
10 Linear transformations

Together with the vector spaces, the second most important notion of linear algebra is the notion of
a linear transformation, which is a map from one vector space to another satisfying certain “linear”
conditions. Before introducing formally linear transformations, I consider a very general notion of a
map.

10.1 Functions, or maps, from a set to a set

Let X,Y be two sets. By definition, a map, or a function, f from X to Y , which is usually denoted as

f : X −→ Y,

is a rule that to each element x ∈ X assigns an element y ∈ Y , which is quite often written as y = f(x).
Note that the definition of a function involves three elements: the rule itself, the set X, which is called
domain of f , and the set Y . It is possible to have different functions with the same rule but different,
e.g., domains. The range of f is the set of all such y from Y such that there is x ∈ X for which
f(x) = y. Note that the range of a function does not have to coincide with Y and can be a proper
subset of Y .

If f : X −→ Y and g : Y −→ Z then it is possible to define function composition, which is a map
from X to Z, and which is denoted g ◦ f :

g ◦ f : X −→ Z,

by specifying that (g ◦ f)(x) = g(f(x)).

Proposition 10.1. Function composition if associative. That is, if f : X −→ Y , g : Y −→ Z, and
h : Z −→ W then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Exercise 1. Prove the proposition by evaluating the expressions on the left and the right at an
arbitrary x ∈ X.

A function f : X −→ Y is called an injection, or one-to-one, if f(x1) = f(x2) implies x1 = x2,
a surjection, or onto, if for any y ∈ Y there is x ∈ X such that f(x) = y (that is, the range of f
is equal to Y ), and a bijection if it is both one-to-one and onto (sometimes it is called one-to-one
correspondence). To formulate the following result I introduce the identity map 1X : X −→ X, which
is defined by the rule 1X(x) = x.

Theorem 10.2. Let f : X −→ Y , where X,Y are nonempty sets. f is injective if and only if there
exists a map g : Y −→ X such that g ◦ f = 1X . f is surjective if and only if there exists a map
g : Y −→ X such that f ◦ g = 1Y , and f is bijective if and only if there exists a map g : Y −→ X such
that f ◦ g = 1Y and g ◦ f = 1X . (In the case of the bijection f function g is usually called the inverse
of f and denoted f−1.)
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Remark 10.3. Even if the reader never heard about injections, surjections, and bijections, she should
at least at some intuitive level see the resemblance to the notions of left and right inverses, and simply
the inverse.

Proof. Assume that f is injective. Now I will construct my g. If y ∈ Y is such that there is x ∈ X
for which f(x) = y I put g(y) = x, which can be done uniquely due to injectivity of f . For those y
for which there is no such x, I pick x0 ∈ X since X is nonempty, and put g(y) = x0. Now take any
x ∈ X, by construction g(f(x)) = x as expected. In the other direction, assume that g ◦ f = 1X and
take x1, x2 ∈ X such that f(x1) = f(x2), applying g I get x1 = x2 and hence f is injective.

Assume f is surjective. This means that for any y ∈ Y there are some x ∈ X for which f(x) = y.
Pick any of these x and define g(y) = x. By construction f(g(y)) = y as expected. Conversely, if
f ◦ g = 1Y then f(g(y)) = y for any y, and hence for any y ∈ Y there is x ∈ X for which f(x) = y,
hence f is surjective.

The last part of the theorem follows from putting together the previous two parts and proving
that these two g in this case coincide. �

Exercise 2. Come up with examples of real values functions (that is, with the functions with which
you mostly dealt with in calculus) which is 1) injection but not surjection, 2) surjection but not
injection, 3) bijection.

Exercise 3. If the function composition commutative? I.e., is f ◦ g = g ◦ f for all f, g?

10.2 Linear transformations. The dimension formula

Now I am ready to define a linear transformation A : U −→ V .

Definition 10.4. A linear transformation A from vector space U over F to vector space V over the
same field F is a map

A : U −→ V,

that satisfies the following two properties:

A (u+ v) = A (u) + A (v), for all u, v ∈ U,

A (αu) = αA (u), for all u ∈ U, α ∈ F.

Note that for linear transformation A it immediately follows (e.g., by induction) that

A (α1v1 + . . .+ αkvk) = α1A (v1) + . . .+ αkA (vk),

that is linear transformations map linear combinations to linear combinations.

Example 10.5. Let U = V = R. Then the only linear transformation A is given by a multiplication
by a constant:

A (x) = αx.

