et al., 2010), scaling gene accessibility scores in each nucleus with counts

permillion.Next,weestimatedcell-typeenrichmentscores for eachnucleusbycalculating themeanaccessibility scoresofmarkers for a
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given cell type, subtracting the mean background signal defined as 1,000 sets of averaged randomly sampled genes (each set had the

same number of genes as the number of markers), divided by the standard deviation of the background signal. Enrichment scores for

each nucleus were transformed into a probability distribution by dividing by the sum of cell-type enrichment scores. For each nucleus,

we compared the top twomost likely cell types, retaining nuclei where the top predicted cell type had a two-fold greater probability than

the next most likely assignment. We used these high-confidence cells to train a regularized logistic multinominal classifier with the R

package,glmnet. Cell-typeclassificationswith less than10nuclei in the trainingsetwereexcluded.WeusedaLASSOL1penalty to regu-

larize the logistic classifier, modeling the training set of nuclei as observations and TMM gene accessibility scores as variables. We

balanced observations by weighting by the inverse frequency of cell types in the training set. The model was trained with 10-folds

and evaluated by testing a 20% hold-out set of nuclei. The predicted cell type for each nucleus in the atlas was taken as the cell type

with the greatest probability if the probability ratio between the best and next best assignment was greater than five-fold, otherwise

labeled as ‘unknown’. Using these per-cell assignments, we defined subclusters as the majority cell type if greater than 50% of nuclei

in the cluster were in agreement, labeling clusters with two or more majority cell types as ‘mixed’ and all other clusters as ‘unknown’.

All cell-type labels from these three automated approachesweremanually reviewed by careful evaluationwith UMAPgene accessibility

score embeddings and cluster aggregated coverages for all marker genes and refined ad hoc.

Cell-cycle annotation
Cell cycle annotation was performed similarly as cell-type annotation. Briefly, we acquired cell-cycle marker genes fromNelms et al.,

2019, selecting 35 markers at random for each cell stage (Nelms and Walbot, 2019). The rationale behind selecting equivalent

numbers of markers per stage was to prevent biasing cell cycle annotations to cycle stages with more markers, while 35 markers

was the minimum gene count across all stages (mitosis). For each stage, we subset the nuclei by gene accessibility (TMM) matrix

by the cognate stage, and summed accessibility scores for each nucleus. This cell-cycle stage score was then standardized using

the mean and standard deviation of 1,000 permutation of 35 random cell-cycle stage genes, excluding the focal stage. Z-scores cor-

responding to each cell-cycle stage were converted into probabilities using the R function pnorm. Per nucleus posterior cell-cycle

probabilities were estimated using Bayes theorem with each cell-cycle stage prior probability set to 0.2 (1/5, for five stages: G1,

G1/S, S, G2/M, M). The cell-cycle stage with the maximum probability was selected as the most likely cell stage. Nuclei with multiple

cell-cycle annotations with equal maximum probability were considered ‘‘ambiguous.’’

snRNA-seq data processing
Raw fastq files from each snRNA-seq seedling library (across two biological replicates) were processed with cellranger count v4.0 to

align reads to AGPv4 of themaize B73 reference genome (Jiao et al., 2017). BAM files were filtered to removemultiple mapping reads

using a mapping quality filter selecting reads with MQ greater than or equal to 30. The number of nuclear, organeller and transcript-

derived uniquemolecular identifiers (UMIs) reads for each barcode were tabulated from the filtered BAM file. Barcodes with less than

1,000 total UMIs and less than 500 genes with at least one UMI were removed. We then estimated the Z-score distributions for the

proportion of mitochondrial, chloroplast, nuclear, and transcript derived UMIs across barcodes. Barcodes above 1 standard devia-

tion (Z-score less than 1) from the mean proportion of UMIs derived from mitochondrial and chloroplast genomes were removed.

Likewise, barcodes below 1 standard deviation from the mean proportion of UMIs derived from the nuclear genome were removed.

