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Introduction

What is Algebraic Geometry?

The study of geometric objects determined by algebraic “data”’, i.e. polynomials. Some
examples are lines in R?, conics in R?, planes in R3, spheres, ellipsoids, etc. in R3.

Geometric objects of interest include: solution sets to systems of polynomial equations,
study them using algebraic techniques. For example: is the solution set finite or infinite?

Example 0.0.1 Let f,g € Clx,y,2] and let V = {(z,y,2) € C3 | f(x,y,2) = 0 = g(z,y,2)}.
Assume that V' # () (Hilbert’s Nullstellensatz says that this is equivalent to (f,g) # Clz,y, 2]).
Then V is infinite. This is an application of two algebraic results: Hilbert’s Nullstellensatz and
Noether’s Normalization Lemma.






CHAPTER ].

Affine Space

1.1 Algebraic Subsets

Notation: Throughout these notes, k will represent a field.

Definition 1.1.1 Given an integer n > 1, the set A} = k" = {(a1,...,a,) | a1,...,a, €k} isa
affine n-space over k.

Example 1.1.2 A =R" (as a set), and A} =k (as a set).

Fact 1.1.3 Given f € k[z1,...,2,) and a = (a1,...,a,) € A}, the element f(a) € k is well-
defined, i.e. f: A} — kisa well-defined function. These are called “regular functions.” k[z1, ..., zy]
is the ring of regular functions on A}.

Note: Different polynomials can describe the same function.

Example 1.1.4 Let k = Z/pZ for a prime p, f(z) = x, and g(z) = zP. Fermat’s Little Theorem
implies that P = z for all x € k.

Definition 1.1.5 For each S C klz1,...,z,] set V(S) = {a € A} | f(a) =0V fe S} V is for
“variety” or “vanishing.” V(.9) is the solution set to the system of polynomial equations

{f=0]feS}

and is called the vanishing locus for S. Notation: If S = {f1,..., fm}, we write V(f1,..., fim)
instead of V({f1,..., fm})-

Example 1.1.6 V(0) = A} =V () and V(1) =0 = V(k[z1,...,z,]).
In A2: V(az + by + ¢) = line, V(22 + y? — 1) = circle, and similarly for other conics.

In A}: V(az + by + cz + d) = plane, V(az + by + cz + d,ax + By + vz + J) is a line as
long as the two planes are distinct and non-parallel, V (a?x? 4 b%y? + ¢?22 — d?) = ellipsoid where
a,b,c,d # 0.
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Example 1.1.7 In A}: either V(S) =0, V(S) = A}, or V(S) is finite, and for every finite set V
there exists S such that V =V (S).

Definition 1.1.8 A subset V' C A7 is an algebraic subset if there exists S C k[z1,...,x,] such
that V = V/(95).

Lemma 1.1.9 Let S C S' C k[z1,...,2,]. Then V(S) D V(S').
Proof: Exercise n
Proposition 1.1.10 Let S C k[z1,...,zy) and I = (5) C k[z1,...,2,]. Then V(S) =V (I).
Proof: Since I = (S) D S, the previous lemma implies V(I) C V(5).

For the other containment, let a € V(S). Then for all f € S, f(a) = 0. Therefore for all

m

fi,-oo fm € S, forall g1,...,9m € E[x1,...,2,], and an arbitrary element h = )", g;f; € I, we
have

h(a) = gi(a) fila) = 0.
i=1
Thus ¢ € V(I) and V(5) =V (I). [
Notation 1.1.11 We will denote the ring R := k[z1, 2, ..., ZTm].

Proposition 1.1.12 (a) For each S; C R and I; = (S;)R

V(S1) UV(S2)U---UV(Sp)

V(L) UV(IL) U UV(In)
V(LNLN-- N1y
V(LI 1)

(b) For all X € A let Sy C R and I = (S)\)R:

ﬂ,\eAV(SA) = mAeAV(IA)
=V (Z)\EA IA)
=V (UAGA S/\)

where A is an index set that is not necessarily finite.

(c) The set of algebraic subsets of A} is closed under finite unions and arbitrary intersections.

Proof: (a) We first note that V(S;) UV (Sa)U---UV(S,,) =V({[1)UV(I)U---UV(I,)
since V(S;) = V(I;) by the previous proposition.

Next we notice that I; D I; NI N---N I, for all j. Hence by Lemma@we have
V() CV(L NN NI

for all j. Therefore |J; V(I;) CV(IiNIaN---N1y).

4



1.1. Algebraic Subsets

Now since I1Io - I, C Iy NI N---N I, by Lemma [I.1.9) we know
V(LI 1) DV NN N ).

Finally let a € A} \ U, V(I;). Then we have a ¢ V(I;) for all j. Therefore for all j there
exists f; € I; such that f;(a) #0. Solet f = fifo--- fm, € 115+ I,,. Then
f(@) = fi(a) f2(a) - fm(a) # 0.
Therefore a ¢ V(I; - I -+ - I,;,). Hence what we have shown is
VL) UV(L)U--- UV, CV(LNLN---N1y,)
CV(ilz--- 1)
CV(L)UV(I)U---UV(Iy)
giving us equality at each stage.
(b) Again by Lemma Maea V(Sx) = Naea V() since V(Sy) = V(Iy) for all A € A.
Next we will show (Vo V(Ix) = V(D sep In). We will first show (2). Here we note
I, C Y Iy forall ue A
AEA
Hence V/(1,,) 2 V(3_yca In) for all p (again by Lemmal(l.1.9). Therefore (), V(1) 2 V(3 ycp In)-

(€) Let @ € (Nycp V(Ix). Then a € V(1) for all A. Therefore for all fy € Iy, fa(a) = 0. So
let f € ycpr. Then

finite

F=> h

AEA
where fy € I for all A. Therefore

fla)=Y fh=) 0=0
AEA AEA

Hence a € V(3 ,cp In) as desired.

Now for the last equality we have
4 (UAEA SA) =V ((U/\EA SA) R) =V (ZAeA IA)
since (Uyep S3) B =cn In- |

Definition 1.1.13 A hypersurface in A} is a subset of the form V(f) for a single f.
Corollary 1.1.14 Let V be an algebraic subset. Then V is a finite intersection of hypersurfaces.

Proof: Since V is algebraic and, V' = V(S) = V(I) where I = (S)R. The Hilbert Basis
Theorem allows us to write I = (f1, fa,..., fn)R. Now apply V(—) to get:

V(I) =V (fi, fos-- fm)
V(fiR+ foR+ -+ fmR)
V(AR)NV(f2R) NNV (fmR)
V(f)NV(f) NNV (fm).
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Hence V' is a finite intersection of hypersufaces. |

Notation: Given a € A}, let mg := (v1 —a1,22 — a2,..., %5 — G5, ..., Tp — ap)R.

Fact 1.1.15 m, C R is maximal because

Po: R—k
L f = fla)
is a ring epimorphism such that m, = Ker(¢,).
Proposition 1.1.16 {a} =V (m,) =V (21 —az,z2 —ag, ..., =, —ay). That is every singleton is
algebraic.

Proof: First notice that by the Proposition [1.1.10| we have the second equality. So we will
just show {a} = V(m,).

(€) Since g satisfies z; — a; for all 4, we have a € V(z1 — a1,22 — ag,...,z, — a,) and
{a} CV(z1 —ai, 22 —az,..., 2z — ap).

2O)IfbeV(xy —ar,x2 —ag,...,T, — ay), then b satisfies x; — a; for all i. Therefore

bi—ai =0
= b; = q; for all ¢
=b=a.
Hence V(21 — a1,22 — az,...,Tn —an) C {a}. [ ]

Corollary 1.1.17 Ewvery finite subset of A} is algebraic.

Proof: {algebraic subsets} contains all singletons and is closed under finite unions. |

1.2 Zariski Topology

Definition 1.2.1 The Zariski Toplogy on A}.

o A subset V' C A} is closed if it is algebraic.
o A subset U C A} is open if A7 \ U is closed, i.e. algebraic. A set is open if and only if its

complement is an algebraic set.

Notation: For all f € R, set Uy := {a € A7|f(a) # 0} = A} \ V(f). Therefore Uy is open in the
Zariski Topology. These are “principal” open sets.

Theorem 1.2.2 The Zariski Toplogy is a topology.

Proof: () is algebraic and is closed in the Zariski Topology. Therefore ()¢ = A} is open.
Similarly A} is algebraic, hence closed. Thus (A})¢ = ) is open.

{algebraic sets} is closed under finite unions and arbitrary intersections. Thus {open sets}
is closed under finite intersections and arbitrary unions by DeMorgan’s laws. |



1.2. Zariski Topology

Example 1.2.3 Zariski Toplogy on A} is “cofinite topology” where

{open sets} = {#} U {complement of finite sets}.
See Example [[.1.7]

Theorem 1.2.4 Every open set in A} is a finite union of sets of the form Uy.

Proof: Consider an open set U = A} \ V(I). Then by Corollary
V) =V(f)NV(f2) N0V (fm)
=U=A;\V()

= AR\ V()N AEA\V(2) NN (AL \ V(fim))
=Up UUp U---UUyg,.

Thus since U is an arbitrary open set, every open set is a finite union of sets of the form U;. W
Corollary 1.2.5 {U; | f € R} is a basis for the Zariski topology in A}.

Goal: Open sets are really big (when k£ is infinite). See Theorem

If k is finite, then every subset of A} is finite, therefore closed and open by Corollary
Also, for all a,b € A} the sets {a} and {b} are open. Thus A} is Hausdorff in this case.

Fact 1.2.6 For all f,g € R, U NU,; = Uygy,.

Proof We note that since k is a field, it is also an integral domain. Therefore f(a)-g(a) # 0
if and only if f(a) # 0 and g(a) # 0. Also f(a) - g(a) # 0 if and only if a € Uy,. Another thing to
notice is f(a) # 0 and g(a) # 0 if and only if a € Uy NU,. Therefore Usy = Uy NUj. [

Lemma 1.2.7 Assume that k is infinite and let f,g € R. If f(a) - g(a) = 0 for all a € A}, then
f-g=01in R. Therefore either f =0 or g =0.

Proof: We will use induction on n. Base Case: n = 1. A nonzero polynomial in k[z1] can
only have a finite number of zeros.

