Algebraic Geometry Notes

Sean Sather-Wagstaff Department of Mathematics, 412 Minard Hall, North Dakota State University, Fargo, North Dakota 58105-5075, USA *E-mail address:* Sean.Sather-Wagstaff@ndsu.edu *URL:* www.ndsu.edu/pubweb/~ssatherw March 26, 2012

Contents

Contents			i	
Preface			1	
1	Affi 1.1 1.2 1.3 1.4 1.5 1.6	ne Space Algebraic Subsets Zariski Topology Geometric Ideals Hilbert's Nullstellensatz Irreducible Closed Subsets Finding Irreducible Components	3 3 6 8 10 11 16	
2	Pro 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	jective Space Motivation	 23 23 24 25 28 32 33 35 37 38 	
3	She 3.1 3.2	avesPresheavesRegular Functions on \mathbb{A}^n_k	41 41 42	
In	Index			

Introduction

What is Algebraic Geometry?

The study of geometric objects determined by algebraic "data", i.e. polynomials. Some examples are lines in \mathbb{R}^2 , conics in \mathbb{R}^2 , planes in \mathbb{R}^3 , spheres, ellipsoids, etc. in \mathbb{R}^3 .

Geometric objects of interest include: solution sets to systems of polynomial equations, study them using algebraic techniques. For example: is the solution set finite or infinite?

Example 0.0.1 Let $f, g \in \mathbb{C}[x, y, z]$ and let $V = \{(x, y, z) \in \mathbb{C}^3 \mid f(x, y, z) = 0 = g(x, y, z)\}$. Assume that $V \neq \emptyset$ (Hilbert's Nullstellensatz says that this is equivalent to $(f, g) \neq \mathbb{C}[x, y, z]$). Then V is infinite. This is an application of two algebraic results: Hilbert's Nullstellensatz and Noether's Normalization Lemma.

CHAPTER]

Affine Space

1.1 Algebraic Subsets

Notation: Throughout these notes, k will represent a field.

Definition 1.1.1 Given an integer $n \ge 1$, the set $\mathbb{A}_k^n = k^n = \{(a_1, \ldots, a_n) \mid a_1, \ldots, a_n \in k\}$ is a *affine n-space* over k.

Example 1.1.2 $\mathbb{A}^n_{\mathbb{R}} = \mathbb{R}^n$ (as a set), and $\mathbb{A}^1_k = k$ (as a set).

Fact 1.1.3 Given $f \in k[x_1, \ldots, x_n]$ and $\underline{a} = (a_1, \ldots, a_n) \in \mathbb{A}_k^n$, the element $f(\underline{a}) \in k$ is well-defined, i.e. $f : \mathbb{A}_k^n \to k$ is a well-defined function. These are called "regular functions." $k[x_1, \ldots, x_n]$ is the ring of regular functions on \mathbb{A}_k^n .

Note: Different polynomials can describe the same function.

Example 1.1.4 Let $k = \mathbb{Z}/p\mathbb{Z}$ for a prime p, f(x) = x, and $g(x) = x^p$. Fermat's Little Theorem implies that $x^p = x$ for all $x \in k$.

Definition 1.1.5 For each $S \subseteq k[x_1, \ldots, x_n]$ set $V(S) = \{\underline{a} \in \mathbb{A}_k^n \mid f(\underline{a}) = 0 \forall f \in S\}$. V is for "variety" or "vanishing." V(S) is the solution set to the system of polynomial equations

 $\{f = 0 \mid f \in S\}$

and is called the vanishing locus for S. Notation: If $S = \{f_1, \ldots, f_m\}$, we write $V(f_1, \ldots, f_m)$ instead of $V(\{f_1, \ldots, f_m\})$.

Example 1.1.6 $V(0) = \mathbb{A}_k^n = V(\emptyset)$ and $V(1) = \emptyset = V(k[x_1, \dots, x_n])$.

In $\mathbb{A}^2_{\mathbb{R}}$: $V(ax + by + c) = \text{line}, V(x^2 + y^2 - 1) = \text{circle}$, and similarly for other conics.