It is trivial to check that if A (x) = αx then A is linear. Conversely, represent any element of R
as a linear combination of its basis, say, (1). I have x = x · 1, and using the properties of the linear
transformation A (x · 1) = xA (1) = αx since A (1) is a scalar.

Note that usually defined as being linear function f(x) = ax+ b is not a linear transformation by
the definition above.
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Example 10.6. Let U = Rn, V = Rm and A = A = [aij ]m×n. Then multiplication by A is a linear
transformation, since

A(αv + u) = αAv +Au

by the properties of matrix multiplication.

Example 10.7. Let U = Pn, V = Pn−1, where Pn is the real vector space of polynomials of degree at
most n. Let A = d

dx , i.e., differentiation. Then A is a linear transformation, since for any p, q ∈ Pn

A (αp+ q) = αA (p) + A (q)

by the properties of differentiation.

Example 10.8. Let U = V = R2 and let A be a rotation of every vector in the plane counterclockwise
by an angle θ. Make a graph to convince yourself that this is indeed linear transformation.

Here are some simple properties of linear transformations:

• If A : U −→ V is a linear transformation then A (0) = 0 (note that the zeros are from different
vector spaces). Indeed A (0) = A (0 + 0) = A (0) + A (0) =⇒ A (0) = 0.

• Let A : U −→ V,B : V −→ W be linear transformations on the vector spaces over the same field.
Then B ◦A : U −→ W is a linear transformation. Indeed, (B ◦A )(αu+ v) = B(A (αu+ v)) =
B(αA (u) + A (v)) = αB(A (u)) + B(A (v)) = α(B ◦ A )(u) + (B ◦ A )(v).

• Let A : U −→ V be a linear transformation. Then it is injective if and only if A (u) = 0 implies
that u = 0. Indeed, if A is injective and the fact that A (0) = 0 the conclusion follows. Now,
assume that A (u) = 0 =⇒ u = 0. Consider A (u1) = A (u2). By linearity A (u1 − u2) = 0, by
assumption u1 − u2 = 0, hence u1 = u2 and hence A is injective.

• Let A : U −→ V be a linear transformation, which is bijective. That is there is the inverse
g : V −→ U such that g(A (u)) = u ∈ U and A (g(v)) = v ∈ V . Then g is a linear transformation.
Indeed, to show that g(αv1 + v2) = αg(v1) + g(v2) I will use the injectivity of A to show an
equivalent equality A (g(αv1 + v2)) = A (αg(v1) + g(v2)). The latter equality holds by the
linearity of A .

Finally, I can rigorously define the isomorphism, which I already used in the previous lecture.

Definition 10.9. A bijective linear transformation A : U −→ V is called an isomorphism. Two vector
spaces for which there is an isomorphism are called isomorphic.

Here are several useful statements, using the notion of an isomorphism, whose proofs are left as
exercises.

Let A : U −→ V be a linear transformation between finite dimensional vector spaces over F. Then

• Let A be a linear transformation. Then it is an isomorphism if and only if the equation A (u) = v
has a unique solution for all v ∈ V .

• Let A be an isomorphism. Then (u1, . . . , un) is a basis of U if and only if (A (u1), . . . ,A (un))
is a basis of V .
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• Let (u1, . . . , un) be a basis of U and (v1, . . . , vn) be a basis of V . If vj = A (uj) then A is an
isomorphism.

In particular, the last point shows that any finite dimensional vector spaces over the same field F
of the same dimension are isomorphic, and, in particular, isomorphic to Fn.

With any linear transformation two subsets are identified: kernel of A and image of A (they are
also called null space and range of A ).

Definition 10.10. Let A : U −→ V be a linear transformation. Then its kernel, kerA , and image,
imA , are defined as follows:

kerA = {u ∈ U : A (u) = 0},
imA = {v ∈ V : there is u ∈ U such that A (u) = v}.

Proposition 10.11. kerA and imA are subspaces of U and V respectively.

Exercise 4. Prove this proposition.

Proposition 10.12. Let A : U −→ V be a linear transformation. Then it is surjective if and only if
imA = V .

Exercise 5. Prove the last proposition.

The dimension of the image of A is called the rank of linear transformation, and the dimension
of the kernel of A is called the nullity of A .

Next is one of the most important results of linear algebra, which we actually already saw in a
matrix disguise.

Theorem 10.13. Let A : U −→ V be a linear transformation between finite dimensional vector spaces.
Then

dimkerA + dim imA = dimU.

