Linkage Disequilibrium

Why do we care about linkage disequilibrium?
e Determines the extent to which association mapping can be used in
a species
o Long distance LD
= Mapping at the tens of kilobase level or greater
o Short distance LD
= Mapping at the base pair to kilobase level

Linkage disequilibrium (LD)
e Measures the degree to which alleles at two loci are associated
o The non-random associations between alleles at two loci
= Based on expectations relative to allele frequencies at
two loci

Goal: To Define the a statistical variables that will allow us
e To determine if two loci are in
o Linkage disequilibrium or
o Linkage equilibrium
e Frequencies of each haplotype are used in the variable calculation.



Table 1. Definition of haplotype frequencies for two loci with two
alleles.

Haplotype | Frequency
A:B; X11
A.B; X12
AzB, X21
AzB; X22

From this table
e The frequency of each allele at each locus can be calculated
o Using traditional population genetic nomenclature
= pandq for
¢ Allele frequencies at loci A and B.

Table 2. Definition of allele frequencies based on haplotype
frequencies.

Allele | Frequency

Ar | P1 =X+ X2

Ay | P2=Xo + X2

B: |01 =X+ X

By |02 =X12 = X2




To measure linkage disequilibrium (LD)
e  Compare the observed and expected frequency of one haplotype
e  Standard measure of LD is typically

D = X1 — p10s
e Iftwo loci are in linkage equilibrium, then
D=0
e If the two loci are in linkage disequilibrium, then

D#0



From the definition of D

We can determine
o The relationship of haplotype frequencies (Table 1) and D
and allelic frequencies (Table 2).

Table 3. Relationships among haplotype and allelic frequencies.

A A; Total
B, X1 =P11+D [ X =p01—-D | Q1
B2 Xi2=P102—D | X22=p202+D |02
Total P1 P2

D depends on allele frequencies

Researchers suggested the value should be normalized
0 Based on the theoretical maximum and minimum relative to
the value of D

When D >0

D'=—
D

Dinax IS the smaller of p;g, and p,q;.

When D <0

Dmin 1S the larger of —p;q; and —p,Q;.



Another LD measure

e  Correlation between a pair of loci is calculated using the following
formula

o Valueisr
o Or frequently r*.

D
r =

./ prpacuge

OR

2 D-

rF=—_
P, P20,0;

r* is useful because it ranges from 0 to 1

Ranges from
or=0
= Loci are in complete linkage equilibrium
2 _
or=1
= Loci are in complete linkage disequilibrium.



Graphical relationship of linkage disequilibrium
o r’to either genetic or physical distance
o r’vs. distance is calculated
= Non-linear regression
« Two examples
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When are loci in linkage equilibrium?
o Examples
= 0.5,0.2,0.1,and 0.05
¢ No clear statistical measure
= Show graph
= State r° value
e Use as measure of linkage equilibrium.



Linkage Disequilibrium Differs Between
Chromosomes

Heatmaps
e Better indicator of LD across a chromosome or region
o Shows the relationship between regions of the genome you
are targeting
o Each value is the pairwise LD between two SNP positions on
the chromosome
= Not an overall average
e The higher the LD (= r?) the redder the color; all pairwise r* values
are shown



Linkage Disequilibrium Differs Among Chromosomes
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Linkage Disequilibrium Differs Among Populations
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Genome-wide Linkage Disequilibrium

From: Long et al (2013) Massive genomic variation and strong
selection in Arabidopsis thaliana lines from Sweden. Nature Genetics
45:884
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What Factors Affect Linkage Disequilibrium?

Recombination
e Changes arrangement of haplotypes
o Creates new haplotypes
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Genetic Drift

e Changes allele frequencies due to small population size

o Random effect
e LD changes depends on population size and recombination rate

o Smaller populations

= New non-random associations appear
e Larger LD values between some pairs of loci

e Larger populations

o Lesseffect on LD



Inbreeding

e The decay of linkage disequilibrium is delayed in selfing

populations
¢ Important for association mapping in self-pollinated crops
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Mutation
o Effect is generally small absent recombination and gene flow

Gene flow
e LD becomes large if two populations intermating are genotypically
distinct
e Not much of a problem if crossing between highly similar
population found with most breeding programs



Expected and observed decay of LD in an outcrossing species
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Association Mapping in Plants

Traditional QTL approach
e Uses standard bi-parental mapping populations
o F, or Rl populations
e These have a limited number of recombination events
o Result is that the QTL covers many cM
e Additional steps required to narrow QTL or clone gene
o Difficult to discover closely linked markers or the causative gene