In $\mathbb{A}^3_{\mathbb{R}}$: V(ax + by + cz + d) = plane, $V(ax + by + cz + d, \alpha x + \beta y + \gamma z + \delta)$ is a line as long as the two planes are distinct and non-parallel, $V(a^2x^2 + b^2y^2 + c^2z^2 - d^2) = \text{ellipsoid where } a, b, c, d \neq 0$.

Example 1.1.7 In \mathbb{A}_k^1 : either $V(S) = \emptyset$, $V(S) = \mathbb{A}_k^1$ or V(S) is finite, and for every finite set V there exists S such that V = V(S).

Definition 1.1.8 A subset $V \subseteq \mathbb{A}_k^n$ is an *algebraic subset* if there exists $S \subseteq k[x_1, \ldots, x_n]$ such that V = V(S).

Lemma 1.1.9 Let $S \subseteq S' \subseteq k[x_1, \ldots, x_n]$. Then $V(S) \supseteq V(S')$.

Proof: Exercise

Proposition 1.1.10 Let $S \subseteq k[x_1, \ldots, x_n]$ and $I = (S) \subseteq k[x_1, \ldots, x_n]$. Then V(S) = V(I).

Proof: Since $I = (S) \supseteq S$, the previous lemma implies $V(I) \subseteq V(S)$.

For the other containment, let $\underline{a} \in V(S)$. Then for all $f \in S$, $f(\underline{a}) = 0$. Therefore for all $f_1, \ldots, f_m \in S$, for all $g_1, \ldots, g_m \in k[x_1, \ldots, x_n]$, and an arbitrary element $h = \sum_{i=1}^m g_i f_i \in I$, we have

$$h(\underline{a}) = \sum_{i=1}^{m} g_i(\underline{a}) f_i(\underline{a}) = 0.$$

Thus $\underline{a} \in V(I)$ and V(S) = V(I).

Notation 1.1.11 We will denote the ring $R := k[x_1, x_2, \ldots, x_m]$.

Proposition 1.1.12 (a) For each $S_i \subset R$ and $I_i = (S_i)R$

$$V(S_1) \cup V(S_2) \cup \dots \cup V(S_m) = V(I_1) \cup V(I_2) \cup \dots \cup V(I_m)$$
$$= V(I_1 \cap I_2 \cap \dots \cap I_m)$$
$$= V(I_1 I_2 \cdots I_m).$$

(b) For all $\lambda \in \Lambda$ let $S_{\lambda} \subseteq R$ and $I_{\lambda} = (S_{\lambda})R$:

$$\bigcap_{\lambda \in \Lambda} V(S_{\lambda}) = \bigcap_{\lambda \in \Lambda} V(I_{\lambda})$$
$$= V\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right)$$
$$= V\left(\bigcup_{\lambda \in \Lambda} S_{\lambda}\right)$$

where Λ is an index set that is not necessarily finite.

(c) The set of algebraic subsets of \mathbb{A}^n_k is closed under finite unions and arbitrary intersections.

Proof: (a) We first note that $V(S_1) \cup V(S_2) \cup \cdots \cup V(S_m) = V(I_1) \cup V(I_2) \cup \cdots \cup V(I_m)$ since $V(S_t) = V(I_t)$ by the previous proposition.

Next we notice that $I_j \supseteq I_1 \cap I_2 \cap \cdots \cap I_m$ for all j. Hence by Lemma 1.1.9 we have

$$V(I_i) \subseteq V(I_1 \cap I_2 \cap \dots \cap I_m)$$

for all j. Therefore $\bigcup_j V(I_j) \subseteq V(I_1 \cap I_2 \cap \cdots \cap I_m)$.

Now since $I_1 I_2 \cdots I_m \subseteq I_1 \cap I_2 \cap \cdots \cap I_m$, by Lemma 1.1.9 we know

$$V(I_1I_2\cdots I_m) \supseteq V(I_1\cap I_2\cap\cdots\cap I_m).$$

Finally let $\underline{a} \in \mathbb{A}_k^n \setminus \bigcup_j V(I_j)$. Then we have $\underline{a} \notin V(I_j)$ for all j. Therefore for all j there exists $f_j \in I_j$ such that $f_j(\underline{a}) \neq 0$. So let $f = f_1 f_2 \cdots f_m \in I_1 I_2 \cdots I_m$. Then

$$f(\underline{a}) = f_1(\underline{a}) f_2(\underline{a}) \cdots f_m(\underline{a}) \neq 0.$$