Proof. Assume that dimU = n. Since kerA ⊆ U then dimkerA = k ≤ n. Let (u1, . . . , uk) be a
basis of kerA . I extend it to the basis of U by adding more vectors (u1, . . . , uk, v1, . . . , vn−k). For
j = 1, . . . , n − k let wj = A (vj). I claim that S = (w1, . . . , wn−k) is a basis of imA . To show this I
must show that S spans the image and that it is a linearly independent collection.

First, let w ∈ imA , that is that is u ∈ U such that w = A (u). Since (u1, . . . , uk, v1, . . . , vn−k) is
a basis, u = α1u1 + . . . + αku+β1v1 + . . . + βn−kvk. Using the properties of A I get w = β1A (v1) +
. . . βn−kA (vn−k) = β1w1 + . . .+ βn−kwn−k, which proves that S spans the image.

Now take the linear combination

γ1w1 + . . .+ γn−kwn−k = 0.

Take v = γ1v1 + . . . + γn−kvn−k, where vj are the vectors from the basis of U . This construction
implies that A (v) = γ1w1 + . . . + γn−kwn−k = 0, i.e., v ∈ kerA and hence v = α1u1 + . . . + αkuk.
Then, finally, I have that

−v + v = −α1u1 − . . .− αkuk + γ1v1 + . . .+ γn−kvn−k = 0,

and since (u1, . . . , uk, v1, . . . , vn−k) is a basis all the scalars must be zero, including γ1 = . . . = γn−k = 0,
hence S is linearly independent.

Now counting the number of vectors in each basis finishes the proof. �
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Remark 10.14. Since matrices are examples of linear transformations, all the information we said
about linear transformations if true for them. In particular, we now can immediately conclude that
for a matrix to be invertible (to be an isomorphisms) we must have that the number of rows is equal
to the number of columns, that it, the matrix must be square. Indeed, since for the invertible matrix
kerA = {0} and rankA = dimV by the dimension formula, therefore dimU = dimV and hence A is
square.

Example 10.15. Consider a linear transformation A : R5 −→ R4, which is matrix multiplication
with the matrix

A =


1 1 2 2 1
2 2 1 1 1
3 3 3 3 2
1 1 −1 −1 0

 .

Let me find the image of A, its kernel, its rank and nullity. First, let me explain what I mean when
I ask to find, say, an image. We now know that an image is a subspace of R4 and therefore to find
it means to produce a basis of it. The same about the kernel. It turns out that everything can be
inferred from the reduced row echelon form of A. Indeed, consider

1 1 2 2 1
2 2 1 1 1
3 3 3 3 2
1 1 −1 −1 0

 →


1 1 0 0 1/3
0 0 1 1 1/3
0 0 0 0 0
0 0 0 0 0

 .

Therefore, I immediately can write down the general solution to Ax = 0 as
x1
x2
x3
x4
x5

 = s


−1
1
0
0
0

+ t


0
0
−1
1
0

+ q


−1/3
0

−1/3
0
1

 .

Clearly three vectors on the right span kerA, but they are also linearly independent (look just at the
entries corresponding to the free variables x2, x4, x5, they form an identity matrix), and therefore form
a basis of kerA. Immediately, dimkerA = 3, which is the nullity of my linear transformation.

From the dimension formula I have that dim imA = 2, which is the rank of my linear transforma-
tion (and this is just the number of pivots in the reduced row echelon form), but how to find a basis
for it? Of course, I could transpose my matrix, row reduce it and take nonzero rows as the sought
basis, however, I do not need to do this! I claim that if I take columns 1 and 3 (these are the columns
with the pivots in the row reduced form) of the original matrix A, then they form a basis of imA.
That is

span imA = span{[1 2 3 1], [2 1 3 − 1]}.
How can I prove the last statement? First, convince yourself that these columns in the row reduced
echelon form are indeed the basis for the column space: they are linearly independent and any other
column can be represented as a linear combination of them. Second, recall that the row reduction
amounts to multiplication by an invertible matrix from the left, and now we know that application
of an invertible transformation (i.e., of an isomorphism) does not change linear dependence and/or
independence. I invite the student to write down a formal argument along these lines.
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10.3 The general solution of the linear equation

Let A : U −→ V be a linear operator. The equation

A (x) = b

is called linear non-homogeneous if b ̸= 0 and linear homogeneous if b = 0.