Association mapping (AM)

e An alternative to traditional QTL mapping
o0 Uses the recombination events from many lineages
o Discovers linked markers associated (=linked) to gene

controlling the trait

e Major goal
o Discover the causative SNP in a gene

e Exploits the natural variation found in a species
o Landraces
o Cultivars from multiple programs

= Discovers associations of broad application

o Variation from regional breeding programs can also be

utilized
= Associations useful for special local discovered



Problem with AM
e Association could be the result of population structure
o Hypothetical example

North America South America

Plant (101012 |11|13|9 |11|10|13|12|4 |6 |5 |7 |6 |6 |4 |5
Ht

Dis |S|S|S|T|S|S|S|S|T|S|T|S|T|T|T|T|T]S
Res

SNPL|T |T |T |G [T |T|T |T |G|T|]G|G|G|G|G|G|T]|G

SNP1 in Example
e Assumed the SNP it is associated with plant height or disease
resistance
o North American lines are
= Shorter and susceptible
= Allele T could be associated with either trait
o0 South American lines are
= Taller and tolerant
= Allele G could be associated with either trait
e Associated with both traits because of population structure
o0 These are false positive associations (Type | errors)
e Result
o Population structure must be accounted for in analysis




Key Principle Regarding AM
e Human
o Common variant/common disease
o A specific SNP in a specific gene is responsible for a disease
found throughout humans
e Plants
o Common variant/common phenotype
o A specific SNP in a specific gene is responsible for a disease
found throughout a specific species

Important Concept Related to Principle

e Association Mapping
o Useful for discovering common variant
o Each locus may account for only a small amount of the

variation

¢ Bi-parental mapping
o Useful for discovering rare alleles that control a phenotype
o0 These alleles typically have a major effect



Idealized Cases Results for AM

Marker 1
Allele 1 | Allele 2
Case 100 100
Control 100 100

¢ No association between marker and phenotype

Marker 2
Allele 1 | Allele 2
Case 200 0
Control 0 200

e Association between marker and phenotype



Methodology of AM

1. Define a population for analysis
e Should represent the diversity useful for goals of project
o0 Specific to target of project

= Species-wide

e Use lines from all major subdivisions of the
species

= Regional or local

e Use lines typical to target region

2. Genotype the population
e Genome-wide scan
0 Medium density
= ~5,000 - 50,000 SNPs
= Array-based assays
o High density
= 50,000 - 2,500,000 SNPs
= Whole genome or reduced representation resequencing
e Rice: 3,000,000 SNPs
e Corn: 25,000 — 2,500,000 SNPs
= Array-based assays
e Arabidopsis
0 250,000 SNPs
o Affymetrix chip

e Candidate gene (original approach no longer used)
0 Select genes that might control trait
= Sequence different genotypes
= Discover SNPs in gene
o 5’-UTRor 3’-UTR
o Coding region
o 3’-UTR

3. Controlling for Population Structure/Relatedness



e Define subpopulations
o0 Select markers to genotype the population
= Markers should ideally be
e Distributed among all chromosomes
e All should be in linkage equilibrium (r°<0.2)
e Minor allele frequency >0.1
o Evaluating population structure
» STRUCTUE software
e Use matrix of percentage population membership
in analysis
o Fixed effect
¢ Original approach, BUT
o Discontinued
= Assumption of Hardy-Weinberg
Equilibrium with software always
violated
= Principal component (PC)
e Defines groups of individuals
e Select number of principal components that
account for specific percent of variation
o 25% - 50% are a typical value
o Fixed effect
o Evaluate relatedness
= EMMA or Spagedi relatedness calculations
e Qutput is a table with all pairwise-comparisons
e Random effect



4. Statistical Analysis
o Marker-by-marker analysis
o0 Regression of phenotype onto marker genotype
= Significant marker/trait associations discovered

e Analysis must control for population structure and/or relatedness
o0 Most popular approach
= Mixed linear model

e Example formula:
y=Po+Sa+Ilu+e

y = vector of phenotypic values
P = matrix of structure or PC values

v = vector regarding population structure (STRUCTURE of
PC values) (fixed effect)

S = vector of genotype values for each marker

a = vector of fixed effects for each marker (fixed effect)
| = relatedness identity matrix

L = vector pertaining to recent ancestry (random effects)
e = vector of residual effects

Model from: Weber et al. 2008. Genetics 180:1221.