Integration of scATAC-seq and snRNA-seq data
To integrate scATAC-seq and snRNA-seq data into a shared embedding, we input gene accessibility scores and gene expression

values from all seedling-derived nuclei passing quality filters described above using liger with the function createLiger (Welch et al.,

2019). Each dataset was normalized, subset by highly variable genes, and scaled using the functions normalize, selectGenes, and sca-

leNotCenter, sequentially with default arguments. An integrated non-negative matrix factorization (iNMF) embedding was constructed

from the gene by nuclei scATAC-seq and snRNA-seq matrices using optimizeALSwith default settings (k = 20, lambda = 5). The iNMF

embedding was quantile normalized with quantile_norm and non-default settings (do.center = FALSE). Louvain clusters from the

normalized iNMF embedding were identified at a resolution of 0.25with louvainCluster. To visualize the integrated assays, we used run-

UMAP with non-default settings (n_neighbors = 20, min_dist = 0.01). Differentially accessible and expressed genes per cluster were

identified using runWilcoxon requiring FDR less than 0.05 and a log2 fold change greater 0.25 using the integrated embedding (both

gene accessibility and expression across all co-embedded nuclei), gene accessibility in isolation (scATAC-seq nuclei only), and

gene expression in isolation (snRNA-seq nuclei only). Differentially accessible ACRs from the normalized (with liger function normalize)

sparse ACR by nuclei matrix were identified using identical heuristic thresholds as for gene expression and accessibility.

To imputeACRaccessibility in snRNA-seq derived-nuclei and gene expression values in scATAC-seq nuclei, we ran imputeKNN from

the liger package using either the scATAC-seq or snRNA-seq nuclei as reference cells.We then used the imputed gene expression and

ACR accessibility matrices, constrained to only differentially accessible ACRs (n = 55,939), to identify significantly associated gene-to-

peak linkageswith the liger function linkGenesAndPeakswith non-default settings (dist = ‘spearman’, alpha = 0.05). To remove potential

false positives, we shuffled the imputed ACR and gene nucleimatrices and repeated gene-to-peak linkage identification using the same

arguments.We thenestimatedFDRempirically overagridofa100possiblecorrelationvalues inboth thenegativeandpositivedirections

by identifying correlation cut-offs that removed 95%of gene-to-peak linkages from the shuffledmatrices.We then filtered the non-shuf-

fled gene-to-peak linkages according to the thresholds identified from the empirical FDR estimates.
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STARR-seq analysis
Single bp-resolution enhancer activities were available from a previous study (Ricci et al., 2019). Enhancer activity (defined as the log2
ratio between RNA and DNA input fragments scaled per million) for each ACR was taken as the maximum over the entire ACR. A

control set of regionswas generated tomatch each ACRwith the following criteria: (i) GC content within 5%, (ii) physically constrained

to within 50-kb of an ACR, and (iii) the same length (500-bp) distribution. The same set of control regions was used throughout the

analysis.

Analysis of differential chromatin accessibility
Next, we implemented a logistic regression framework based on binarized ACR accessibility scores for assessing the importance of

each ACR to cluster membership by estimating the likelihood ratio between logistic models with, and without a term for cluster mem-

bership similar to previous approaches (Cusanovich et al., 2018). Specifically, for each cluster, we compared binarized ACR acces-

sibility scores to a reference panel of uniformly sampled nuclei from each organ where the total number of reference nuclei was set to

the average number of nuclei per cluster. We then fit two generalized linear logistic regressionmodels (Equations 10 and 11), with and

without a term for membership to the cluster of interest.

logit
�
pij

�
= ui + aj + bj + εi 10
logit
�
pij

�
= ui + bj + εi 11
Where pij is the probability that ACR i is accessible in nucleus j, ui i
s the proportion of nuclei where ACR i is accessible, aj is the cluster

membership of nucleus j, bj is the log10 number of accessible ACRs in nucleus j and εi is the error term for the ith ACR.We then used a

likelihood ratio test to compare the fits of the twomodels and estimated the false discovery rate (FDR) using the Benjamini-Hochberg

method to identify ACRs that were significantly differentially accessible across clusters by conditioning on FDR < 5% and fold-

change threshold greater than two. ACRs meeting these criteria with positive Z-scores in nine or fewer clusters (< 10% of clusters)

were considered as cluster-specific. Analysis of differential gene accessibility was performed as described in the section titled ‘‘Cell-

type annotation.’’

Estimates of cell-type specificity
To estimate specificity scores for all genes, a binary matrix was constructed indicating the genes (rows) passing heuristic thresholds

(FDR < 0.05 & log2-fold change > 2) in each cluster (columns) from differential accessibility testing. Then, starting from a matrix of

counts per million (CPM) values across clusters and genes, the relative CPM values for a given gene were converted into a probability

distribution by scaling by the sum across clusters. Gene probabilities were split according to the heuristic thresholds, (1) clusters

where the gene was significantly enriched, and (2) clusters lacking statistical support for enrichment (‘‘non-enriched’’), using the

above binary matrix. We summed the gene probabilities for enriched clusters and penalized the sum by 1 – proportion of clusters

passing heuristic thresholds, resulting in higher weights for genes enriched in fewer clusters. In parallel, we summed the gene prob-

abilities for non-enriched clusters and penalized the sumby 1 – proportion of clusters failing heuristic thresholds. The specificity score

(ranging from�1 to 1) for each genewas estimated as the difference between enriched and non-enriched penalized probability sums.