Remark 10.16. Please note that the linear equation that I consider is a more general object than
the systems of linear algebraic equations I studied before. For example, differential equation

y′ = y + sinx

can be written in the form
A (y) = f,

if I set A = d
dx − 1 and f = sin.

Proposition 10.17. Consider the linear equation A (x) = b. Assume that vector xn solves it, and let
H be the set of all solution of the homogeneous equation A (x) = 0. Then all the solution to A (x) = b
are given by

xg = xn + xh, hh ∈ H.

Proof. First, due to linearity of A it is clear that any vector of the form xn + xh solves the equation.
Now assume that xg is an arbitrary solution, consider xg − xn, which, by construction, is in H, and
therefore xg = xn + xh. �

Remark 10.18. This is a very elementary and yet important theorem. In particular, if kerA is
finite dimensional, all we need to do is to 1) find a basis of kerA and 2) find any solution to the
nonhomogeneous equation.

10.4 Matrix of a linear transformation

Now let me concentrate for a second on the linear transformations from Rn to Rm (or, more generally,
from Fn to Fm). I claim that any linear transformation A : Rn −→ Rm can be represented as
multiplication by an m×n matrix A. Indeed, let me take the standard basis of Rn: (e1, . . . , en). Any
vector x ∈ Rn = x1e1 + . . .+ xnen. Now, consider a linear transformation A applied to x. I get

A (x) = A (x1e1 + . . .+ xnen) = x1A (e1) + . . .+ xnA (en) = x1v1 + . . .+ xnvn.

Therefore, if I join the vectors vj together into the matrix A = [v1 | . . . | vn] then the action of my
linear transformation is exactly the multiplication by A. And my matrix A is the matrix of my linear
transformation in the standard basis. (Note that I could have gone in a different way, defining the
multiplication of a vector by a matrix to satisfy the expression above.)

Example 10.19. What is the matrix of the linear transformation (operator) in Example 10.8? To
see it we must determine the action of this transformation on the standard basis. In this case I get,
by elementary trigonometric formulas, that

A (e1) =

[
cos θ
sin θ

]
, A (e2) =

[
− sin θ
cos θ

]
,
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hence the matrix of the transformation A is

A =

[
cos θ − sin θ
sin θ cos θ

]
.

Example 10.20. Consider the linear transformation R of R2 to R2, which is a reflection around
x1-axis. Of course, I need to prove that this transformation is linear, but it is much easier to see that
the formula for this transformation is

R

([
x1
x2

])
=

[
x1
−x2

]
,

which clearly satisfies the axioms of the linear transformation. The matrix of this transformation is

R =

[
1 0
0 −1

]
.

Now consider the following question: Let A : Rn −→ Rm and B : Rm −→ Rl be linear transfor-
mations. According to the theory above these transformations can be represented by matrices Am×n

and Bl×m. What is the matrix C of the composition B◦A = C ? Clearly, I can find C by considering
how C acts on the standard vectors:

C = [C (e1) | . . . | C (en)] = [B(A (e1)) | . . . | B(A (en))].

Now let me consider only the first column. I know that action of A amounts to multiplication by A,
and similar for B, hence

B(Ae1) =

b11 . . . b1m
...

. . .
...

bl1 . . . blm


a11

...
am1

 =

b11a11 + b12a21 + . . .+ b1mam1
...

bl1a11 + bl2a21 + . . .+ blmam1

 ,

which is the first column of matrix C. Do you recognize the patten? Now I can conclude that the
matrix of the composition of transformations is actually the product of the corresponding matrices!
Even more importantly, the matrix multiplication can be defined so that the matrix of the composition
of linear transformations be equal to the product of the corresponding matrices.

As a small, but pleasant, surprise we get free of charge

Proposition 10.21. Matrix multiplication is associative.

Now consider a linear transformation between abstract vector spaces A : U −→ V and assume
that dimU = n and dimV = m. Using the fact that these vector spaces are isomorphic to Fn and Fm

respectively, I can expect that, by fixing the bases in U (denote U) and V (denote V), I can always
represent my linear transformation as a matrix Am×n = [A ]VU , note the dependence on the both bases.

Indeed, the following theorem holds.

Theorem 10.22. Let A : U −→ V be a linear transformation, and let U = (u1, . . . , un) be a basis of
U and V = (v1, . . . , vm) be a basis of V . Then for any vector u ∈ U and its image v = A (u) ∈ V
there is an m× n matrix A with the property

[v]V = A[u]U .