Therefore $\underline{a} \notin V(I_1 \cdot I_2 \cdots I_m)$. Hence what we have shown is

$$V(I_1) \cup V(I_2) \cup \dots \cup V(I_m) \subseteq V(I_1 \cap I_2 \cap \dots \cap I_m)$$
$$\subseteq V(I_1 I_2 \cdots I_m)$$
$$\subseteq V(I_1) \cup V(I_2) \cup \dots \cup V(I_m)$$

giving us equality at each stage.

(b) Again by Lemma 1.1.9, $\bigcap_{\lambda \in \Lambda} V(S_{\lambda}) = \bigcap_{\lambda \in \Lambda} V(I_{\lambda})$ since $V(S_{\lambda}) = V(I_{\lambda})$ for all $\lambda \in \Lambda$. Next we will show $\bigcap_{\lambda \in \Lambda} V(I_{\lambda}) = V(\sum_{\lambda \in \Lambda} I_{\lambda})$. We will first show (\supseteq) . Here we note

$$I_{\mu} \subseteq \sum_{\lambda \in \Lambda} I_{\lambda}$$
 for all $\mu \in \Lambda$

Hence $V(I_{\mu}) \supseteq V(\sum_{\lambda \in \Lambda} I_{\lambda})$ for all μ (again by Lemma 1.1.9). Therefore $\bigcap_{\mu} V(I_{\mu}) \supseteq V(\sum_{\lambda \in \Lambda} I_{\lambda})$. (\subseteq) Let $\underline{a} \in \bigcap_{\lambda \in \Lambda} V(I_{\lambda})$. Then $\underline{a} \in V(I_{\lambda})$ for all λ . Therefore for all $f_{\lambda} \in I_{\lambda}$, $f_{\lambda}(\underline{a}) = 0$. So let $f \in \sum_{\lambda \in \Lambda} I_{\lambda}$. Then

$$f = \sum_{\lambda \in \Lambda}^{\text{finite}} f_{\lambda}$$

where $f_{\lambda} \in I_{\lambda}$ for all λ . Therefore

$$f(\underline{a}) = \sum_{\lambda \in \Lambda} f_{\lambda} = \sum_{\lambda \in \Lambda} 0 = 0.$$

Hence $\underline{a} \in V(\sum_{\lambda \in \Lambda} I_{\lambda})$ as desired.

Now for the last equality we have

$$V\left(\bigcup_{\lambda\in\Lambda}S_{\lambda}\right) = V\left(\left(\bigcup_{\lambda\in\Lambda}S_{\lambda}\right)R\right) = V\left(\sum_{\lambda\in\Lambda}I_{\lambda}\right)$$

since $\left(\bigcup_{\lambda \in \Lambda} S_{\lambda}\right) R = \sum_{\lambda \in \Lambda} I_{\lambda}.$

Definition 1.1.13 A hypersurface in \mathbb{A}_k^n is a subset of the form V(f) for a single f.

Corollary 1.1.14 Let V be an algebraic subset. Then V is a finite intersection of hypersurfaces.

Proof: Since V is algebraic and, V = V(S) = V(I) where I = (S)R. The Hilbert Basis Theorem allows us to write $I = (f_1, f_2, \ldots, f_n)R$. Now apply V(-) to get:

$$V(I) = V(f_1, f_2, \dots, f_m)$$

= $V(f_1R + f_2R + \dots + f_mR)$
= $V(f_1R) \cap V(f_2R) \cap \dots \cap V(f_mR)$
= $V(f_1) \cap V(f_2) \cap \dots \cap V(f_m).$

Hence V is a finite intersection of hypersufaces.

<u>Notation</u>: Given $\underline{a} \in \mathbb{A}_k^n$, let $\mathfrak{m}_{\underline{a}} := (x_1 - a_1, x_2 - a_2, \dots, x_j - a_j, \dots, x_n - a_n)R$.