Specificity scores were estimated similarly for ACRs. To determine if cell type-specific a priori genes were enriched for greater cell

type specificity, we estimated the average specificity across all marker genes and compared the average to a null distribution of

10,000 permutations of randomly selected genes (n = 221).

GO gene set enrichment analysis
Gene set enrichment using GO biological process terms was performed using the R package fgsea. For each cluster, test statistics

weremultiplied by the sign of the log2 fold-change value versus the reference panel. GO termswith gene sets less than 10 and greater

than 600 were excluded from the analysis. GO terms were considered significantly enriched at FDR < 0.05 following 10,000

permutations.

Motif analysis
Motif occurrences were identified genome-wide with fimo from the MEME suite toolset (Grant et al., 2011) using position weight

matrices (PWM) based on DAP-seq data in A. thaliana and Zea mays (Galli et al., 2018; O’Malley et al., 2016). To identity TF motifs

associated with cell type-specific ACRs, we ranked the top 2,000 ACRs in each cell type by Z-scores derived from CPM normalized

accessibility values (see section above ‘‘Nuclei clustering’’). As a reference for comparison, we identified 2,000 ‘‘constitutive’’ ACRs

that varied the least and were broadly accessible across clusters. The number of ACRs containing a specific motif was compared to

the frequency of constitutive ACRs harboring the same motif using a binomial test for each cell type and motif. To control for multiple

testing, we used the Benjamini-Hochberg method to estimate the FDR, considering tests with FDR < 0.05 as significantly different

between the focal cell type and constitutively accessible regions. Maize homologs of A. thaliana TFs were identified using protein

fasta alignments from BLAST+ v2.10.0 with an E-value cut-off of 1e-5. Only fasta sequences classified as transcription factors
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from either species were considered during alignment. To narrow the list of putative orthologs based on functional similarity to

A. thaliana TFs, we filtered alignments with less than 30% identity, removed maize TFs classified as belonging to a different family,

and selected the homolog with the greatest Pearson correlation coefficient with respect to the motif deviation score. Motif deviation

scores of specific TF motifs among nuclei were estimated using chromVAR (Schep et al., 2017) with the non-redundant core plant

PWM database from JASPAR2018. The input matrix for chromVar was filtered to retain a minimum of 50 accessible nuclei per ACR

and barcodes with at least 50 accessible ACRs. We visualized differences in global motif usage per nucleus by projecting deviation

scores onto the UMAP embeddings. To determine if patterns of TF motif accessibility from individual nuclei could be used to predict

cell-type annotations, we constructed a neural network for multinomial classification using the R package, caret (Kuhn, 2008)

(method = ’’multinom’’) using 80% of nuclei to train, 10-fold cross-validation, averaging error terms across 10 iterations. The nuclei

in the 20% withheld group were used to test the model. Sensitivity, specificity and accuracy of the model was evaluated using the

function confusionMatrix from caret.

To identity de novomotifs enriched in accessible but non-transcribed genes, we selected ACRs (n = 15,576) within 1-kb of genes

that were accessible (ATAC log2 TPM > 1.5) and non-expressed (mRNA log2 TPM < 1) in at least 10 clusters. We then constructed a

set of control regions by randomly sampling ACRs within 1-kb of genes expressed (mRNA log2 TPM > 1) and accessible (ATAC log2

TPM>1.5) in at least 10 clusters (n = 15,576). Thresholds were set according to empirical distributions for root and ear tissue.De novo

motif identification was conducted using the discriminative motif discovery workflow of MEME-ChIP (v5.1.1) with default settings us-

ing ACRs 1-kb upstream of TSS for (1) accessible and silenced and (2) accessible and expressed genes as positive and negative

sequences, respectively (Machanick and Bailey, 2011). Comparison of de novomotifs with experimentally identified motifs was per-

formed using TOMTOM from the MEME-suite toolkit (Gupta et al., 2007).