Inductive Step: Assume that n > 2 and that the result holds for polynomials in k[xa, ..., x,].
Now write

f=fotmf+aifot - +aifs
g=go+T101 + 2792 + - + 25 ge

such that all f;, g; € k[za,...,x,]. Assume f,g # 0. Therefore assume f; # 0 and g # 0. The
induction hypothesis implies there exists b € Azfl such that f4(b) - ge(b) # 0. Hence

fg=fogo+ -+ fagex§T® and f(a) - g(a) =0

for all @ € A}. Therefore h(z1) := f(x1,b) - g(x1,b) € k[z1] where h(c) = 0 for all ¢ € k. Hence
h = 0. We also have

h(w1) = fo(b)go(b) + F(L)gr (B)z1 ++ + fa(b)ge (D)™ # 0.
Therefore h # 0 contradicting the above statement that A = 0. |
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Theorem 1.2.8 Assume that k is infinite and let U,U’ C A} where both U,U’ are open and
non-empty. Then U NU' # (.

Proof: Using Theorem we will write
U:Ufl UUfZUUUfm and U/:U(h UU(DU'..UUQp

where each Uy,, Uy, # (). Note that UNU’' 2 Uy, NUy, = Uy,
Claim: Uy, 4, # 0.

If Uf, g, = 0, then for all a € A}: fi(a)g

(a) = 0. Therefore Lemma implies f; = 0 or
g1 = 0. But this implies that Uy, =0 or Uy, =0 w

hich contradicts that Uy, ,U,, # 0. [ |
Corollary 1.2.9 If k is infinite, then A} is not Hausdorff.
Fact 1.2.10 If a,b € A} such that a # b, then there exists a neighborhood U of a such that b ¢ U.

Proof: Let a; # b; for some ¢. Then b satisfies x; — b;, but a does not. Thus a € U,,_s,
and b & Uy, s, [ |
1.3 Geometric Ideals
Definition 1.3.1 Given V C A} (any subset) I(V) = ({f € R| f(a) =0V a € V})R. We write
Iay,az,..) == I({ar, aa, ... }).

Example 1.3.2 I(()) = R, I(a) = m,. If k is infinite then I(A}) =0

Proposition 1.3.3  (a) I(V) is an ideal of R.

(b) IfV C V', then I(V) 2 I(V').
(¢) IV UVoU---UVy)=IV)NI(Va)N---NI(Vy,).
(d) I(Mxea Va) 2 2onen 1 (Va).

(e) rad(I(V)) = I(V).
Proof: (a) and (b) are left as exercises. (c) (C) We first note
ViuVaU---UV,, DV

So by part (b) we know I(V;UVoU---UV,,) C I(V;). Therefore I(ViUVaU---UV,,) C Nk, I(V;).

D) Let feI(V)NIV2)N---NI(Vy, ) Then f € I(V;) for all j. Therefore for all a € Vj,
f(a) =0 for all 5. Hence for all a € ViU Vo U---UV,,, f(a) =0. Thus

fGI(VlLJVQU"'UVm).

(d) First note that (., VA €V, for all u € A. Therefore by part (b)

I(Maea In) 2 1(V,).
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Therefore I((ycp Va) 2 D oaea I(Va).
(e) (2) rad(J) 2 J
(C) Let f e rad(I(V)). Then there exists m such that f™ € I(V). Therefore for all a € V:
f™(a) =0
(f(@)™ =0in k.
Therefore f(a) =0 and f € I(V). [

Proposition 1.3.4 Let I C R be an ideal:

(a) I S I(V(I)).
() VCvIV)).
(c) rad(I) C I(V(I)).
(@) V VW),
Proof: 1. Let f € I. Then by definition for all a € V(I), we have f(a) = 0. Note that

g € I(V(I)) if and only if g(a) = 0 for all @ € A}. Therefore f € I (V(I)) and I C I(V(I)). 2. is
proved similarly.

3. Let I C I(V(I)). Then rad(I) C rad(I(V (1)) = I(V(I)).

4. Y is the closure of V' in A} which is the intersection of all closed subsets of A} containing
V. Also V is the unique smallest closed subset of A} containing V.

_ So V(I(V))is a closed subset of A} containing V and V is the unique smallest such subset.
So V CV(I(V)). |
Proposition 1.3.5 V = V(I(V)).

Proof: In Proposition we proved that V C V(I(V)). So we only need to show the
reverse containment. For this, we notice that since V' is a closed set we can write V' = V(J). Hence

VCV=V)=IV)2IV)=IV(J)DJ

Therefore V(I(V)) CV(J)=V. [ |
Proposition 1.3.6 I(V(I(V))) = I(V).

Proof: (D) By Proposition [1.3.4] (a) we have I(V(I(V))) 2 I(V).
() By Proposition [1.3.4] (b) we have V/(I(V)) 2 V. This implies I(V(I(V))) CI(V). R

Proposition 1.3.7 V(I(V(I))) = V(I).

Proof: Same proof as Proposition [I.3.6] [
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1.4 Hilbert’s Nullstellensatz

Theorem 1.4.1 (Hilbert’s Nullstellensatz) Assume that k = k:

(a) I(V(I)) = rad(I).

(b) The only mazimal ideals of R = k[x1,...,xy] are the my with a € A}}. i.e.

A} — m-Spec(R) = {mazimal ideals of R}
ar—rmg,

18 onto.
Proof: Maybe later. |

Corollary 1.4.2 Assume that k = k:

(a) {algebraic subsets of A} = {radical ideals of R}. Under this correspondence: {a} = m,.

(b) If I # R, then V(I) # 0.
Proof: We know

V s I(V)

V(I) e T

are well-defined. So we only need to check that they are inverses. By Proposition [1.3.7]

T
V(I) I(V(1))

V(I(V(I)))

and for the other direction we have:

rad(])

Nullstellensatz

V(I I(V(I)).
U&\/ﬁ((b

(b) If I # R, then I(V(R)) = rad() # R. So if V(I) = (), then I(V(I)) = I(}) = R
contradicting that I(V(R)) # R. [

10
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Example 1.4.3 (k = k is needed) Let k =R and m = (22 + 1) C R = k[x]. Then
klz]/(z* +1) = C
which is a field. Therefore m is a maximal ideal. But I(V(m)) = I() = R # m = rad(m).

1.5 Irreducible Closed Subsets

Definition 1.5.1 Let X be a topological space and V' C X a non-empty closed subset. Then V'
is irreducible if it can not be written as a union of two closed subsets properly contained in V.

Example 1.5.2 {a} C A} is irreducible. For a # b, the set {a,b} is not irreducible since

{a,b} = {a} U {b}.
Proviso 1.5.3 If V is not closed, then we need a modified definition.
Fact 1.5.4 If V C A7 is an algebraic subset, then V(I(V)) = V.

Proof: Apply Proposition [1.3.5 |
Theorem 1.5.5 Let V' C A} be a closed subset. Then V is irreducible if and only if I(V') is prime.

Proof: (=) Assume that V is irreducible. Then V # @ and hence I(V) # R. Let f,g € R
such that fg € I(V). Now define

Note that JK C I(V) C JN K since:

JE=I(V)?+f-1(V)+g-I1(V)+[-gR
——
cI(V) cI(V)

Also note that J =1(V) + fR 2 I(V). Similarly K D I(V). Hence J N K D I(V) and thus
V(JK)2V({I(V)) 2 V(JNK).
But V(JK)=V(J)UV(K),VI(V))=V,and V(JNK) =V (J)UV(K). Therefore
V(J)UV(K) DV D V(J)UV(K).

So V. =V(J)UV(K). Since V is irreducible V.=V (J) or V = V(K). Thus I(V) =1(V(J)) D
(fed)or I(V)=I(V(K)) 2K (g € K). Soif fg € I(V) then either f € I(V) or g € I(V) and
I(V) is prime.

N
=~
>

(<) Assume that I(V) is prime. To show V is irreducible, let V4 and V5 be closed non-empty
subsets such that V' =V; U V5. We need to show that V =V, or V = V5. Note that for p = I(V)

Vip)=V=ViUVe=V(L)UV(l)=V(L).
Sop=I(V)=I1I(V(li-1I2)) D Ii - I. Since p is prime: p D I; for some j. Therefore
ViCViuVe =V =V(p) CV(I;) =V
Thus V =V, = V(I;) and V is irreducible. [

11
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Corollary 1.5.6 If k =k and p C R is prime, then V(p) is irreducible.

Proof: By Theorem (Hilbert’s Nullstellensatz) p = I(V(p)). Because p is prime
I(V(p)) is prime. Hence V (p) is irreducible by Theorem [L.5.5] [

Question 1.5.7 If £ is infinite and p C R is prime, then V (p) is irreducible?

Example 1.5.8 Let R=R[X,Y]. Set f=Y2+ X*(X —1)? € R.
Claim 1: (f)R C R is prime.
Claim 2: V(f) = {(0,0),(1,0)} is not irreducible.

2. Notice that (a,b) € V(f) if and only if b = 0 and a(a — 1) = 0 if and only if (a,b) = (0,0)
or (1,0).

1. Here we note that R is a UFD. Therefore we need to prove that f is irreducible. Let
f = apB. Since degy (f) = 2 we have two possibilities:

(a) degy (o) =2 and degy (8) = 0.
(b) degy (o) =1 and degy (5) = 1.
(a) degy (o) = 2: write a = ap(X) + a1 (X)Y + a2(X)Y? and 8 = B(X). Then
f=ap=B(X)ao(X) + B(X)ar (X)Y + B(X)az(X)Y?.

So

The last line implies that [ is constant and hence a unit.

(b) degy () = degy (8) = 1: write a = ap(X) + a1 (X)Y and 8 = Bo(X) + $1(X)Y. Then

f=aB = a(X)Bo(X) + (ag(X)B1(X) + a1(X)Bo(X)) Y + a1 (X) B (X)Y?

and so
ao(X)Bo(X) = X*(X —1)°
Oél(X)61<X) =1
ao(X)B1(X) + a1 (X)Bo(X) = 0.

The second line implies that a; and (; are both nonzero constants. Also the third line implies
that By = —aflaoﬂl where both afl and [, are constants. Now the first line implies

(X(X =1))* = ao(X) (0ay " 1) ag(X)
= —fBiao(x)”.

Now evaluate at £ = —1 to see the left hand side is > 0 and the right hand side is < 0 which is a
contradiction. Therefore f is irreducible.

12
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So the answer to the Question [[.5.7]is no.
Proposition 1.5.9 If k is finite, then the only irreducible subsets of A} are {a}.

Proof: Let ) # V C A} be closed such that [V| > 2. Note that |V| < co because |k| < oo.
Also every subset of A} is closed. So

V={a} U(V\ {a}) forall a € V.