Fact 1.1.15 $\mathfrak{m}_{\underline{a}} \subseteq R$ is maximal because

$$\phi_{\underline{a}} : R \to k$$
$$: f \mapsto f(\underline{a})$$

is a ring epimorphism such that $\mathfrak{m}_{\underline{a}} = \operatorname{Ker}(\phi_{\underline{a}})$.

Proposition 1.1.16 $\{\underline{a}\} = V(\underline{\mathfrak{m}}_{\underline{a}}) = V(x_1 - a_2, x_2 - a_2, \dots, x_n - a_n)$. That is every singleton is algebraic.

Proof: First notice that by the Proposition 1.1.10 we have the second equality. So we will just show $\{\underline{a}\} = V(\mathfrak{m}_a)$.

 (\subseteq) Since \underline{a} satisfies $x_i - a_i$ for all i, we have $\underline{a} \in V(x_1 - a_1, x_2 - a_2, \dots, x_n - a_n)$ and $\{\underline{a}\} \subseteq V(x_1 - a_1, x_2 - a_2, \dots, x_n - a_n)$.

 (\supseteq) If $\underline{b} \in V(x_1 - a_1, x_2 - a_2, \dots, x_n - a_n)$, then \underline{b} satisfies $x_i - a_i$ for all i. Therefore

$$b_i - a_i = 0$$

$$\Rightarrow b_i = a_i \text{ for all } i$$

$$\Rightarrow b = a.$$

Hence $V(x_1 - a_1, x_2 - a_2, ..., x_n - a_n) \subseteq \{\underline{a}\}.$

Corollary 1.1.17 Every finite subset of \mathbb{A}_k^n is algebraic.

Proof: {algebraic subsets} contains all singletons and is closed under finite unions.

1.2 Zariski Topology

Definition 1.2.1 The Zariski Toplogy on \mathbb{A}_k^n .

- A subset $V \subseteq \mathbb{A}_k^n$ is *closed* if it is algebraic.
- A subset $U \subseteq \mathbb{A}_k^n$ is open if $\mathbb{A}_k^n \setminus U$ is closed, i.e. algebraic. A set is open if and only if its complement is an algebraic set.

<u>Notation</u>: For all $f \in R$, set $U_f := \{\underline{a} \in \mathbb{A}_k^n | f(\underline{a}) \neq 0\} = \mathbb{A}_k^n \setminus V(f)$. Therefore U_f is open in the Zariski Topology. These are "principal" open sets.

Theorem 1.2.2 The Zariski Toplogy is a topology.

Proof: \emptyset is algebraic and is closed in the Zariski Topology. Therefore $\emptyset^c = \mathbb{A}_k^n$ is open. Similarly \mathbb{A}_k^n is algebraic, hence closed. Thus $(\mathbb{A}_k^n)^c = \emptyset$ is open.

{algebraic sets} is closed under finite unions and arbitrary intersections. Thus {open sets} is closed under finite intersections and arbitrary unions by DeMorgan's laws.

Example 1.2.3 Zariski Toplogy on \mathbb{A}^1_k is "cofinite topology" where

 $\{\text{open sets}\} = \{\emptyset\} \cup \{\text{complement of finite sets}\}.$

See Example 1.1.7

Theorem 1.2.4 Every open set in \mathbb{A}_k^n is a finite union of sets of the form U_f .

Proof: Consider an open set $U = \mathbb{A}_h^n \setminus V(I)$. Then by Corollary 1.1.14

$$V(I) = V(f_1) \cap V(f_2) \cap \dots \cap V(f_m)$$

$$\Rightarrow U = \mathbb{A}_k^n \setminus V(I)$$

$$= (\mathbb{A}_k^n \setminus V(f_1)) \cap (\mathbb{A}_k^n \setminus V(f_2)) \cap \dots \cap (\mathbb{A}_k^n \setminus V(f_m))$$

$$= U_{f_1} \cup U_{f_2} \cup \dots \cup U_{f_m}.$$

Thus since U is an arbitrary open set, every open set is a finite union of sets of the form U_f .

Corollary 1.2.5 $\{U_f \mid f \in R\}$ is a basis for the Zariski topology in \mathbb{A}_k^n .