Analysis of cell type-specific selection signatures
Analysis of within-species genetic variation and phenotype-associated GWAS hits was performed as previously described (Ricci

et al., 2019). Multi-locus allele-frequency differentiation signals between chronologically sampled elite maize inbred lines were map-

ped onto ACRs (Wang et al., 2020), where the selection score for an ACRwas taken as themaximumXP-CLR value within the 500-bp

ACR interval. To identify cell types associated with increased signatures of selection, the top 2,000 ACRs defined by standardized

quantile-scaled CPM chromatin accessibility (Z-scores, see above ‘‘Nuclei clustering’’) were identified for each cell type. The mean

XP-CLR scores per-cell type were standardized by the mean and standard deviation of randomly sampled ACRs (n = 2,000) without

replacement across 1,000 permutations, where each permutation estimates the mean XP-CLR scores of a random subset of 2,000

ACRs from the total list of 165,913 possible ACRs. Enrichment Z-scores were converted into P-values using the R function pnorm

(log.p = T, lower.tail = F) and used to estimate FDR via the Benjamini-Hochberg method with the R function p.adjust (method = ’’fdr’’).

Analysis of co-accessible ACRs
To enable comparison with previously identified Hi-C and HiChIP loops (Ricci et al., 2019), we constrained the distance between co-

accessible ACRs to the same range as loops identified in leaf Hi-C andHiChIP (minimum loop distance = 20-kb). Co-accessible ACRs

and Hi-C/HiChIP loops were considered overlapping if both anchors overlapped by at least 50-bp. We compared motif composition

of co-accessible ACRs by scoring motif occurrence as binary for each ACR and estimating a Jaccard similarity score on the union of

motif sets. Motif similarity scores for co-accessible ACRs in each cell type were compared to a null distribution by repeating Jaccard

similarity calculations for non-co-accessible ACR-ACR connections (constraining the null connections to blocks of 1,000 ACR on the

same chromosome with the same ACR-ACR distance distribution as co-accessible ACRs) across 1,000 permutations. To identify

motifs enriched at co-accessible ACR anchors, we first estimated the proportion of co-accessible ACRs with an identical motif at

both anchors for each motif and cell type. Then, we constructed the same number of random ACR-ACR connections as co-acces-

sible ACRs, again estimating the proportion of links with an identical motif at both anchors, building a null distribution over 1,000

random permutations. The estimated proportion of co-accessible ACRs with identical motifs at both anchors for each motif was

transformed to a Z-score by subtracting and scaling by the mean and standard deviation of the null distribution. Z-scores were con-

verted to P-values using the R function, qnorm with non-default parameters (log.p = T, lower.tail = F). FDR values were estimated

using p.adjust (method = ’’fdr’’). Co-accessible motif scores were plotted as heatmaps using heatmap.2 by subtracting and dividing

observed with expected proportions. Rows and columns were clustered with hclust (method = ’’ward.D2’’).

Co-accessible ACR interactive capacity
To derive a per-ACR estimate of interactive capacity, we first counted the number of times an ACR was involved in a co-accessible

link for each cell type. The average interactive capacity was taken by averaging across all cell types. Significance tests were per-

formed by subsetting ACRs into two groups (with and without enhancer activity, and with and without overlap with GWAS SNPs)

and comparing the distributions with Monte Carlo simulation (permutations = 10,000).

Pseudotime analysis
Pseudotime trajectories were constructed similar to previous methods (Granja et al., 2020). Briefly, nuclei were ordered based on the

principal component space by fitting a continuous trajectory via a smooth spline on the Euclidean distances of each nuclei to a prede-

fined order of cell types. For feature analysis (ACRs, motifs, and TF activity) across pseudotime, nuclei were sorted by ascending
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pseudotime. The ACR x nucleus matrix was filtered to retain differentially accessible ACRs (see section ‘‘Analysis of differential acces-

sibility across pseudotime’’ below) with at least one nucleus defined as accessible. For each ACR, we fit a generalized additive model

with the binary accessibility scores as the response and a smoothed pseudotime component as the dependent variable [s(pseudotime,

bs = ’’cs’’)] with a binomial error term and a logit-link functionwith gam from themgcvR package. Predicted accessibility scores across

pseudotime were generated from 500 equally spaced interpolated points covering the range of pseudotime values. Finally, predicted

accessibility scores were mean-centered, standardized and constrained to the range ± 1 for each ACR. Model specification for motif

deviations andTFgeneaccessibility analysiswas similar toACRpseudotimeanalysiswith the exception of aGaussian error distribution,

and TF gene accessibility was normalized by the row maximum rather than rescaling on a ± 1 distribution.