So V is the union of proper closed subsets. |
Corollary 1.5.10 Let k be finite, then A} is reducible.
Proposition 1.5.11 If k is infinite, then A} is irreducible.

Proof: Suppose that A} = V(I) U V(J) such that V(I) # A} and V(J) # A}. Therefore
I # 0 and J # 0. So there exists nonzero elements f € I and g € J.
Claim: A} =V(f)UV(g).
f € I implies that V(f) 2 V(I). Similarly V(g) 2 V(J). So
K=V UV(I)CV(fHuVig) CAE.
Now for all @ € A}: f(a) =0 or g(a) = 0. Therefore for all a € A}:

fa)g(a) = 0.
If |k| = oo, then f =0 or g = 0 by Lemma [[.2.7] contradicting that 0 # f, g. [

Corollary 1.5.12 If k is infinite, then k™ can not be written as a finite union of proper subspaces.

Lemma 1.5.13 Let X be a topological space. The following are equivalent:

(i) Open sets satisfy the ascending chain condition.

(i) Closed sets satisfy the descending chain condition.
Proof: Exercise n
Definition 1.5.14 X is noetherian if the closed sets satisfy the descending chain condition.
Theorem 1.5.15 A} is noetherian.

Proof: Let V3 D V2 D ... be a descending chain of closed subsets in A}'. Now apply I(—):
I() € I(Vz) € ...

to get an ascending chain of ideals in R = k[z1,x2,...,Zm,]. Since R is noetherian the above
ascending chain must stabilize. Hence I(V;) = I(V;11) = --- for some j. Note that by Fact[1.5.4]

V; = VI(V)) = VI(Via)) = Vi,

Therefore the original chain must stabilize as well. |

13
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Fact 1.5.16 If X is a noetherian topological space, then every closed subset of X is noetherian
and so is every open subset.

Lemma 1.5.17 Let X be a topological space. The following are equivalent:

(i) X is noetherian.
(i) Every non-empty set of closed subsets of X has a minimal element.

(i1i) Every non-empty set of open subsets of X has a maximal element.
Proof: Exercise |

Theorem 1.5.18 Let X be a noetherian topological space. Then every non-empty closed subset of
X is a finite union of irreducible non-empty closed subsets.

Proof: Suppose not. Then there exists a non-empty closed subset V' C X that is not a
finite union of irreducible closed subsets (therefore reducible). Now define

¥ := {non-empty closed subsets of X not a finite union of irreducible closed subsets}.

Note that 3 # ) is a set of closed subsets. Let W € ¥ be a minimal element. Then W is reducible.
Therefore there exists closed subsets V1, Vo C X such that V; C W and W = V3 UV,. W is minimal
in ¥ and V; C W is closed. Therefore V; ¢ ¥ and thus

Vi=ViiUViagU---UV; .

where V; ; is irreducible. W = V; U V3 is a finite union of closed irreducible subsets contradicting
our assumption. |

Corollary 1.5.19 FEvery non-empty closed subset of A} is a finite union of irreducible closed
subsets.

Proof: Apply Theorems [I.5.15] and [I.5.15] |

Theorem 1.5.20 (Uniqueness) Let Vi,...,Vy,, V{, ..., V!, € A} be irreducible and closed such
that V; £ V; for alli # j and V L V] for alli # j and Vi U --- UV, = V{U---UV],. Then
m =m' and there exists o € Sy, such that for alli=1,...,m: V! - =V;. This decomposition is
called an irredundant irreducible decomposition of V' or a minimal irreducible decomposition of V.

Proof: We first note that V; CV,U---UV,,, =V/U---UV/,. Then

m

Vi=(Vu---uv,)nw
=VinWV)u---u (V. NVp).
Since V; is irreducible and V;/ NV is closed we have Vi = V/ N1y C V! for some i. By symmetry,

there exists j such that V;/ C V. But no containments for the V’s implies j = 1 and hence V;/ = V4.
Now rearrange the V’s to assume V; = V/.
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Similarly Vo = V/ for some ¢. If £ = 1, then V5 = V] = V4 which is a contradiction.
Therefore £ > 2. Again we can rearrange, so assume that V5 = VJ.

For p = 1,...,m we use a similar argument and a rearrangement will give us V,, = V;f.
Therefore m < m’. Symmetrically m’ < m and hence m = m'. Thus V,, =V for all p. [

Fact 1.5.21 V # () closed in A} implies that V has an irredundant irreducible decomposition.
(Remove redundancies from a given irreducible decomposition.)

Definition 1.5.22 The V; that occur in an irredundant irreducible decomposition of V' are the
irreducible components of V.

Definition 1.5.23 Let X be a topological space and V' C X be closed. The Krull dimension of
Vis

dim(V):=sup{m >0 |3V, C Vi C--- CV,, CV such that each V; is closed and irreducible}.

Definition 1.5.24 Let S be a commutative ring with identity. The Krull dimension of S is

dim(S) := sup{m > 0 | there exists pg C p1 S -+ C P, primes in S}

Theorem 1.5.25 Let V C A} be closed, V # ) and R = k[z1,...,xy,]. Then
dim(V) < dim(R/I(V)).
If k = k, then equality holds.

Proof: Let Vo C Vi C--- CV,, €V be such that each V; is irreducible and closed. Then
I(Vo) 2 I(Vl) 2.2 IV, ) I(V) Recall that V; is irreducible if and only if I(V;) is prime

(Theorem [I. Note I(V;) CR. So

1) | 1(Va)
w) - = 1)
is a chain of prime ideals in R/I(V'). Then (( W 2 I(I‘(/JV*)’ if and only if I(V}) 2 I(Vj41). Suppose

that I(V;) = I(Vj41). Then V; = V(I(V}))) = V(I(Vj+1)) = Vj+1. Hence V; = V41 contradicting
our assumptions. Thus

(Vo) 2 1(Vi) 2 -+ 2 I(Vin) 2 I(V),
Therefore dim(R/I(V)) > m and thus dim(R/I(V)) > dim(V).

For the last statement assume that k = k. Let pg € p;  --- C p,, be prime ideals in
R/I(V). Then p; = P;/I(V) where P; C R is a prime ideal containing I(V'). Now the above chain
of prime ideals gives us the following chain of prime ideals:

IV)CP QPG C P

Therefore V.=V (I(V)) D V(P) 2 -+ 2 V(Py,). Corollary tells us V(P;) is irreducible.
Now by the Nullstellensatz (Theorem [1.4.1)):

I(V(P))) = rad(F;) = P; G Pjy1 = I(V(Pjt1))
Therefore V(P;) 2 V(Pjy1). [
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Example 1.5.26 If k = k, then dim(A?) = dim(k[z1,...,x,]) = n. If |k| < oo, then dim(A}) =
0 < n since the only irreducible closed subsets are {a}.

Fact 1.5.27 If |k| = oo, then dim(A}) = n.

Sketch of Proof: It suffices to show A}’ is irreducible for all m. But this is true by
Proposition |

Definition 1.5.28 R/I(V) is called the coordinate ring for V. This is also known as the ring of
reqular functions on V. Given f € R/I(V), then f defines a well-defined function V' — k.

1.6 Finding Irreducible Components
Question 1.6.1 How do we find irreducible components?

Definition 1.6.2 Let A be a commutative ring with identity. An ideal I C A is dérreducible if it
can not be written as an intersection of ideals non-trivially, i.e. for all ideals J, K C A, if I = JNK,
then I =Jor I =K.

Example 1.6.3 If [ C A is prime, then [ is irreducible.

Proof: Let P C A be prime. Suppose that P = JN K O JK. Since P is prime we have
that either P O J or P O K. Hence
P=JNnKCJ
N——
CK

IfPDOJ,then JC P=JNK CJ, hence P=J. Similarly if P O K, then P = K. Therefore
either P=J or P =K. |

Proposition 1.6.4 Let A be a noetherian ring and let I C A be irreducible. Then for all x,y € A
if vy € I, then either x € I or there exists m > 1 such that y™ € I. (This says that I is “primary”).

Proof: Assume that I is irreducible and let x,y € A such that xy € I. Now consider the
colon ideals
T:y) ST ) STy T

Since A is noetherian, the above chain must stabilize. Therefore for some m > 1 we must have
(L:y™)=(:ym ).
Claim: (I +zA)N (I +y™mA) =1
(2) Note that I +2A D I and I +y™A D I. Therefore (I +2A)N(I+y™A) DI
(Q) Let o € (I +zA)N (I +y™)A). Then we can write
a=i+ar foriel,reA (1.1
a=j+y"s forjel,sec A

Multiplying (1.1)) by y we see ay = iy + xzry € I since ay € I and zry € I because xy € I.
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Multiplying (1.2)) by y we see ay = jy+y™sy = jy+y™ s. Note that y" s = ay—jy € I.
Therefore s € (I : y™*1) = (I :y™) and hence a = j + y™s € I. Thus (I + xA)N (I +y™A) C L.

Now since [ is irreducible, we have I = I +xA>zor I =1+ y™A > y™. |

Proposition 1.6.5 Let A be noetherian and I C A be an ideal. Then I is prime if and only if I
is irreducible and I = rad(I).

Proof: (=) Let I be a prime ideal. Then by Example we have that I is irreducible.
Now, since I is prime we also have that I = rad([]).

(«=) Assume that I = rad(I) is irreducible. To show that I is prime, let z,y € A such that
xzy € I. Since [ is irreducible Proposition [I.6.4] implies that « € I or y™ € I for some m. But since
I =rad(I) it follows that x € I or y € I. Hence I is prime. |

Proposition 1.6.6 Let A be noetherian and I C A be an irreducible ideal. Then rad(I) is prime.

Proof: Since I # A we have rad(I) # A. Let z,y € A such that xy € rad(l). Then
x™y™ € I for some m. Proposition implies that 2™ € I or y™ € I. Therefore x € rad(I) or
y € rad(I). Hence rad(I) is prime. [

Fact 1.6.7 If I C A is an irreducible ideal and I = JyNJo N --- N J,,, then I = J; for some 1.
Proof: Use induction on m along with the definition of I being irreducible. |

Definition 1.6.8 A irreducible decomposition of an ideal is a decomposition I = Q1NQ2N- - -NQy,
such that each @Q); is irreducible. Such a decomposition is irreduntant if it has no redundancies: if

i # j, then Q; Z Q.

Proposition 1.6.9 If A is noetherian and I C A is an ideal, then I has an irredundant irreducible
decomposition. Moreover if the Q;’s are prime, then the Q;’s in the irreducible decomposition are
unique (up to order).

