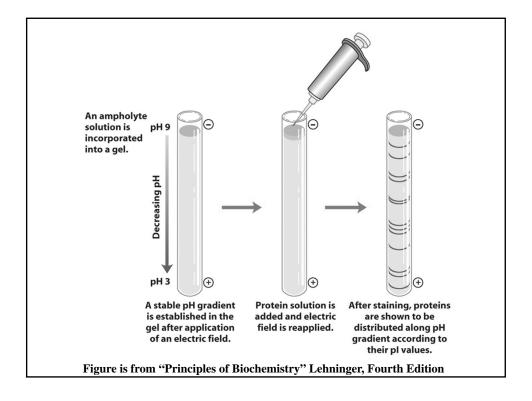
Proteomics

The process of identifying, characterizing, and quantifying all expressed proteins in an organism under one or several conditions.

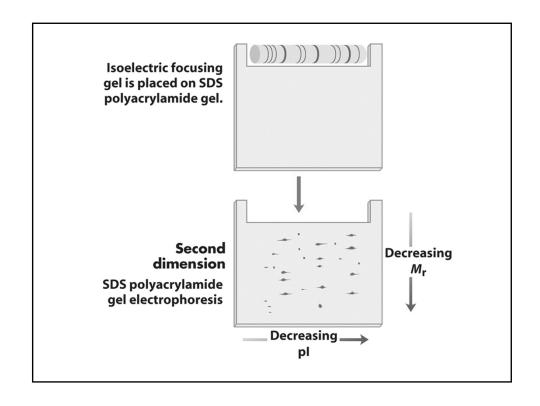
Electrophoresis

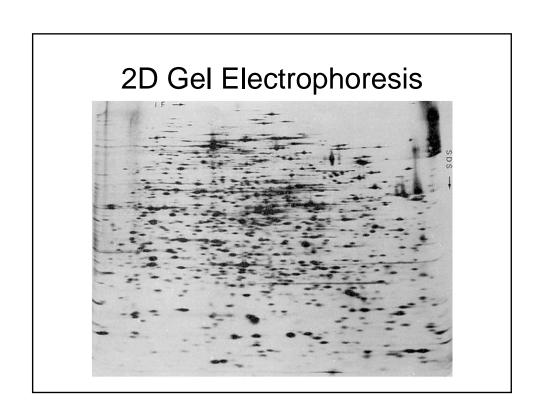
- Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
- Isoelectric Focusing (IEF)
- 2 Dimensional Gel Electrophoresis
- Free-Flow Electrophoresis
- Capillary Electrophoresis

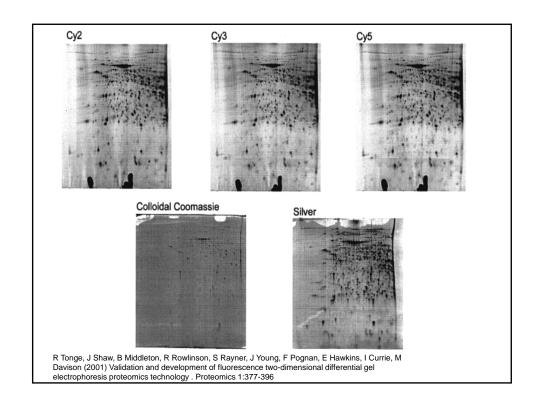

H₂C NH₂

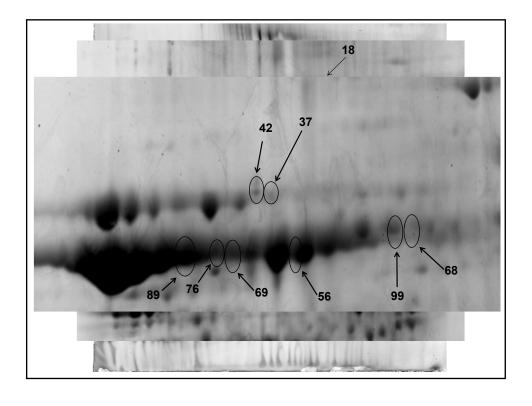
SDS-PAGE

- H₂C NH NH CH₂
- Separates proteins by size
- Denaturing gels
- Resolution dependent on
 - Size of polyacrylamide gel
 - Concentration of acrylamide
 - one concentration or a gradient
 - Stacking of sample
- Stain to visualize proteins
 - Multiple stains available with varying sensitivity
 - Deep Purple, sypro ruby, sypro orange, silver


IEF


- Separation by charge
- pH gradient established by ampholytes
- Gel matrix
 - polyacrylamide strips with immobilized pH gradient.
 - pH gradients in ranges from 3-11 NL to one pH unit (i.e. 6-7) in lengths of 7cm to 28 cm strips
 - Tube gels
- Run times
 - Immobilized IEF 6-24 hours
 - Vertical/tube gels IEF 2-6 hours