GWAS Mixed-linear Model, and
Program Input Matrices

y = Pv +Sa + Iu + €

|

enutvpe Mi1IM2.. Mn Genutg]ge

Genotype Trait Value Genotype PCl PC2
1 26 1 -04 16 AA GG . . Genntvpe 1 2 .. n
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n as n 42 27 cc 66 .
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Phenotype Structure Genotype (SNP) Relatedness
Matrix Matrix Matrix Matrix
(Fixed effect) (Fixed effect) (Random effect)
GWAS Goal Software Inputs

e Each of the matrices

Software
e GAPIT, TASSEL, R, SAS

* Determine significance of the each market based
on phenotype, structure and relatedness
* Based on F-test for significance



5. Software of choice

All give equivalent p-value results for the marker-trait associations.
= The most important criteria for the software!!

Tassel
= Java-based software
= Extensively used, often cited
= Early application available to users performing plant GWAS
= Some pre-analysis steps required before use with earlier versions
= Fairly extensive post-analysis software data manipulation required
to develop tables and figures for analysis and publication

GAPIT
= R-module
= Performs PCA and relatedness analysis for you
= Fairly usable figures generated by the software that can be used for
publication

MLM or GLM analysis with R or SAS
Just provides the statistical output for the marker-trait associations



6. Choosing the correct model
o Evaluate all models individually
o0 Naive
o Relatedness
o PC (for population structure)
o PC and relatedness
e Develop a Q-Q plot for each model

o Y-axis

= QObserved -log;, (P) values
o X-axis

= Expected —logy, (P) values values
o Best model

= QObserved ~ equal expected —logo (P) values
= Select the model that is linear or nearly so

Example: Common Bean Fat Content

Naive model

Structure (PCA) model
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Mixed (PCA + EMMA) Model



Mean square deviation

This is a statistical method to determine best model. First rank all marker
p-values from smallest to largest. Then apply the following formula:

w0 [~ (3

where i is the rank number of the a specific p-value, p; is the probability
of the ith ranked p-value, and n is the number of markers. The model
with the lowest MSD value is selected as the best model.

MSD data for the fat data is in the table below.

Model MSD value
Mixed model (3PCs-EMMA) 0.000299
Relatedness (EMMA) model 0.000475
Structure (3PCs) model 0.024883
Naive model 0.076743

The MIXED model has the best fit of the four models!!



7. What is a Significant Association?
e \When performing multiple analyses on the same phenotype dataset
o AtaP =0.05 level
= 1 of 20 random associations will be significant
e Must account for this Type I error
Bonferroni test
o Divide experiment-wide error rate by number of comparisons
= Error rate of 0.05 and 100 comparisons
e P < 0.0005 would be significant
o Conservative approach with a single value for all phenotypes
using the same marker set
Permutation test
Develop a cut-off using 1,000 permutations of the data
Select markers at a specific cutoff level: 0.1% or 0.01% of markers
o0 Sensitive to the different number of genetic factors associated
with each trait.



Manhattan (New York City) Skyline from New Jersey

Manhattan Plot
Black bear GWAS analysis
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. Post-GWAS clean-up

= Data only presented for markers with minor allele frequency of 5%

or greater
= Permutation test cutoffs presented

» Q-Q plot shown to demonstrate power of the model
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Does Association Mapping Work??

Example: Aranzana, M. J., et al. (2005). Genome-wide association
mapping in Arabidopsis identifies previously known flowering time and
pathogen resistance genes. PLoS genetics, 1(5), €60.
e Population
0 95 Arabidopsis accessions from Europe
e Phenotyping
o Flowering time
o Disease response to three pathogens
e Genotyping
o 876 random loci
0 4 candidate genes
= Flowering time
e FRI (Chromosome 4)
= Disease Resistance
e Rpml (Chromosome 3)
e Rps2 (Chromosome 4)
e Rps5 (Chromosome 1)
e Statistical analysis
o Population structure only correction
Results
e All four candidate loci strongly associated with expected phenotype
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Figure 3. Genome-Wide Scans for Association with Flowering Time and Pathogen Resistance
For flowering time (A), four different statistical methods were used (described in Materials and
Methods): Voronoi focusing on “late” alleles (magenta line), Voronoi focusing on “early” alleles (blue
line), CLASS (green line), and fragment-based Kruskal-Wallis tests (red line; see also Figure 2). For
pathogen resistance (avrRpm1 [B], avrRpt2 [C], and avrPph3 [D]), only the last two tests were used.
Higher peaks indicate stronger association (the y-axes are proportional to the negative log p-values, but
have been normalized to the highest value within each test). The dotted lines correspond to the 95%
percentile and are mainly intended to facilitate comparison between figures. Yellow vertical lines
indicate the positions of the appropriate candidate loci. Peaks occur at these loci for all methods, but
are otherwise distributed throughout the genome.
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http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0010060#pgen-0010060-g002