Proof: Step 1: Every ideal in A has an irreducible decomposition.

Assume there exists an ideal in A that does not have an irreducible decomposition. Then
let
Y. = {ideals I that do not have an irreducible decomposition}.

Then ¥ # 0 is a collection of ideals. Since A is noetherian, 3 has a maximal element I. Then I is
not irreducible (if I were irreducible, then I = I is an irreducible decomposition). Therefore there
exists ideals J, K such that I = JN K and I # J and I # K. Then I C J and I C K. Since [ is
maximal in 3 we have J, K ¢ 3. Then we can write

J=QiN--NQum
K=Lin---NL

as irreducible decompositions. This implies that

I=JNK=Q1 - NQmNLiN---NL;

17
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is an irreducible decomposition contradicting that I does not have an irreducible decomposition.

Step 2: If I = Q1N ---NQ,, is an irreducible decomposition, then the ();’s can be reordered
so that there exists ¢ such that

I'=@Qin---NQy

is irredundant.

If Q1 N---NQ,yy, is irredundant, then we are done. If not, then there exists ¢ # j such that
Qi € Q;. Reorder to assume Q; € Q,. Then

I=Qin- NQu-1NQm=Q1N--- NQnm_1.

This process terminates in a finite number of steps because m < oco.
Step 3: Uniqueness when irredundant and each Q; is prime.

Suppose that
I=Q1N--NQm=LN---NL

are irredundant decompositions such that all (); and L; are prime. Then
Lin---NLi=@Q1N---NQpm C Q1.

Since @)1 is prime there exists j such that ¢ 2 L;. Similarly there exists ¢ such that L; 2 Q;
because L; is prime. Note that the decomposition @1 N --- N @y, is irredundant, so we must have
i =1 and hence @)1 = L;. Now reorder the L’s to assume that 1 = L;. Similarly there exists s
such that Q2 = L. Note that s # 1 because then Qo = L1 = 1 which is a redundancy. Therefore
assume s = 2. Similarly reorder the L’s to get L; = @Q; for i = 1,...,m. This implies that m < ¢.
By symmetry ¢ < m. |

We note that the @;’s must be prime in order to have uniqueness for irredundant decompo-
sitions. Consider the following example.

Example 1.6.10 Consider the ideal (22, 2y?) € k[z,y]. Note that this is an ideal such that
(y+z,2%) N (2, (y +2)°) = (2*, 2%) = (y,2%) N (2,5°).

Note that both decompositions are irredundant, but (y + x,22) # (y,2%) # (z,(y + x)?) and
(y +z,2%) # (z,y?) # (z, (y + 2)?). So uniqueness fails.

Proposition 1.6.11 Let A be a commutative ring with identity and let I C A be an ideal. Then

(a) I =rad(I) if and only if I = Py N ---N Py, for some primes P;.

(b) If I = rad(I), then I has a unique irredundant prime decomposition (up to reordering).

Proof: (a) (=) Let I = Q1 N---N Q. be an irreducible decomposition. Then
I'=rad(])=rad(Q1N---NQp) =rad(Q1) N---Nrad(Qm).
Then by Proposition each rad(Q;) is prime.
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(<) Let I =Py N---N P, where P; is prime. Then

rad(I) =rad(PyN---N Ppy)
=rad(P)N---Nrad(Py)
= P1 n--- mpm
=1

(b) Part (a) implies that I has a prime decomposition. Remove the redundancies to get an
irredundant prime decomposition. Then Proposition [1.6.9| implies the decomposition is unique. l
Now: How do we find irreducible components of V =V (I)?
Proposition 1.6.12 Assume k =k, and let I =rad(I) = P, N---N P, be an irredundant prime
decomposition. Then the irreducible components of V(I) C A} are V(P1),...,V(Pn).
Proof: We first have
VI =V(PiN---NPy)=V(P)U---UV(Py).

Then Theorem (Hilbert’s Nullstellensatz) implies that I(V(F;)) = rad(P;) = P; for all i.
Therefore V(P;) is irreducible for all i.

Next we check that this decomposition is irredundant. If V/(P;) C V(P;) for some i # j,

then
I(V(F)) 2 I(V(F))).
=P, =P
But this contradicts the original irredundancy. |

Example 1.6.13 Assume k = k and consider V(zy,yz) C A}. Then I = (zy,yz)R = (z,2)RN
(y)R is an irredundant prime decomposition. Therefore the components of V' (I) are V(z, z) and
V(y).
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Proposition 1.6.14 Let k =k and I C R (not necessarily = rad(I)). Let I = Q1 N -+ N Q,, be
an irreducible decomposition, and consider

rad(l) =rad(Q1)N---Nrad(@Qm) =PiN---NP,.
In the last expression, we have removed the redundancies and reordered the ideals, and we have
t < m. Then the irreducible components of V(I) = V(rad(I)) are V(Py),...,V(P).
Proof: Apply Proposition [1.6.12] [ |

Fact 1.6.15 In R = k[z1,...,x

n) each ideal (xfll . J;ei’") R = J where e;; > 1 is irreducible
such that rad(J) = (x4, ..., 2,) R.

Example 1.6.16 Assume k =k and consider I = (z%,y) N (z,2%) N (y?, 2*).
rad(I) = rad(z?, y) R Nrad(z, 2*) Nrad(y?, z*)
= (z,y)RN (z,2)RN (y, 2)R.
The irreducible components of V(I) are V(z,y), V(x, z), and V (y, 2), i.e., the z-axis, the y-axis,
and the z-axis, respectfully.

Now what if k # k?

Example 1.6.17 Let V(2% + y*(y — 1)?) = {(0,0),(0,1)} = {(0,0)} U {(0,1)}. The irreducible
components are {(0,0)} and {(0,1)}. Then if I = (2 + y?(y — 1)?)R, the prime decomposition of
I does not give irreducible components of V(I). We need to decompose I(V (I)).

Proposition 1.6.18 Let I(V(I)) = PiN---N Py, be an irredundant prime decomposition. Then
the irreducible components of V(I) are V(Py),...,V(Pp).

Proof: Let V(I) = V4 U---UV; be an irredundant irreducible decomposition. We need to
show that ¢ = m and the V;’s can be reordered to get V; = V(P;) for all i. Note that
Pin---NP,=IVI)=IVi)n---NnI(W).

Since V; is irreducible, we have I(V;) is prime for all i. Now we need to show for ¢ # j that
I(V;) € I(V;). (Then each decomposition is irredundant. Therefore uniqueness kicks in.)

If I(V;) C I(V;), then V(I(V;)) 2 V(I(V;)). But V(I(V;)) = V; = V; and V(I(V;)) = V.
Therefore V; O V; which contradicts the irredundancy of V1 U---UV;. Hence I(V1)U---UI(V;) is
irredundant.

The uniqueness implies that m = ¢ and the V;’s can be reordered to get P; = I(V;) for all i.
Therefore V(P;) = V(I(V;)) =V,; =V, for all i. [
Example 1.6.19 Let k = R. Then V(2% + y?(y — 1)?) = {(0,0), (0,1)} and

I(V(&® +y*(y — 1)%) = I({(0,0), (0,1)})
= M(0,0) N M(0,1)
= (z,y) RN (z,y — R.

So the irreducible components are V(z,y) = {(0,0)} and V(z,y — 1) = {(0,1)}.
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Exercises.
Assumptions: k is a field, and R = k[Xq, ..., X,] for some n > 1.
Exercise 1.6.20 Let I C R be an ideal, and consider the “radical” of I:
radl = {z € R| 2" € I for some n > 0}.

Note that rad I is an ideal of R containing I. Prove that V(I) = V(rad I).

Exercise 1.6.21 Let S, 5’ C R.

(a) Prove that if S C S’, then V(S) D V(5).
(b) Prove or give a counterexample to the following: if V(S) D V(S’), then (S)R C (S")R.

Exercise 1.6.22 For each a = (a1,...,a,) € A}, set my = (X1 —ay,..., X, —a,)R. Let S C R,
and prove that ¢ € V(S) if and only if m; 2 S.

Exercise 1.6.23 Let m > 1. A function F': AZ — A}" is regular if there are polynomials
fi,--, fm € R such that F(a) = (fi(a), ..., fm(a)) for all a € A}.

(a) Prove that every regular function F': A} — AT is continuous.

(b) Prove that if F: A} — A and G: A} — A} are regular, then so is the composition
FoG: A} — A

Exercise 1.6.24 Assume that k is algebraically closed. Let f be a non-constant polynomial in
E[X1,...,X,], and consider V(f) C A}.

(a) Prove that V(f) # 0.
(b) Prove that if n > 2, then V(f) is infinite.

Exercise 1.6.25 Are the following closed sets irreducible or not? Justify your responses.

(a) V(X +Y2) C AZ.
(b) V(X2 +Y2) C A2,
(¢) V(X2+Y?2)CAZ

Exercise 1.6.26 Let X be a noetherian topological space. Let Y C X be a subspace of X, that
is, a subset of Y with the subspace topology. Prove that Y is noetherian.
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CHAPTER 2

Projective Space

2.1 Motivation

Sometimes to describe an object, we “parametrize” it in terms of something we already understand.

Example 2.1.1 A curve in R?, described in parametric form:
F) = (@(t),y(1), 2(2)) .

Example 2.1.2 Solution sets to under-determined systems of linear equations:
2+ 3y+42=0
z+y—2=0.
Solutions: (—%t,t, —%t).
General Principle: To understand 7', cook up a function f : S — T where f is “nice” and S
is “understood.” Then transfer understanding of S to T via f.

Motivating Problem: Parametrize the set of lines in k™ passing through the origin, i.e.
1-dimensional vector subspaces of k.

A line is determined by a single non-zero vector ¢ € k™.

Span : k™ \ {0} — {lines in &™ passing through the origin}
¥ — Span(?).

This is onto. Sadly it is not one-to-one. Note that Span(?) = Span(w) if and only if ¥ € Span(w)

if and only if « € Span(?) if and only if there exists A € k* such that ¥ = A if and only if there

exists p € k* such that @ = pv.