Analysis of differential accessibility across pseudotime
To identity differentially accessible ACRs across pseudotime, we fit normalized accessibility residuals (Pearson residuals from a gener-

alized linear logistic regressionmodel with log10 number of accessible ACRsper barcode as the dependent variable, see section ‘‘Nuclei

Clustering’’ above) as the response and pseudotime as the dependent variable using a natural spline with six degrees of freedom

[ns(pseudotime, df = 6)] from the R package splines for each trajectory. We took an F-test based approach for hypothesis testing of

differential accessibility across pseudotime by comparing the variance explained by the splined linear model with that of the residuals

normalized by degrees of freedom.P-values from themodel were used to estimate Benjamini-Hochberg FDR valueswith the R function

p.adjust (method = ’’fdr’’), where a FDR threshold < 0.05 denoted statistical significance for differentially accessible ACRs across pseu-

dotime. To identify genes and TFmotifs with differential accessibility across pseudotime, we fit the linear splined regressionmodel with

the normalized gene accessibility scores and motif deviations from each nucleus, respectively, similar to the analysis of ACRs.

A. thaliana scATAC-seq processing
scATAC-seq data derived from A. thaliana root nuclei were processed similarly to the scATAC-seq data derived from maize nuclei.

Specifically, we processed raw fastq files using cellranger-atac, filteredmulti-mapped reads (MQ less than 10 and the presence XA:Z:

tags), removed PCR duplicates by barcode, filtered barcodes by proportion of Tn5 integration sites mapping to organellar genomes

above 1 standard deviation from themean, and removed barcodes with less than 1000 unique Tn5 integration sites. We used in silico

sorting to group nuclei by similarity, identify ACRs, estimate residuals with regularized quasibinomial regression from the binary ACR

by nuclei matrix, and reduced dimensions with SVD (singular values = 50) similarly as for maize nuclei. We coded library sequence

depth per nucleus as a covariate using the dplyr function ntile with n = 3 and removed additional technical variance with Harmony

using the SVD matrix as input with non-default settings for a weak correction (tau = 3, nclust = 15, max.iter.harmony = 30, theta =

0, lambda = 10) (Korsunsky et al., 2019). Nuclei were clustered with Louvain clustering (resolution = 1) in the Harmony corrected

embedding, and projected into an additionally reduced space with UMAP (n_neighbors = 15, min_dist = 0.1).

Aligning pseudotime trajectories between A. thaliana and Z. mays
To enable comparison of companion cell development betweenA. thaliana and Z.mays, we first identified putative one-to-one orthologs

using OrthoFinder (v2) (Emms and Kelly, 2019). Gene accessibility scores for 10,976 putative orthologs were imputed using a diffusion-

basedapproach (Fangetal., 2020;vanDijketal., 2018) andscaled from0to1acrosspseudotime forbarcodesassociatedwithcompanion

celldevelopment inA. thalianaandZ.mays. Toaccount fordifferentdistributions,pseudotimecoverage,andnumberofbarcodesbetween

species,weusedtheRpackage,cellAlign, that interpolates, scales, andweightsgeneaccessibility scoresonafixedsetof (n=200)equally

spacedpoints (widthparameter:winSz=0.1) from two trajectories to remove technical biases inherent to eachdataset (Alpert et al., 2018).

For each putative ortholog, we performed global alignment of gene accessibility scores acrossA. thaliana and Z. mays pseudotime using

the dynamic time warping algorithmwith default settings in cellAlign.We then extracted the pseudotime shifts, representing the extent of

gene accessibility deviation at any given point along the trajectory, for each putative ortholog.We clustered genes into two groups based

on pseudotime shifts across companion cell development using k-means clustering. To identify conserved gene accessibility patterns

across pseudotime, we clustered the normalized distances between A. thaliana and Z. mays putative orthologs using a mixture model

(G = 2) with the R package, mclust. The mixture model identified a bimodal distribution of normalized distances with 0.15 as a natural

cut-off for defining conserved accessibility patterns. Putative orthologs with normalized distances less than the cut-off were placed in a

third group defined as conserved. The above analysis was repeated with TF motif deviations scores for 440 TF motifs, without the

need for ortholog searching as the same TF position weight matrices were used for both species, affording identical TF motif labels.