Arabidopsis: Analysis of 107 phenotypes
Nature: (2010) 465:627

Notes
e EMMA reduced the number of false positives
e FLC and FRI confirmed as candidate genes for days to flowering

Phenotype histogram and quantile-quantile plots of p-values
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16 10.824 DFL2 AT4G03400 4 1516895 -17031
19 10.6444 AGL17 AT2G22630 2 9611587 -13865
43 9.88639 SVP AT2G22540 2 9606045 15072
52 9.74982 ATH1 AT4G32980 4 15930436 -12389
97 9.14786 sim to VRN1 AT4G33280 4 16040939 6419
103 9.14404 ATGA20X7 AT1G50960 1 18903090 7703
138 8.93617 RAV1 AT1G13260 1 4541173 -992
139 8.90838 ETC3 AT4G01060 4 454542 -5930
153 8.79855 FLC AT5G10140 5 3188328 -8879
EMMA results

—log,y(p—value)

Rank Score Gene Gene ID Chr SNP pos (bp) Distance to gene (bp)
1 7.35652 FLC AT5G10140 5 3188328 -8879
21 6.02586 sim to ESD4 AT4G00690 4 268809 -12836
21 6.02586 FRI AT4G00650 4 268809 -7
39 495198 DoG12 AT5G45830 5 18580871 15738
80 431728 CDF1 AT5G62430 5 25084106 2213
98 4.18876 ATARP4 AT1G18450 1 6369765 17797
180 3.62105 CRP AT4G00450 4 206784 0
188 3.58201 SPA4 AT1G53090 1 16790829 259
188 3.58201 SPL4 AT1G53160 1 19790829 -19258
199 3.54707 RGA1 AT2G01570 2 260329 -2780

Supplementary Figure 24 — Summary of GWA results for Days to flowering at 2#C (FT22)



Notes
e Monogenic gene identified
e RPM1 confirmed as gene controlling resistance to Pseduomonas
syringae

Phenotype histogram and quantile-quantile plots of p-values
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Fisher's exact test results

Rank Score Gene Gene ID Chr SNP pos (bp) Distance to gene (bp)

1 11.6797 RPM1 AT3G07040 3 2227823 0

38 5.37362 CTR1 B AT5G03730 5 980341 493
57 4.9404 AT5G58120 AT5G58120 5 23528056 -6662
104 4.36207 AT1G58170 AT1G58170 1 21544828 4327
164 3.94676 AT3G28890 AT3G28890 3 10907617 -7539
170 3.89614 AT5G47250 AT5G47250 5 19203727 0
183 3.83911 AT4G09360 AT4G09360 4 5927294 -12889
183 3.83911 ATMKK3 AT5G40440 5 16216269 14414

EMMA results
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75 4.60962 AT2G03200 AT2G03200 2 976276 -8361
76 4.58902 ATMKK3 AT5G40440 5 16216269 14414
103 4.06069 AT1G61300 AT1G61300 1 22505752 15379
124 3.94977 ATAG19470 ATAG19470 4 10610171 2833

Supplementary Figure 36 — Summary of GWA results for AvrRpm1



MINERAL MANHATTAN PLOTS ACROSS ALL LOCATIONS

Species: Common bean (Phaseolus vulgaris)

SNPs: n="~150k

Population: Modern Middle American diversity panel (n=287)
Model: EMMA (relatedness) or EMMA (relatedness) + PC (structure)
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Co (COBALT): one major region
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Cu (Copper): two major regions
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Mg (Magnesium): multiple, low value peaks; no strong signal
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Association Mapping (AM) or Bi-Parental QTL Mapping?

1. Issues to consider
o Effect of rare alleles
o Effect on rare allele in the association population mean will
be minimal
o Locus will not be detected by the AM approach
» The effect of a rare allele can be detected in a biparental
population
o Effect of common alleles
o Common alleles are a component of phenotypic expression
= Effect found throughout the population (species) and
can be discovered using AM
= Contribution of any one allele to phenotype may be
small (R*<10%)

2. What is your goal?
e Discover, analyze, and test genes of major effect
o Bi-parental populations of divergent parents and traditional
(CIM) is best approach
e Dissect the factors controlling a phenotype throughout a population
o Association mapping of appropriate population is a
powerful approach