We will define ¥ ~ 0 if there exists A € k* such that ¥ = A@d. By the above notes, the
induced function

Span : kA {0} — Py

[0] — Span(?)

is well-defined, one-to-one and onto.
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2.2 Projective Space P}

Definition 2.2.1 For #,w@ € k"1 \ {0} define ¥ ~  if and only if there exists A\ € k* such that
W= AU If V= (vg,v1,...,v,) then ¥ ~ & if and only if there exists A € k* such that w; = X---v;
forall j =0,1,...,n.

fntl \ {0}

~

no.__
k=

is called projective n-space over k. An element in P} looks like
v=(vg:v1: - :vy)=(Avg:Avg e Avy)

for all A € k*.

Example 2.2.2 (v : v1) € P}. If vg # 0 then (vg : v1) = (vo/vo : v1/vo) = (1 : v}) where
A =1/vg and v} = vy /vo.

For «, 8 € k: a # 3 implies that (1: «a) # (1: 5). So

A} — P}

a— (1:a).

If vg = 0, then v1 # 0 and (vg : v1) = (0:v1) = (0/vy : vy /v1) = (0: 1).

Symmetrically we have another

A} — P}

B (B:1).

Here we see that Pi ~ a circle in R?.

More Generally: In P}, U; = {v € P} | v; # 0} for all j =0,1,...,n. Then
Z:U()UU1U-'-UU".

There also exists a bijection A} — Uj for all j. If n > 2, then there exists a bijection ]P’Z_1 — PP\U;
for all j.

Note that polynomials do not give well-defined functions on IP}.

Example 2.2.3 f(zo,21) = 0. (1:0) 7,1 and (a:0) L.
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Being zero or not zero (evaluating polynomial) is also not well-defined. For o # 0:

g(wo, 21) = x5 — 7

g(1:1)=12-13=0

gla:a)=a*—a?=ad*(l-a)=0sa=1.
We will see that homogeneous polynomials will fix our problem.

2.3 Homogeneous Polynomials

Definition 2.3.1 Let R = k[xg,x1,...,2,] and let f € R. Then f is homogeneous of degree d if
f is a linear combination over k of monomials of degree d.

Example 2.3.2 z3 — 23 is not homogeneous. z3 — z123 is a homogeneous polynomial of degree 3.

Notation 2.3.3 R, := {homogeneous polynomials f € R of degree d}.
Note: 0 is homogeneous of degree d for all d.
Fact 2.3.4 R; C R is a subspace over k.

Fact 2.3.5 (a) Every f € k[zo,...,z,] = R can be written as f = fo+ f1 + -+ fq such that
each f; € k[xo,...,x,]; = Ry, i.e, each f; is homogeneous of degree i. This representation
is essentially unique.

Therefore R2 Ry R D RoP--- .

R; x Rj — Riy; by (f,g) — fg is a well-defined k-bilinear map.

feR: f(Oxo, A\x1,..., A\x,) = Nf(x0,...,2,). Note that homogeneous is crucial.

(e) Let v = w € P} where v = (vg : v1 : -+ : v,) and w = (wo : wy : -+ : wy). Note that
U = (vg,v1,...,0,) and W = (wp,wy,...,wy,). Then f(¥) = 0 if and only if f(w) = 0 for
f €R;.

Proof of (e): Assume that v = w, then @ = A\ for some A € k*. Therefore
F(@) = f(A0) = X' £ ().
Hence f(w) = 0 if and only if A’ f(%) = 0 if and only if f(¥) = 0 since A # 0. [

Notation 2.3.6 We write f(v) =0 if f(¥) = 0. (This is well-defined by Fact 5.)
Note: f does not make a well-defined function P} — k.

Proposition 2.3.7 Let I C R be an ideal. The following are equivalent:
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(i) I is generated by a set of homogeneous polynomials.
(ii) I is generated by a finite set of homogeneous polynomials.
(i) I=(INRy)SUINR)H---.
(iv) Every f € I can be written as f = fo + -+ + fq such that each f; is in I N R;.

(v) Forall f €1, if f= Zf:o fi such that each f; € R;, then f; € I for alli.

Definition 2.3.8 If I C R is an ideal, then I is a homogeneous ideal if it satisfies the equivalent
conditions of Proposition 2:3.7}

Proof of Proposition [2.3.7 (i) = (ii): The Hilbert Basis Theorem implies that I is
finitely generated. If I = (S)R such that S is a set of homogeneous polynomials, then since [ is
finitely generated there exists a finite subset S’ C S such that I = (S")R.

(ii) = (iv): Let s1,...,8m € R be homogeneous such that I = (sy,..., S, )R. Therefore
s; € I for all i. Say s; € Rg,. Let f € I. Then there exists g1,...,gmn € R such that f =3 g;s;
where g; = Zj gi; such that g; ; € R;. Then

f= Zgi,jsi Zzgi,jsi = Z Z 9i,jSi -
i i

t j+d;
—_——
ftER:

This satisfies the desired conclusion because each f; is in (s1,...,8,)R = 1.

(iv) = (iii): We first need to show that the sum is direct. So we need to show that
(INR)N (Zj#(f N Rj)) = 0. Note that 0 is in the left hand side. For the other containment:

(IO R)N (S0 IO R;) € RiNY, Ry =0

since R~ Ry ® Ry @ ---. Therefore the sum is direct.
(C) Let f € I. Then (iv) implies for f; € R;:

f=fo+fi+--+fa-
€(INR)®(INRL)B---

(D) Note that for each R;, INR; C I.

(ili) = (v): Assume (iii) and let f € I. Then f =3, f; such that f; € R; for all i. We need
to show f; € I for all i. Condition (iii) implies f = >, f; such that f € I N R;. Note that by the
uniqueness of representation in R = Ry @ Ry - - -, the condition f = )", f; implies f; = f; for all 4.
Therefore f; € I for all .

(v) = (i): Assume (v) and let S = J;=, (I N R;) = {homogeneous f € I} C I. Therefore
(SYRCI.

(D) Let f € I such that f = fo + - fqg where each f; € R;. (v) implies that each f; € I.
Thus f; € I N R; for all i. Therefore f = a sum of elements of S. Hence f € (S)R. |
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Example 2.3.9 If f1,..., f,, are homogeneous, then I = (f1,..., fin)R is a homogeneous ideal.

Notation 2.3.10 Let I C R be homogeneous. For all d let

I; := {homogeneous polynomials in I of degree d}.
Fact 2.3.11 I;=1NRy.

Lemma 2.3.12 Let I,J C R be homogeneous ideals. Then:

(a) I=(Uzola) R
(b) I C Jifand only if Iy C Jy for all d.
(c) I =1Jif and only if Iy = Jgy.

Proof: (a) (2) Each I; C I. Therefore | J;2 I C I. This implies that ({3~ la) R C I.

(C) Let fel. Then f =Y 4_, fa for each f; € R. Since I is homogeneous, fq € I for all
d. Therefore f € I N Ry = I;. Hence

F=Y fac <U1d>R.
d=0 d=0

(b) (=) If I C J, then I N Ry C JN Ry, ive., Iy C Ja.
(&) If Iy C Jg for all d, then g~ Ia € U~y Jq- This implies that

I= (g[d> R C (QOJd> R=J.

(¢) This follows from (b) [
Lemma 2.3.13 Let I C R be a homogeneous ideal. Then rad(I) is a homogeneous ideal.

Proof: Let f = > 5_, fa € rad(l) such that each f; € Rq. We need to show that each
fa € rad(I), We will use induction on e.

Base Case (e = 0): Here f = fy. Since f € rad(I), we have fy € rad(I).

Induction step: Assume for e > 1 the result holds for
e—1
9=> ga
d=0
Since f € rad([), there exists m > 1 such that f™ € I. Now write

A R A
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2. PROJECTIVE SPACE

such that each (f™); € R;. Then f{" = (f™)me. Since I is homogeneous we have f;" € I and so
fe € rad(I). Note that rad(I) is an ideal, therefore f — f. € rad(I) and

e—1
f=fe=>_fa
d=0
By the induction hypothesis f; € rad(I) fori =1,...,e — 1. |
2.4 The Zariski Topology on P}

Definition 2.4.1 The Zariski topology on P}
Let S C R be a set of homogeneous elements of R. Define

V(S):={aeP;| f(a)=0forall feS}.

o Closed sets: V(95)
e Open sets: PP\ V(5).

Let f € R be homogeneous: Uy := P} \ V(f) is the “principal open set.”

If T C R (not necessarily homogeneous), then
V(T):=V({t € T |t is homogeneous}).
IS ={f1,...,fm}, then V(S) =V (f1,..., fm)-

2

Definition 2.4.2 Lines in IP’,1€: V(axy + bxs + cxg). Projective ellipse: V (T— + Z—j - 22) or

po
2 2
VI i+38- x%) If 290 = 1 (so a copy of A7) we recover our original lines and ellipses. See

Example

Example 2.4.3 Closed sets in P} are V(1) = ), V(0) = P}, and (any) finite sets. If f is non-
constant, we need to show V(f) is finite. Let (aq : a1) € Pj.

First type of point: ag = 1. Then f(a) = f(1,a1). So ay is a root of f(1,z1) # 0.

d d—1 d—1 d
f=coxg+cixy” 1+ Fcg1xor] +cqx]

fl,z)) =co+crxr+---+ xd,lx‘ffl + cda:‘li.
Since f is non-constant, f # 0. Therefore some ¢; # 0. Thus there are only a finite number of
roots. Hence f has only a finite number of roots of the form (1 : aq).

Second type of point: ag = 0. So assume a; = 1. Then either (0 : 1) is a root of f or not.
Either way you get at most one more point. Therefore there are only finitely many. If S # () is a
set of homogeneous polynomials, let f € S be non-constant. Then V(S) C V(f) is finite. (Note
that Proposition implies that any finite set is closed.)

Lemma 2.4.4 If T CT' CR, then V(T) D V(T").
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2.4. The Zariski Topology on P}

Proof: Exercise. [ |

Lemma 2.4.5 Let S C R be the set of homogeneous elements and I = (S)R. Then f is homoge-
neous of degree d and in I if an only if there exists homogeneous polynomials g1,...,9m € R and
81,...,8m € S such that f =5, gis; and deg(g;) + deg(s;) = d for all i.

Proof: (=) Let f € I be homogeneous of degree d. Then we can write f = g151+- -+ gpsp
such that each g; € R and each s; is homogeneous of degree §;. Hence

9i =gio+ -+ Gie

such that g;; € R;. Now we can write f as

= Zgijsi +"'+ngj5p
J J

= 91d-6,51 T 92d—5,52 + -+ gpp—s, + ( remaining g;;s;’s )

has no terms of degree d

where g; js; is homogeneous of degree j + d; and g, ;5, is homogeneous of degree j + J, Therefore
the last terms must sum to 0 since f only has terms of degree d. Therefore

f=91d-651+92d-5,52+ "+ Gpp—s,-

(<) In this case f is homogeneous and in I since all g; - s; are homogeneous of degree d and
s; € 1. [ |

Lemma 2.4.6 Let S C R consist of homogeneous elements of R and let I = (S)R. Then
V(I)=V(9).