<u>Goal</u>: Open sets are really big (when k is infinite). See Theorem 1.2.8

If k is finite, then every subset of \mathbb{A}_k^n is finite, therefore closed and open by Corollary 1.1.17. Also, for all $\underline{a}, \underline{b} \in \mathbb{A}_k^n$ the sets $\{\underline{a}\}$ and $\{\underline{b}\}$ are open. Thus \mathbb{A}_k^n is Hausdorff in this case.

Fact 1.2.6 For all $f, g \in R, U_f \cap U_g = U_{fg}$.

Proof We note that since k is a field, it is also an integral domain. Therefore $f(\underline{a}) \cdot g(\underline{a}) \neq 0$ if and only if $f(\underline{a}) \neq 0$ and $g(\underline{a}) \neq 0$. Also $f(\underline{a}) \cdot g(\underline{a}) \neq 0$ if and only if $\underline{a} \in U_{fg}$. Another thing to notice is $f(\underline{a}) \neq 0$ and $g(\underline{a}) \neq 0$ if and only if $\underline{a} \in U_f \cap U_g$. Therefore $U_{fg} = U_f \cap U_g$.

Lemma 1.2.7 Assume that k is infinite and let $f, g \in R$. If $f(\underline{a}) \cdot g(\underline{a}) = 0$ for all $\underline{a} \in \mathbb{A}_k^n$, then $f \cdot g = 0$ in R. Therefore either f = 0 or g = 0.

Proof: We will use induction on n. Base Case: n = 1. A nonzero polynomial in $k[x_1]$ can only have a finite number of zeros.

Inductive Step: Assume that $n \ge 2$ and that the result holds for polynomials in $k[x_2, \ldots, x_n]$. Now write

$$f = f_0 + x_1 f_1 + x_1^2 f_2 + \dots + x_1^d f_d$$

$$g = g_0 + x_1 g_1 + x_1^2 g_2 + \dots + x_1^e g_e$$

such that all $f_i, g_i \in k[x_2, \ldots, x_n]$. Assume $f, g \neq 0$. Therefore assume $f_d \neq 0$ and $g_e \neq 0$. The induction hypothesis implies there exists $\underline{b} \in \mathbb{A}_k^{n-1}$ such that $f_d(\underline{b}) \cdot g_e(\underline{b}) \neq 0$. Hence

$$fg = f_0g_0 + \dots + f_dg_ex_1^{d+e}$$
 and $f(\underline{a}) \cdot g(\underline{a}) = 0$

for all $\underline{a} \in \mathbb{A}_k^n$. Therefore $h(x_1) := f(x_1, \underline{b}) \cdot g(x_1, \underline{b}) \in k[x_1]$ where h(c) = 0 for all $c \in k$. Hence h = 0. We also have

$$h(x_1) = f_0(\underline{b})g_0(\underline{b}) + f_1(\underline{b})g_1(\underline{b})x_1 + \dots + f_d(\underline{b})g_e(\underline{b})x_1^{d+e} \neq 0.$$

Therefore $h \neq 0$ contradicting the above statement that h = 0.

Theorem 1.2.8 Assume that k is infinite and let $U, U' \subseteq \mathbb{A}_k^n$ where both U, U' are open and non-empty. Then $U \cap U' \neq \emptyset$.

Proof: Using Theorem 1.2.4, we will write

$$U = U_{f_1} \cup U_{f_2} \cup \cdots \cup U_{f_m}$$
 and $U' = U_{g_1} \cup U_{g_2} \cup \cdots \cup U_{g_p}$

where each $U_{f_i}, U_{g_j} \neq \emptyset$. Note that $U \cap U' \supseteq U_{f_1} \cap U_{g_1} = U_{f_1g_1}$.

<u>Claim</u>: $U_{f_1g_1} \neq \emptyset$.

If $U_{f_1g_1} = \emptyset$, then for all $\underline{a} \in \mathbb{A}_k^n$: $f_1(\underline{a})g_1(\underline{a}) = 0$. Therefore Lemma 1.2.7 implies $f_1 = 0$ or $g_1 = 0$. But this implies that $U_{f_1} = \emptyset$ or $U_{g_1} = \emptyset$ which contradicts that $U_{f_1}, U_{g_1} \neq \emptyset$.

