Test 2 - Calculus II (Spring 2016)

INSTRUCTIONS: Complete each of the following problems in your Bluebook. Each problem is worth a maximum of 12 points. Points will be awarded for both completeness and clarity of solutions. Partial credit will be awarded for partial solutions. Please recall that **cell phones and graphing calculators are not allowed on this exam.**

1. Find the area of the region in the plane enclosed by the graphs of $y = 1 - x^2$ and $y = (x - 1)^2 - 4$.

2. Find the volume of the three-dimensional solid whose base is the region enclosed by the graphs of $x = y^2$ and x = 3, and whose cross sections perpendicular to the x-axis are squares.

3. Let R be the region enclosed by the graphs of y = 6 - x, $y = x^2$, and the y-axis. Find the volume of the solid generated when R is revolved about the line y = -1.

4. Let R be the region bounded below the graph of $f(x) = -\cos x$ and above the x-axis, between $x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$. Find the volume of the solid generated when R is revolved about the y-axis.

5. Compute the surface area of revolution obtained from revolving the graph of $y = x^3$, for $0 \le x \le 2$, about the x-axis.

BONUS. (+8 points) Compute the arc length of the graph of $y = x^2$ over the interval $[0, \frac{1}{4}]$.

Hint: Only attempt the bonus if you have completed and double-checked your work on the previous problems.