Proof: (C) Note that I = (S)R D S. By Lemma we have V(I) CV(95).
(D) Let @ € V(S) and let f € I be homogeneous. Then we can write
f:glsl+"'+gp5p
such that each g; € R is homogeneous and s; € S by Lemma [2.4.5] Then

f(a) = g1(a) si(a) +- -+ gp(a) sp(a) = 0.
—— —~—

=0 =0

Hence a € V(I). [

Lemma 2.4.7 Let I C R be homogeneous ideals (A € A). Then the ideals (\ycp In and Y\ cp In
are homogeneous. If A = {1,...,m} then I - - - I, is homogeneous.

Proof: I, = (S\) R where S consists of homogeneous polynomials. Then

Y L= (U SA>R

AEA AEA
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2. PROJECTIVE SPACE

where (J,c, Sx is a set of homogeneous polynomials. Thus it is a homogeneous ideal.

IfA={1,...,m}, then Iy --- I, = ({s1,...,8m | i € S1 for all i}) R is generated by a set
of homogeneous polynomial. To show that | J,., Ix is homogeneous, let

f=fo+tfit+t-—-+fac ﬂIA

A€A

such that f; € R; for all i. We need to show that f; € [yc, I for all 4. Since f € [y In, we
have f € I, for all A. Since I is homogeneous f; € Iy for all A\. Therefore f; € ﬂkeA I,. [ |

Proposition 2.4.8 Let Sy, ...,S,,,Sx C R consisting of homogeneous elements of R. I; = (S;)R,
Iy = (S\)R are homogeneous ideals:

1. V(S1)U---UV(Sy) =V({I)U---UV(Iy,) =V({IiNn---N1,) =V Ip).
2. ﬂ,\eA V(Sy) = ﬂ,\eA V() =V (ZAGA IA) =V (U,\eA SA)-
3. The set of projective algebraic subsets is closed under finite unions and arbitrary intersections.
Proof: Exercise u
Fact 2.4.9 Let S C R be a set of homogeneous polynomials in R. Then V(S) =V ((S)R)
Definition 2.4.10 If f € R is homogeneous, then V(f) is a projective hypersurface.

Corollary 2.4.11 Ewvery algebraic subset of P} is a finite intersection of projective hypersurfaces.

Proof: V(S) = V(I) = V(f1,..., fm) where (S)R = I = (f1,..., fm)R and each f; is
homogeneous. |

Proposition 2.4.12 {a} =V (({aiz; —ajz; |0<i<j<n})R) =V {arx; —ajze |0 < j < n})
for some ag # 0 where a = (ag : a1 : -+ : ay).

Proof: We first note that V' ({aixj — ajxi}”) cVv ({ang — ajmg}j) since apx; — a;xp =

+a;x; — ajx; for some 7, j’

Next we will show {a} C V ({a,;:cj — ajz,;}i’j) . If we evaluate a;x; — ajz; at a we get
a;a; — aja; = 0. Therefore {a} CV ({aixj - ajxl-}m) .

For the last containment assume that b € P} satisfies apz; — a;x, for all £. Then

a(bj — ajbg =0

for ap # 0. Therefore b; = “éi” = Z—‘;aj. Now set A = Z—i Then

a=(ap:a1: - :a,)=Aag:Aay: - : Aay)
:(bolbll---:bn):b.

Hence V ({agz; — ajze},) C {a}. [
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Theorem 2.4.13 The Zariski topology on P} is a topology.

Proof: Similar to Theorem |
Proposition 2.4.14 Ewvery finite subset of P} is closed.

Proof: Exercise |

Example 2.4.15 The Zariski topology on P} is the cofinite topology. See Example and
Proposition

Proposition 2.4.16 Every open subset in P} is a finite union of principal open sets.

Proof: Similar to Theorem [[.2.4] [ |
Corollary 2.4.17 P} is compact.

Proof: Exercise |
Corollary 2.4.18 {principal open sets of P}'} is a basis for the Zariski topology.

Proof: Similar to Corollary [[.2.5]
Fact 2.4.19 Uy NU,; = Uy, for all f,g € R.

Proof: Similar to Fact [L2.6l u
Theorem 2.4.20 If k is infinite and U, U’ C R are non-empty open subsets, then U NU’ # ().

Proof: Similar to Theorem [[.2.8 [ |
Corollary 2.4.21 If k is infinite, then P} is not Hausdorff.

Proof: Similar to Corollary [1.2.9] |
Fact 2.4.22 If a,b € P} and a # b, then there exists a neighborhood U C P} of @ such that b ¢ U.

Proof: Set U = P} \ {b}. Then U is the compliment of a closed subset. Therefore U is

open with g € U and b € U. [ |

Note: Up,z;—p;2, Will work for some choice of i and j.
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2.5 Geometric Ideals in P}

Definition 2.5.1 Let V' C P}}. Then define
I(V) := ({homogeneous f € R| f(a) =0 for all a € V}) R.

We write I (ay,...,a,,)) =1 {aq,--.,a,,})-

Note: I(V) is a homogeneous ideal of R since it is generated by a set of homogeneous
polynomials.

Example 2.5.2 I(()) = R, and I(P}) = 0 if k is infinite.

Fact 2.5.3 (Division Algorithm for homogeneous polynomials) Let f be a homogeneous poly-
nomial of degree d, and let b be a non-zero homogeneous polynomial of degree 1. Write b =
boXo + -+ - by X,, such that each b; is in k, and assume that b; # 0 for some j. Then there ex-
ist polynomials ¢ and r such that f = ¢b + r where ¢ is homogeneous of degree d — 1, and r is
homogeneous of degree d and constant with respect to X;.

Proof: Exercise. |
Proposition 2.5.4 Let a € P}. Then I(a) = ({aiz; —ajz; |0 <i<j<n})R.

Proof: (D) a satisfies each a;x; — a;jz;. Therefore each a;x; — a;x; € I(a).

(C) First let J := ({a;z; —ajz; | 0 < i< j < n})R. Since I(a) is homogeneous it is gener-
ated by the set of its homogeneous elements. We need to show every homogeneous element of I(a)
isin J. Let f € I(a)q. Then f(a) = 0. Assume ay # 0. We will use the division algorithm with

Ay — ATy, Ay — A1Tp,y ..., ATy — Apdy.
Now f = q1 - (agxg — apxe) + r1 such that g1, 7 are homogeneous and r; is constant with respect
to xg. Then we can write 1 = ga - (agx1 — a12¢) + r2 such that go, 75 where ry is constant with
respect to g and z1. We repeat this process to get
i = q; (apr; — a;xy) + iy

for all ¢ # ¢. Therefore

f=qo(agzo — aoxe) + - - + qe—1 (@pxo—1 — ar—1%¢)
+ qoy1 (@exppr — app1@) + -+ Qo (Qpxn — anze) +1

where 7 is constant with respect to all x; # xy. Therefore r = ¢ - x;l and hence 0 = r(a) = c- a‘}
where ay # 0. Thus c=0=7r=0. |

Proposition 2.5.5 Let V,Vy,--- CP}.
(a) If V C Vq, then I(V) D I(V7).
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2.6. Projective Nullstellensatz

(b) I(ViU---U Vi) =I(Vi) o NI (Viy).
(c) T (Urea V) 2 Xaea 1(V2)-
(d) vad (I(V)) = I(V).

Proof:

(a) Assume V = V;. To show I(V) D I(Vy), it suffices to show I (V), 2 I(V1)q for all
d. Let f € I(V1)s. Then f(a) = 0 for all @ € V. Therefore ¢ € V since V' C V;. Hence
Fel(V)N Ry =I(V)a.

(b) through (d) are proved similarly to Proposition [I.3.3] |

Proposition 2.5.6 Let I C R be a homogeneous ideal and V' C IP;. Then

(a) I Crad(l) C I(V(I)).
(b)) VCV=V(IV)).
(¢) VI(V(I))) = V().
(d) IV(I(V))) = L(V).

Proof: Similar to the proof of Proposition [1.3.4 [ |
2.6 Projective Nullstellensatz

Theorem 2.6.1 (Projective Nullstellensatz) Let I C R = klzo,...,zn] be a homogeneous
ideal such that k = k. Then

(a) If V(I) # 0, then I(V(I)) =rad(]).
(b) Let M = (zq,...,x,)R which is mazimal. The following are equivalent:
(i) V(I)=0.
(ii) rad(I)
(i11) rad(I) = 9 or rad(I) = R.
(iv) rad(I) =9 or I = R.
(v) for alli=0,...,n there exists e; > 1 such that zi* € I.

Proof: (a) Define Ig and V,g for points in A} and Iproj and Vi, for points in P, Assume
that Vpyo;(1) # 0. By Proposition rad(1) C Iproj(Voroi(1))-

Claim: rad(f) € Iproj(Voroj(1)) C Lng(Vag(l)) = rad(I).
To prove the claim let f € Invoi(Viroj(1))-

Case 1: Assume f € Ry. We need to show f € Lg(Vag(I)). By definition we need to show
f(a) =0 for all @ € Vog(I). Since Viroi(I) # 0 we know d > 1 (or else f = 0).

Sub-case 1: a = 0. Since f is homogeneous of degree d > 1 we have f(a) = f(0) = 0.
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Sub-case 2: a # 0. Then some a; # 0. Therefore a represents a point in a € Pp. Let
a = (ap,ai,...,a,). Then we write a = (ag : a1 :---: ay).

Let g € I, C I. Then since a € Vog(I), we have g(a) = g(a) = 0. Therefore a € Vj,r0;(1).
Now since f € Iproj(Vproj(I))a we have f(a) = f (a) = 0. Hence f € Iyg(Vag(I)) and hence

Case 1 is satisfied.

Case 2: (general case) Let f = Y7 fi € Iproj(Voroj(1)). Since Ipwoj(Vproj(I)) is a homo-
geneous ideal, each f; € Ipwoj(Vproj(I)). Hence case 1 implies that f; € Vag(Lag(I)). Therefore

f= Zfz S Iaff(vaﬁ(l))'

i=0
Now the original Nullstellensatz gives us Lg(Vag(I)) = rad(I). Thus the claim is satisfied and we
must have that Ipwoj(Vprej(I)) = rad([).