Additional resources
Cell-type resolved data can be viewed through our public Plant Epigenome JBrowse Genome Browser (Hofmeister and Schmitz,

2018) (http://epigenome.genetics.uga.edu/PlantEpigenome/index.html) by selecting either the Z. mays or A. thaliana Genome

Browser links, followed by the scATAC_celltypes tab in the tracks panel.
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Supplemental figures

Figure S1. Evaluation and quality control of maize scATAC-seq, related to Figure 1

(A) Genome browser screenshot of chromatin accessibility from bulk and aggregated single-cell ATAC-seq experiments. Chromatin accessibility profiles depict

the tb1 locus and the tb1 enhancer located approximately 67kb upstream.

(B) Binary accessibility scores from a random selection of 1,000 individual nuclei from each organ.

(legend continued on next page)
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(C) Spearman’s rho matrix comparing bulk ATAC-seq and aggregate scATAC-seq samples across various organs. Sample codes are shorthand for assay type,

sample, and replicate. For example, s-R1 denotes single cell assay for seminal root replicate 1. The term b-L2 denotes a bulk-ATAC assay for seedling replicate 2.

Codes are as follows: b, bulk; s, single cell; R, seminal root; C, crown root; E, ear; T, tassel; A, axillary bud; L, seedling. Numbers represent replicate.

(D and E) Comparison of normalized (0-1) read depths at the union of all peaks across bulk and single-cell samples (n = 265,992) between (D) replicated libraries

and between (E) bulk and single-cell ATAC-seq assays.

(F) Enrichment plots centered on 2-kb windows surrounding TSSs for barcodes in each tissue. Grey polygons indicate the standard deviation across cells within

the noted tissue.

(G) Density scatterplots of log10 transformed barcode read depths (x axis) by the fraction of Tn5 integration sites mapping to within 2-kb of transcription start sites

(TSSs). Dashed red lines indicate the threshold of two standard deviations from the mean used to filter lower quality barcodes.

(H) Fragment length distributions for each library. Solid lines indicate the average distribution across cells within the sample. Grey polygons represent the

standard deviation across cells in the library.

(I) Density scatterplots of log10 transformed barcode read depths (x axis) by the fraction of Tn5 integration sites derived from organellar sequences (chloroplast

and mitochondrial) relative to the total number of unique Tn5 integration sites associated with cognate barcodes. Dashed red lines indicate the threshold of two

standard deviations from the mean used to filter lower quality barcodes.

(J) Genotype-mixing experimental schematic.

(K) Scatterplot of per cell B73 and Mo17 SNP counts from a mixed-genotype experiment (V1 seedlings) colored by genotype classification.

(L) Genome browser screenshot of traditional bulk ATAC-seq from 7-day old seedling (row 1), single-cell ATAC-seq from B73 seven-day old seedlings (row 2),

pooled B73 and Mo17 nuclei (library ID: Seedling 2) single cell ATAC-seq from seven-day old seedlings (row 3), and the genotype-sorted B73 (row 4) and Mo17

(row 5) alignments after sorting barcodes by genotype calls from the B73-Mo17 scATAC-seq seven-day old seedling sample (row 3).
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Figure S2. Clustering metrics and cell-type marker gene analysis, related to Figure 1

(A) Parameter regularization ofmodel coefficients (y-axes) with respect to ACR usage (x-axes; proportion of nuclei with at least one Tn5 integration site in an ACR).

(B) Proportion of variance captured by the first 26 PCs. Inset: Spearman’s correlation of principal components with cell read depth (log10-transformed).

(C) Number of accessible sites per cell (log10).

(D) Proportion of Tn5 integrations within 2-kb of gene TSSs per cell.

(E) Co-localization of nuclei barcodes from different biological replicates for three organs.

(F) Comparison of bulk RNA-seq expression levels (y axis, log2 CPM) versus aggregate scATAC-seq gene accessibility scores (x axis, log2 CPM) within an organ.

(G) Left: proportion of nuclei by organ in each sub-cluster. Right: gene accessibility (gene body plus 1-kb upstream TSSs) Z-scores across cell types.

(H) UMAP embeddings of nuclei barcodes colored by low (gray) to high (dark purple) gene accessibility scores (gene bodies plus 1-kb upstreamTSSs) of cell type-

specific marker genes.