Matrix A is called the matrix of linear transformation A with respect to the bases U and V.
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Remark 10.23. The statement of the theorem can be written in the following symmetric form

[A (u)]V = [A ]VU [u]U .

Proof. Consider
A (uj) = a1jv1 + . . .+ amjvj .

Form the matrix A = [aij ]m×n. Now, consider

v = A (u)

= A (

n∑
j=1

xjuj) =

n∑
j=1

xjA (uj)

=

n∑
j=1

xj

m∑
i=1

aijvi

=

m∑
i=1

vi

 n∑
j=1

aijxj

 ,

that is the coordinates of v with respect to basis V are given by the entries of the vector Ax, where
x is the vector of coordinates of u with respect to the basis U , which proves the theorem. �

Remark 10.24. Note that the theorem also provides a recipe to find A: the columns of A are exactly
the coordinates of the images of the vectors from U with respect to V.

The isomorphisms Fn −→ U and Fn −→ V determined by two bases help to explain the relation
between A and A, which can be represented in the form the following commutative diagram:

Fn A−−−−→ Fm

U
y yV

U
A−−−−→ V

The meaning of the words “commutative diagram” is that going from Fn to V along any of the two
possible paths in it will give the same answer.

Examples will be given in the next section.

10.5 Linear operators

Definition 10.25. A linear transformation A from vector space V to itself is called a linear operator.

Note that now, if we’d like to talk about the matrix of linear transformation, we would fix just
one basis B of V . Moreover, both kerA and imA are subspaces of V .

Proposition 10.26. Let A be the matrix of a linear operator A with respect to a basis B. Suppose
that the matrix of the basis change to a new basis B′ is P (see the previous lecture for the definition).
Then the matrix that represents A with respect to this new basis is A′ = P−1AP .
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Proof. We just use what we already know. Let v = A (u). I have that [v]B′ = P−1[v]B. Therefore

[v]B′ = P−1[A (u)]B = P−1[A ]B[u]B = P−1AP [u]B′ ,

which proves the proposition. �

Remark 10.27. Two matrices A and A′ as in the last proposition are called similar matrices.

Example 10.28. Consider the space of polynomials P3 with degree at most three. We know that B =
(1, x, x2, x3) is the standard basis of P3. Consider the linear transformation D = d

dx of differentiations
of elements of P3:

D : P3 −→ P3.

What is the matrix D = [D ]B?
To figure out the matrix D we must see how D acts on the basis vectors:

D(1) = 0 = 0 · 1 + 0 · x+ 0 · x2 + 0 · x3,
D(x) = 1 = 1 · 1 + 0 · x+ 0 · x2 + 0 · x3,

D(x2) = 2x = 0 · 1 + 2 · x+ 0 · x2 + 0 · x3,
D(x3) = 3x2 = 0 · 1 + 0 · x+ 3 · x2 + 0 · x3,

so that

D =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

Now define the functions gi(x) = (x+ t)i−1, i = 1, 2, 3, 4 for any real t ∈ R. Clearly these functions
are in P3 and hence can be represented as linear combinations of vectors in B:

g1(x) = 1 = 1 · 1 + 0 · x+ 0 · x2 + 0 · x3,
g2(x) = t+ x = t · 1 + 1 · x+ 0 · x2 + 0 · x3,

g3(x) = t2 + 2tx+ x2 = t2 · 1 + 2t · x+ 1 · x2 + 0 · x3,
g4(x) = t3 + 3t2x+ 3tx2 + x3 = t3 · 1 + 3t2 · x+ 3t · x2 + 1 · x3.

Putting the coordinates of gi into the matrix

P =


1 t t2 t3

0 1 2t 3t2

0 0 1 3t
0 0 0 1


I can see that P is invertible with the inverse

P−1 =


1 −t t2 −t3

0 1 −2t 3t2

0 0 1 −3t
0 0 0 1

 ,
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therefore I conclude that B′ = (g1, g2, g3, g4) is another basis for P3.
Now I can calculate my matrix D′ of D in the basis B′. Some (tedious) computations give me

P−1DP = D,

and hence the matrix is the same (can you see a simpler way to conclude this?).

Anyway, now we are posed with a very important question: How to choose a basis of V to make
sure that the matrix of a given linear transformation is simplest in this basis? Of course, we must be
very clear to understand what we mean by “simplest.” Basically the rest of the course will be devoted
to get a (partial) answer to this question.
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