(b) We note that (ii) < (iii) is because 9 is maximal, and (iii) < (iv) is because rad(I)

if and only if I = R. For (ii) = (v), if 9 C rad(I), then for all ¢ = 0,...,n there exists e¢; >
such that 7" € I. We will now prove (v) = (i) and (i) = (iv).

R
1

(v) = (i): Assume (v) and suppose @ € Vpyoi(I) such that ¢ = (ap: a1 :---:ay,). Then a
satisfies every polynomial in I, e.g. x;*. But a € P} implies a; # 0 for some ¢ contradicting that a
satisfies x;*.

(i) = (iv): Assume Vpyoi(I) = 0. If I = R, then we are done. So assume that I % R. Then I
contains no units, i.e. no non-zero constants. Therefore Iy = I N Ry = 0. Hence every polynomial
in I has constant term 0. Thus I C 9. We now have

rad([) C rad(9) = M.

(©) Note that by the original Nullestensatz Ig(Vag(I)) = rad(I) C 9 = mgy. Therefore
0e Vaff(l).

Claim: Vag(I) = {0}

Note that for this claim we have already shown (2). For the other containment let g € Vog(1)
and suppose ¢ # 0. Then a represents some point ¢ € P}, say a = (ap:a1:---:a,). Then a
satisfies all f € I and hence a satisfies all homogeneous f € I. Therefore a satisfies all homogeneous
f € 1. Thus a € Viyoj(I) contradicting that Vpee;(I) = 0. Hence Vog(1) = {0}.

Now by the original Nullestensatz we have rad(I) = Lig(Vag(I)) = Lug ({0}) =mp =. W
Definition 2.6.2 The ideal 9, as in Theorem is the irrelevant mazimal ideal of R.

Fact 2.6.3 91 is the unique homogeneous maximal ideal of R and it contains every homogeneous
ideal I # R.

Corollary 2.6.4 Assume k = k. Then

(a) {non-empty closed subsets of P}} = {homogeneous ideals I C R such that I =rad(I) C 9}
defined by
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Vi—— I(V)

V(I) ¢«—1.

(b) If I =rad(I) C M is homogeneous, then V (I) # (.

Proof: Similar to Corollary [ |
2.7 Irreducible Closed Subsets

Lemma 2.7.1 Let I C R be a homogeneous ideal. The following are equivalent:

(a) T is prime.
(b) For all homogeneous ideals J, K: if JK C I, then JC I or K C1.
(¢) For all homogeneous f,g € R: if f,g€ I, then fel orgel.

Proof: (a) = (c) is by definition of a prime ideal.

(¢) = (b): Assume (c) and suppose J € I and K ¢ I where J and K are homogeneous ideals.
Then there exists d,e > 0 such that J; € I; and K. € I.. Therefore there exists homogeneous
feJ\Iand g€ K\ I. (c) then implies f,g & I. Therefore fg € JK and hence JK ¢ I.

(b) = (a): Assume (b). Let f,g € R\ I. We need to show that fg & I. Now we will write
f=lo+h+-+fa
g=go+ gL+ -+ ge.
Therefore some f; ¢ I and g; € 1.

Case 1: f4,9. ¢ I. Note that if we take J = (f4)R and K = (g.)R, then (b) implies that
we have fgg9. € I. Now

fg = fogo+ (figo + fog1) + -+ fage.
If fg € I, then since I is homogeneous we have f;g. € I which is a contradiction.

Case 2: (general case) Assume without loss of generality that f, € I for all @ > i and
gg € I for all B > j. Then

f=fo+fi+t -+ fit+fixr+-+ fa
S

:=f€]
g=go+g1+ - +gi+gi+1+ -+ Gge.
| ——

Now define f’ ::f—f:fo—k---fi glandg :=g—g=go+ ---+g; €I Casel now implies
that f’g’ & I. Therefore

fa= "+ +3)
=l9+ 9+ fd + f5 &1
N~ N N~
g1 el el el
Therefore fg & I. |

35



2. PROJECTIVE SPACE

Theorem 2.7.2 Let V C P} be closed. Then V is irreducible if and only if I(V') is prime.

Proof: (=) Assume that V is irreducible. Then since V # 0 we have that I(V) # R. To
show (V) is prime, we will use Lemma Let f,g € R be homogeneous such that fg € I(V).
Let J =I(V)+fRand K = I(V)+gR. These are homogeneous ideals because I(V') is homogeneous
and f, g are homogeneous. As before: JK C I(V) C J N K. This implies that

VWIJK)DV{I(V))D2V(JNK).
—_——— N———
=V =V (JK)

Therefore V = V(JK) = V(J) UV(K). Since V is irreducible either V.= V(J) or V = V(K).
This now implies that either I(V) = I(V(J)) > f or I(V) = I(V(K)) > g. Hence I(V) is prime.

(<) Similar to the proof of Theorem [L.5.5] |

Corollary 2.7.3 If R = k[xg,...,7,] such that k = k and p C R, p # M = (vg,...,7,)R, is
prime, then V(p) is irreducible.

Proof: Theorem implies that V(p) # 0 and I(V (p)) = rad(p) = p. Therefore Theorem
implies that V(p) is irreducible. [ |

Proposition 2.7.4 If k is finite, then the only irreducible closed subsets of P} are {a}.
Proof: Similar to Proposition [1.5.9 |
Corollary 2.7.5 If k is finite, then P} is reducible.

Lemma 2.7.6 Let k be infinite and f,g € R be homogeneous. If f(a)g(a) =0 for all a € P}, then
either f =0 or g = 0.

Proof: Let 0 # f,g € R be homogeneous. It suffices to show that f(a)g(a) = 0 for all
a € AZ'H. Then Lemma implies that either f = 0 or g = 0, a contradiction.

First assume that f is constant, say f = ¢, then f is a unit. Therefore g(a) = 0 for all @ € P}.
If g is constant, then we are done. Suppose that g is not constant. Since g is homogeneous, it
follows that g(0) = 0. If 0 # a € AZ“, then @ represents a € P}, so g(a) = g(a) = 0. Thus
g(a) =0 for all ¢ € A}l. Therefore g = 0 since k is infinite. Similarly if ¢ is constant, then f = 0.

Now assume f, g are both are non-constant. Let a € AZH. If a =0, then f(a)g(a) = 0. So
assume that a # 0. Then a represents a € P} and

Therefore either f(a) = f(a) =0 or g(a) = g(a) = 0. u

Proposition 2.7.7 If k is infinite, then P} is irreducible.
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Proof: Suppose P} = V(I) UV (J) = V(IJ) where I,J C R are homogeneous ideals. If
I =0, then V(I) = V(0) = P}. Similarly if J = 0.

Now assume that I, J # 0. Then there exists homogeneous 0 # f € I and 0 # g € J. Then
Py =V(I)uV({J) CV(f)uVig) CPL.

Hence f, g # 0 are homogeneous such that f(a)g(a) = 0 for all @ € P. Therefore by Lemma

f =0 or g =0 which contradicts that both f,g # 0 |
Theorem 2.7.8 P} is noetherian.
Proof: Similar to Theorem [[.5.15] [ |

Corollary 2.7.9 Every closed subset V C P} is a union of a finite number of irreducible closed
subsets. Also if you assume
V=1ruWhu---uV,

such that V; £ V; (for all i # j), then the decomposition is unique up to the order of the V;’s.
Proof: Exercise |
Theorem 2.7.10 Let V C P} be closed. Then dim(V') < dim(R/I(V)) — 1.

Proof: Let 0 #Vy C V1 € --- C V,, CV be a chain of irreducible subsets in V. Then

=

(V) C I(V) C -+ C I(Vi) € I(Vp) € M.

prime

We note that I(Vp) € 9 since Vp # 0. Also note that if V; is irreducible, then I(V;) is prime by
Theorem and V(I(V;)) = V;. Therefore I(V;) C I(V;_1) for all ¢ > 1. Hence R/I(V) has a
chain of primes with m + 1 links. Thus dim(R/I(V)) = m + 1. [

Fact 2.7.11 If k is infinite, then dim(P}) = n.
Proof: Exercise [
Definition 2.7.12 Define k[V] := R/I(V'). This is the homogeneous coordinate ring for V.

2.8 Regular Functions

Definition 2.8.1 Let f : P — P}* be a function. Then f is a regular function if there exists
homogeneous polynomials

f07f17"'afm S k[.’EO,.’IIh..-,(En]
(all have the same degree) such that f(a) = (fo(a) : f1(a) : -+ : fi(a)) for all a € P}.
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Fact 2.8.2 The function defined in Definition 2.8.1] is a well-defined function as long as
V(fo) -V (fm) =0.

We need this to make sure that f(a) #(0:0:---:0).
Since f; is homogeneous of degree d, we have f;(Aag, A1, ..., \an) = A% f; (ag, a1, ...,a,). Let
b= (Aag: Aag,: - :Aay) =a

(assuming A # 0 in k). Then

) = (fo(b): f1(d) : -+ : fu(D))
(Afola) : X fala) - X fula)

f(a).

Fact 2.8.3 If f is a regular function, then f is continuous. Also the composition of regular
functions is regular.

Examples of Continuous Functions

1. A} RN A7 such that F'(a) = (fi(a), ..., fn(a)) where each f; is a polynomial.

2. P} EiN P such that F(a) = (fo(a) : --- : fiu(a)) and such that each f; € k[X1,...,X,]q and
V(fo) -0V (fm) = 0.

3. Let U = Uy, WUy, U---U Uy, C P} where f; € k[Xo,...,Xp]q. Define U RN P where
F(a) :== (fola) : -+ 1 fm(a))-
4. fi A} — P, where fi(a) = (a1: - ai—1: 1 iaipr i+ an).

5. g;: ]P’Zfl — PP where g;(a) = (ao : -t ai—1: 0 @1t -+ Ape1)-
2.9 Finding Irreducible Components

Definition 2.9.1 Let R = k[zo,...,zy], and I C R be a homogeneous ideal. I is h-irreducible if it
is irreducible with respect to homogeneous ideals, i.e., for all homogeneous ideals J, K if I = JNK,
then I =Jor I =K.

Fact 2.9.2 If I C R is homogeneous and irreducible, then I is h-irreducible.

Proposition 2.9.3 If I C R is h-irreducible and a,b € R are homogeneous such that ab € I, then
a€l orb™ el for some m.