(I) Permuted (10,000) distribution of average gene specificity scores for random sets of genes (gray) compared to the average specificity score of a priorimarker

genes (dashed red line).

ll
Resource



(legend on next page)

ll
Resource



Figure S3. Chromatin accessibility variation across plant cell types, related to Figure 3

(A) RNA in situ hybridization showing expression of LOX10 in glume primordia andGRFTF36 in IM and SMs of staminate inflorescence; LRR445 in the IMperiphery

and SPMs and MYB89 in the IM and suppressed bract primordia of pistillate inflorescence; Zm00001d038453 in ground tissue of SAM and leaf primordia

sections. Gene accessibility scores and predicted cell types are shown on the right. i, tassel primordia. ii, ear primordia. iii, SAM/leaf. Black triangles point to the

glume primordia. Red triangles point to suppressed bract primordia. Size bars illustrate 100-um. AM, axillary meristem; BS, bundle sheath; GC, guard cell; GM,

ground meristem; GMC, guard mother cell; GP, glume primordia; IM, inflorescence meristem; L1, layer 1; LFM, lower floral meristem; SAM, shoot apical mer-

istem; SBP, suppressed bract primordia; SM, spikelet meristem; SPM; spikelet pair meristem; Stomatal PC, stomatal precursor; UKN, unknown; VEMI, vascular/

epidermal meristematic identity; VP, vascular parenchyma; XP, xylem parenchyma.

(B) Proportion of cells within subcluster (column) derived from one of six organs (rows).

(C) Distribution of GO term enrichment across clusters, where the x axis indicates the number of clusters in which a GO term is significantly enriched.

(D) Comparison of H3K27me3, mCHH, mCHG, mCG and chromatin accessibility between accessible/silenced genes (top heatmap, pink) and non-accessible/

silenced genes (bottom heatmap, gray). Heatmaps were ordered by the average TPM values from snRNA-seq of maize seedlings.

(E) Top: Comparison of normalized ATAC-seq and RNA-seq reads in maize embryonic roots (left) and female inflorescence (ear; right). Horizonal and vertical

dashed red lines indicate thresholds for accessibility (left: non-accessible, right: accessible) and RNA expression (below: non-expressed, above: expressed).

Middle: Metaplots of ATAC-seq andH3K27me3ChIP-seq reads 2-kb up and downstream of accessible/expressed and accessible/silenced genes from bulk root

(left) and female inflorescence (ear; right) tissues. Bottom: Top de novo enriched motifs in ACRs within 1-kb upstream of TSSs for accessible/silenced genes in

embryonic root (left) and female inflorescence (ear; right).

(F) Row ACR accessibility Z-scores across cell types. Cell types are ordered according to Table S2: Cluster Annotation and Metrics.

(G) Distribution of enhancer activity for distal ACRs (dACRs) classified as with (pink) and without (green) enhancer activity.

(H) Maize seedling ChIP-seq profiles for dACRs with (top heatmap, pink) and without (bottom heatmap, green) enhancer activity. Heatmaps were ordered by

enhancer activity measured by STARR-seq of maize leaf protoplasts.
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Figure S4. Co-accessible ACRs reflect in vivo chromatin interactions driven by coordinated TF activity, related to Figure 5

(A) Co-accessible ACRs at the ZmRAP.2 locus in maize, with root-specific expression patterns, across eight root-derived (left) and eight above-ground (right) cell

types. The height of the loops reflects the strength of co-accessibility. Pseudobulk chromatin accessibility tracks are shown under co-accessible ACR linkages for

each cell-type.

(B) Co-accessible ACRs at theBX1 locus inmaize, predominantly expressed in seedling tissue, across eight seedling-derived (left) and eight non-seedling derived

cell types. The height of the loops reflects the strength of co-accessibility. Pseudobulk chromatin accessibility tracks are shown under co-accessible ACR

linkages for each cell-type.

(C) Distribution of physical distances between co-accessible ACR summits.

(D) Proportions of co-accessible ACR types, illustrated by toy examples.

(E) Proportion leaf Hi-C, H3K4me3-HiChIP and H3K27me3-HiChIP chromatin loops that overlap co-accessible ACRs from leaf cell types (clusters with greater

than 50% of cells derived from seedlings).

(F) Log10 number of connections per ACR per cell type from all co-accessible ACRs split by genomic context: distal, proximal, and genic.

(G) log10 number of connections per ACR per cell type from cell type-specific (purple) and non-specific (gray) co-accessible ACRs, split by genomic context.

(H) Proportion of co-accessible classifications by cell type for all co-accessible ACRs (top) and cell type-specific co-accessible ACRs (bottom).

(I) Jaccard similarity of motif composition between co-accessible ACR edges by cell type (colored diamonds) relative to the same number of random ACR-ACR

links, permuted 1,000 times for each cell-type (gray boxplots). Boxplots represent the interquartile range, gray lines indicate the permuted range.