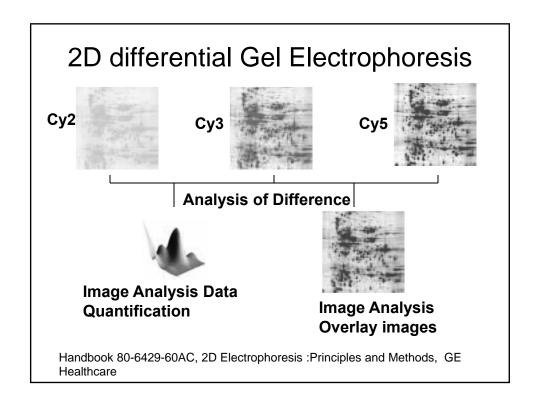

2D gel electrophoresis

- Perform IEF
- Place IEF gel in large well of SDS gel and perform electrophoresis
- Stain
- Cut out spots to identify by mass spectrometry

		_		0.1	
Spot	Identification	Avg.	T-	%	Accession #
		ratio	test	Cov	
31	Mitochondrial Chaperonin 60 (Zea Mays)	2.68	0.002	51	AAA33452.1
27	Similar to Heat-shock protein precursor	1.88	0.046	20	NP_001066882.1
242	Not analyzed	1.69	0.022		
18	Victorin Binding Protein, Avena sativa (glycine decarboxylase P subunit)	1.58	0.040	33	AAA63798.1
37	Dihydrolipoamide dehydrogenase	1.38	0.001	14	NP_001042918.1
	family protein (glycine decarboxylase L subunit)				AK330954
38	Not analyzed	1.35	0.014		
		1.31	0.002	25	AAA33687.1
76	Serine hydroxymethyltransferase				7 2 2 10000111
69	Serine hydroxymethyltransferase	1.28	0.008	23	AAA33687.1
89	Serine hydroxymethyltransferase	1.28	0.044	30	AAA33687.1
42	Chloroplast ATP Synthase α-subunit T. aestivum	1.27	0.007	16	AAA84725.1
42	Dihydrolipoamide dehydrogenase family protein				AK330954
68	heat shock protein Hsp90	1.21	0.042	20	Os12g0514500
99	T-cytoplasm male sterility restorer factor 2 (mitochondrial aldehyde dehydrogenase 2)	1.15	0.031	23	AAG43988
56	Rubisco large sub unit	-1.39	0.022	32	ABR01438
56	Serine hydroxymethyltransferase			23	AAA33687.1

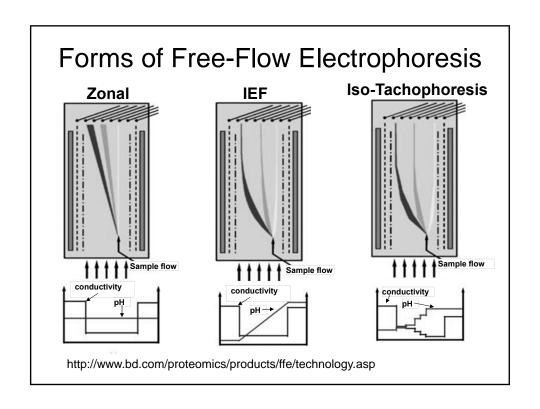
Limitations

- A single protein can make multiple spots so number of proteins less than spots
- Usually see only most abundant proteins
- Separation limited by gel concentration and size
- Basic and membrane bound proteins are not well separated by 2D gel electrophoresis.


Other 2D Gel Methods

- Blue Native Gel followed by SDS gel
 - Used for organelles such as mitochondria and chloroplasts
 - Keeps electron transport complexes together during native gel process
- Non denaturing followed by denaturing
 - Can allow for complexes to move together
 - Then separates subunits of complexes
- Differential gel electrophoresis

Differential Gel Electrophoresis


- Allows measurement of the relative concentration of proteins
- Method
 - Isolate proteins from test and control
 - Label test proteins with one dye
 - Label control protein with second dye
 - Make third sample of mixed control and test and label with third dye.
 - Combine all three samples and separate by 2D gel electrophoresis
 - Analyze the intensity of the test and sample relative to the combined sample.

Free Flow Electrophoresis

FFE

- FFE can be used to separate any charged item that can be suspended in and aqueous solution.
 - Cells (zonal, isotacho-)
 - Organelle (zonal, isotacho-)
 - Proteins (IEF)
 - Subcellular fragments (zonal, isotacho-)
 - Nanoparticles
- Uses low molecular weight weak acids and basis to establish pH.

2 Dimensional Chromatography

- Alternative means to reduced protein complexity.
- Consists of performing two or more usually orthagonal chromatographic steps prior to LC-MSMS
- Process sometimes called Multidimensional protein identification technology (MuDPIT)

2D Chromatography

Types of chromatography
Strong cation/anion exchange
SCX/SAX

Weak cation/anion exchange WCX/WAX
Size exclusion chromatography SEC
Hyroxyapatite chromatography HA

Chromatofocusing

Hydrophobic interaction HIC Reverse Phase RP

Mixed bed

2D Chromatography

- Advantages
 - Reduces complexity for LC-MS/MS and 2D gels
 - Can concentrate low abundance proteins
- Disadvantages
 - Typically up to 20% loss at each chromatographic step
 - Longer experiment times

Gel Electrophoresis

What you need to know

- Types of gel electrophoresis
 - Most common -- SDS-PAGE, IEF, 2D
 - Other methods (FFE, blue native, differential, etc.)
 - How differential gel electrophoresis works.
 - How each method separates proteins
 - Limitations
- 2 dimensional chromatography
 - How each method separates proteins
 - Limitations