Proof: Note that (I :b) C (I:b%) C---. Since R is noetherian, the ascending chaing condition
implies that for some m we have (I : b™) = (I : b™*!). Then as in the proof of Proposition m
we have
I= (I+aR) N I+V"R)
——— —_——

homogeneous homogeneous

Therefore since I is h-irreducible, we have = I +aR>aor [ =1 +b0"R>b™ |
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2.9. Finding Irreducible Components

Lemma 2.9.4 If I C R is a homogeneous ideal, then I is prime if and only if I is h-irreducible
and I =rad(I).

Proof: (=) Assume that I is prime. Then by Proposition we have that I is irreducible
and I =rad(l). Hence by Fact I is h-irreducible.

(<) Now assume that I is h-irreducible and I = rad(I). Then I C R. To show I is prime,
let a,b € R be homogeneous such that ab € I. Proposition [2.9.3] implies that a € I or b™ € I for
some m. Since I =rad(I), we must have a € I or b € I, so I is prime. |

Lemma 2.9.5 Let I C R be an h-irreducible ideal. Then rad(I) is a prime and homogeneous
tdeal.

Sketch of Proof: Assume that [ is an h-irreducible ideal. Then it is homogemeneous.
Hence by Lemma [2.3.13| we have rad(I) is homogeneous. Also, rad(I) is prime by checking homo-
geneous elements; see the proof of Proposition [I.6.6] [ |

Definition 2.9.6 Let I C R be a homogeneous ideal. An h-irreducible decomposition I = Q1 N
-+ N Q@ such that each Q; is h-irreducible. The decomposition is irredundant if for all i # j, then

Qi £ Qj.

Proposition 2.9.7 Let I C R be a homogeneous ideal. Then I has an irredundant h-irreducible
decomposition.

Proof: Similar to the proof of Proposition [T.6.9] [ |

Proposition 2.9.8 If I C R is a homogeneous ideal and P, ..., Py, Q1,...,Q¢ are homogeneous
primes such that

PN NPp=QiN--NQ

and if i # j, then P; € Pj and Q; € Qj. Then m = £ and there exists o € Sy, such that P; = Q,(;)
for all i.

Proof: This is a corollary to Theorem [1.5.20 |

Proposition 2.9.9 Let I C R be a homogeneous ideal. Then I = rad(I) if and only if for some
prime ideals Py, ..., Py, such that I = Py N---N Pyy,.

Proof: Similar to the proof of Proposition |1.6.11] (a). [

Corollary 2.9.10 If I = rad(I) is homogeneous and Py ...,pm are prime ideals such that I =
P10 - NPy is an irredundant decomposition, then each p; is homogeneous.
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Proof: Let Pi,..., P, be homogeneous prime ideals such that I = P, N---N Py is an irredundant
decomposition. The uniqueness implies that p; = P,(;) is homogeneous. |

Question 2.9.11 How do we find irreducible components for V(I) C P}?

Theorem 2.9.12 Assume that k = k and I C R is a homogeneous ideal such that V(I) # () and
rad(l) = PiN---N Py, is an irredundant prime decomposition (hence P;’s are homogeneous). Then
the irreducible components of V(I) are V(Py),...,V(Pp).

Proof: Note that each V(P;) # (. So we need to show P; # 9. If P, = M, then P; C M = P,
for all j. Since the decomposition is irredundant we have that I = P; = 91. But this contradicts
that V(1) # 0. [ |

Theorem 2.9.13 Assume k = k and I C R is homogeneous such that V(I) # 0. Let I =
Q1N NQy be an h-irreducible decomposition. Then
rad(I) = rad(Qq) N--- Nrad(Qm)-

Remove redundancies and reorder to assume rad(I) = rad(Q1) N ---Nrad(Qy) is an irredundant
homogeneous prime decomposition. Then the irreducible components of V(I) are V(rad(Q1)) =

V(Q1),...,V(rad(Qr) = V(Qu).

Theorem 2.9.14 Let I C R be a homogeneos ideal such that V(I) # 0. Then I(V(I)) =
rad(I(V(I))) € R, so I(V(I)) = PiN-- NPy, such that each P; is homogeneous and prime. Assume
the decomposition is irredundant. Then the irreducible components of V(I) are V(Py),...,V(Pp).

Proof: Similar to the proof of Proposition [T.6.18] [ |
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CHAPTER 3

Sheaves

3.1 Presheaves

Definition 3.1.1 Let X be a topological space. A presheaf of abelian groups on X is a rule G:

1. For all open subsets U C X, G(U) is an abelian group.

2. For every pair of open subsets U C U’ C X there is an abelian group homomorphism

G:(U,U):GU)—=GU).

such that

(b) G(U,U) = idgwy;

(¢) U CU' CU” C X are open, then we have the following commutative diagram

g(UNq,U/)
—

g g(u)
\ lg(U',U)
GU"”,U)
Gu).

The group G(U) is the group of “sections” of G over U. The homomorphisms G(U’,U) is
the “restriction map.” To rephrase: Let X be a topological space. Set Open(X) = the category
of open subsets of X with morphisms = containments. Set Ab = the category of abelian groups
with group homomorphisms = Z-Mod. A presheaf of abelian groups is nothing more than a
contravariant functor G : Open(X) — Ab.

Example 3.1.2 For all open sets U C X, let

G(U) = {continuous functions U — R}.
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If U C U’, then G(U',U) = restriction of functions G(U") — G(U) where f — f|;. Define addition
in G(U) pointwise:
(f +9)(u) = f(u) + g(u).

This makes G into a presheaf of abelian groups on X.

Definition 3.1.3 A presheaf of rings on X is a presheaf G of additive abelian groups such that
each G(U) is a ring and each G(U’,U) is a ring homomorophism (i.e. G : Open(X) — Rings).

Similarly for a presheaf of k-algebras:

e A k-algebra is a ring homomorphism ¢ : k — R.

e A morphism of k-algebras is a commutative diagram of ring homomorphisms:

r—2 SR

RN

S.

Example 3.1.4 Let k — k[x1,...,2,] be a k-algebra and let J C k[z1,...,z,] be an ideal. Then
the following diagram commutes:

k—— K[z, ..., z,)

Example 3.1.5 The presheaf G from Example is a presheaf of R-algebras. Multiplication

in G(U) is pointwise (f - g)(u) = f(u) - g(u). The map R LN G(U) where r — constant function,
ie, Yy(r): U — Ris given by ¢y (r)(u) = r. The map G(U',U) : G(U') — G(U) by restriction is
a k-algebra homomorphism (constant|y is constant on U).

R 2 g

x lg(UﬂU)

Gg).

3.2 Regular Functions on A}

Definition 3.2.1 Let U C A} be open and let ¢ : U — k be a function.
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3.2. Regular Functions on A}

1. ¢ is regular at a € U if there exists an open set U(a) C U such that o € U(«) and there
exists polynomials p,ga € R = k[z1,...,2,] such that U(a) C Uy, and for all 5 € U(a) we

have 6(6) = 523

In other words, there exists 2= € k(xy,...,x,) such that ¢ = z—“ on some neighborhood of «

on which 5—" is a well-defined function.
2. ¢ is regular on U if it is regular at « for all a € U.

Example 3.2.2 Let f € R = k[z1,...,2,] and ) # U C A} be an open set. Then { = f defines
a regular function on U.

Example 3.2.3 Let f € R and consider Uy C A}. Then for all g € R and for all m € N, we have
% is regular on Uy.

Proposition 3.2.4 Let A\ € k. Then the constant function U — k, given by u — A, is regular.

Proof: Let A € £k C R be a polynomial. Then Example implies that the constant function
is regular. |

Lemma 3.2.5 Let ) # U C A} be open and let ¢ : U — k be a function. Then ¢ is reqular on
U if and only if there exists an open cover Uy U---UU,, =U and p1,...,Pm,q1,---,qm € R such

that ¢; # 0 for all i and U; C Uy, for alli and ¢ B

qi

U = for all i.
U;

Proof: (<) Assume that such pq, ¢;, and U; exist. Then for every a € U there exists 7 such that
ac Uy sinceU=U,U---UUp,. Set

DPa = P1
da = {4i-
Then ¢|y () = ¢lu, = % o= 5—: o Hence ¢ is regular on U.

(=) Assume that ¢ is regular. We use the notation from Definition Then U =
Uacv Ula) since a € U(a) C U for all @ € U. Since A} is noetherian, we have U is noetherian
and hence this open cover has a finite sub-cover

U=U(a1)U---UU(apm).
Set ¢; = Gays Pi = Pa;, and U; = U(e;). Then U =2, U(w) = U2, U;, and

Dbi

Pi _ b
qi

¢|U(ai) - Ulay)

U;

Exercise 3.2.6 Let X be a topological space and Z C X be a subset and let X =U; U---UU,,
be an open cover. Then Z is closed in X if and only if Z N U; is closed in U; for all 4.
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Proposition 3.2.7 Let ¢ : U — k = A} be a regular function. Then ¢ is continuous.

Proof: We need to show ¢~1(V) is closed where V is closed. So let V' C k be a nontrivial closed
subset. Then V is finite by Example|1.1.7, say V = {a1,...,an}. Hence

¢ ({1, yan}) =67 Ha) U U@ Ham).
So it suffices to show that ¢~1(a) is closed in U for all a € k. Since ¢ is regular, Lemma
provides an open cover U = U; U --- U U, and nonzero qi, ..., ¢, € R such that each U; C U,,
and there exists p1,...,pm € R such that ¢|y, = % for all . Then for all a € U;, we have
iy,

ae ¢ Ha) & o) =a
pi(a)

gi(@)
< pi(a) =a-gi(a)
s aeVp —ag).
—_———

closed in A}

Hence ¢~1(a) NU; = V(p; — aq;) N U; is closed in U;. Therefore by Exercise we have that
¢~ 1(a) C U is closed. [ |

Proposition 3.2.8 If ¢ : U — k is reqgular and U’ C U is open, then ¢|ly : U' — k is regular.

Proof: Let U =U; U---UU,, be an open cover such that ¢|y, = % for all i. Set U/ =U; NU".

Then
_ [P
vi di |y,

U, is regular. |

_n

(@lo)ly; = dluy = (dv,) »

U.'.

U!

Therefore ¢

Definition 3.2.9 Let U C A} be open. Define Oy (U) = {regular functions U — k} and define
Onp(0) = 0. Let U" C U and define Opn(U,U’) : Opn(U) — Opn(U’) by ¢ +— ¢|yr. Note that
Proposition [3.2.8] implies that this map is well-defined.
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