(J) Heatmaps of observed proportion of co-accessible ACRs with the samemotif embedded within link edges subtracted and divided by the expected proportion

estimated by 1,000 permutations using sets of random ACR-ACR links.

(K) Ranked reciprocal TF enrichment in maize seedling Hi-C loops versus 1,000 permuted interactions containing a similar distribution of ACRs. Notable TFmotifs

are indicated by text.

(L) Comparison of reciprocal TF motif enrichment between maize seedling Hi-C loops and the average reciprocal TF motif enrichment from co-accessible ACRs

across cell types.
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Figure S5. Pseudotime trajectory construction, related to Figure 6

(A) Overview of pseudotime developmental trajectory analysis from four organs: root, seedling, tassel (staminate inflorescence), and ear (pistilate inflorescence).

(B) Endodermis development in crown roots.

(C) Cortex development in crown roots.

(D) Pericycle development in embryonic roots.

(E) Atrichoblast development in crown roots.

(F) Trichoblast development in crown roots.

(G) Trichoblast development in embryonic roots.

(H) Lateral root cap (LRC) development in crown roots.

(I) Lateral root cap (LRC) development in embryonic roots.

(J) Phloem sieve element (SE) development in crown roots.

(K) Companion cell development in crown roots.

(L) Phloem sieve element (SE) development in embryonic roots.

(M) Xylem development in crown roots.

(N) Xylem development in embryonic roots.

(O) Procambial development in crown roots.

(P) Guard cell development in seedling.

(Q) Subsidiary cell development in seedlings.

(R) Floral primordia development in staminate inflorescence (tassel).

(S) Floral primordia development in pistillate inflorescence (ear).
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Figure S6. Arabidopsis thaliana root cell type atlas, related to Figure 7

(A) Knee plots for Arabidopsis thaliana root samples illustrating log10 transformed cellular read depths of log10 ranked barcodes across two biological replicates.

(B) Density scatterplots of log10 transformed barcode read depths (x axis) by the fraction of Tn5 integration sites derived from organellar sequences (chloroplast

and mitochondrial) relative to the total number of unique Tn5 integration sites associated with each barcode from the two biological replicates. Dashed red lines

indicate the threshold of two standard deviations from the mean used to filter lower quality barcodes.

(C) Density scatterplots of log10 transformed barcode read depths (x axis) by the fraction of Tn5 integration sites mapping to within 2-kb of transcription start sites

(TSSs). Dashed red lines indicate the threshold of two standard deviations from the mean used to filter lower quality barcodes.

(D) Average TSS enrichment (normalized read depth adjusted by the two 10 bp windows 1-kb away from TSSs) across 5,001 Arabidopsis thaliana root barc-

odes (rows).

(E-G) UMAP (Uniform manifold approximation projection) embeddings of Arabidopsis thaliana root barcodes colored by (E) biological replicate, (F) the total

number of accessible chromatin regions (ACRs), and (G) the proportion of Tn5 integration sites within 1-kb of TSSs.

(H) Relative gene accessibility for 27 known cell-type/domain restricted marker genes used to inform cell-type annotation of Arabidopsis thaliana root clusters.

(I) Relative motif deviations for transcription factors with known cell-type specificities.
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Figure S7. Dynamic and conserved chromatin accessibility across pseudotime betweenArabidopsis thaliana andZeamays, related to Figure 7

(A) Pseudotime trajectories for Atrichoblast, Trichoblast, Lateral root cap (LRC), Cortex, Endodermis, Lateral root primordia (LRP), Companion cells (CC), and

Xylem development.

(B) Averaged alignments of conserved, shift early Z. mays, and shift early A. thaliana putative orthologs.

(C) Pseudotime shifts of TF motifs between A. thaliana and Z. mays, clustered into k-means and conserved groups.

(D) Distributions of motif-motif normalized distances between Z. mays and A. thaliana for the three groups.

(E) Conserved motifs (n = 142) ordered by pseudotime. Heatmaps for A. thaliana and Z. mays have identical row orders.

(F) Averaged alignments of conserved, shift early Z. mays, and shift early A. thaliana groups based on motif-motif global alignments from the dynamic time-

warping algorithm.

(G) Examples of conserved, shift early Z. mays, and shift early A. thaliana motifs from both species.

(H) Gene expression Z-scores across A. thaliana FAC sorted root cell-types for the TFs recognizing the top four conserved motifs.
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