Corollary 1.2.9 If k is infinite, then \mathbb{A}_k^n is <u>not</u> Hausdorff.

Fact 1.2.10 If $\underline{a}, \underline{b} \in \mathbb{A}_k^n$ such that $\underline{a} \neq \underline{b}$, then there exists a neighborhood U of \underline{a} such that $\underline{b} \notin U$.

Proof: Let $a_i \neq b_i$ for some *i*. Then <u>b</u> satisfies $x_i - b_i$, but <u>a</u> does not. Thus $\underline{a} \in U_{x_i - b_i}$ and $\underline{b} \notin U_{x_i - b_i}$.

1.3 Geometric Ideals

Definition 1.3.1 Given $V \subseteq \mathbb{A}_k^n$ (any subset) $I(V) = (\{f \in R \mid f(\underline{a}) = 0 \forall \underline{a} \in V\})R$. We write $I(\underline{a_1}, \underline{a_2}, \dots) := I(\{\underline{a_1}, \underline{a_2}, \dots\}).$

Example 1.3.2 $I(\emptyset) = R$, $I(\underline{a}) = \mathfrak{m}_a$. If k is infinite then $I(\mathbb{A}_k^n) = 0$.

Proposition 1.3.3 (a) I(V) is an ideal of R.

(b) If $V \subseteq V'$, then $I(V) \supseteq I(V')$. (c) $I(V_1 \cup V_2 \cup \cdots \cup V_m) = I(V_1) \cap I(V_2) \cap \cdots \cap I(V_m)$. (d) $I(\bigcap_{\lambda \in \Lambda} V_\lambda) \supseteq \sum_{\lambda \in \Lambda} I(V_\lambda)$. (e) $\operatorname{rad}(I(V)) = I(V)$.

Proof: (a) and (b) are left as exercises. (c) (\subseteq) We first note

$$V_1 \cup V_2 \cup \cdots \cup V_m \supseteq V_j.$$

So by part (b) we know $I(V_1 \cup V_2 \cup \cdots \cup V_m) \subseteq I(V_j)$. Therefore $I(V_1 \cup V_2 \cup \cdots \cup V_m) \subseteq \bigcap_{i=1}^m I(V_i)$.

 (\supseteq) Let $f \in I(V_1) \cap I(V_2) \cap \cdots \cap I(V_m)$. Then $f \in I(V_j)$ for all j. Therefore for all $\underline{a} \in V_j$, $f(\underline{a}) = 0$ for all j. Hence for all $\underline{a} \in V_1 \cup V_2 \cup \cdots \cup V_m$, $f(\underline{a}) = 0$. Thus

$$f \in I(V_1 \cup V_2 \cup \cdots \cup V_m).$$

(d) First note that $\bigcap_{\lambda \in \Lambda} V_{\lambda} \subseteq V_{\mu}$ for all $\mu \in \Lambda$. Therefore by part (b)

$$I\left(\bigcap_{\lambda\in\Lambda}I_{\lambda}\right)\supseteq I(V_{\mu}).$$

Therefore $I(\bigcap_{\lambda \in \Lambda} V_{\lambda}) \supseteq \sum_{\lambda \in \Lambda} I(V_{\lambda}).$

(e) (\supseteq) rad(J) $\supseteq J$

 (\subseteq) Let $f \in rad(I(V))$. Then there exists m such that $f^m \in I(V)$. Therefore for all $\underline{a} \in V$:

$$f^{m}(\underline{a}) = 0$$
$$(f(\underline{a}))^{m} = 0 \text{ in } k.$$

Therefore $f(\underline{a}) = 0$ and $f \in I(V)$.

Proposition 1.3.4 Let $I \subseteq R$ be an ideal:

- (a) $I \subseteq I(V(I))$.
- (b) $V \subseteq V(I(V))$.
- (c) $\operatorname{rad}(I) \subseteq I(V(I)).$
- (d) $\overline{V} \subseteq V(I(V))$.

Proof: 1. Let $f \in I$. Then by definition for all $\underline{a} \in V(I)$, we have $f(\underline{a}) = 0$. Note that $g \in I(V(I))$ if and only if $g(\underline{a}) = 0$ for all $\underline{a} \in \mathbb{A}_k^n$. Therefore $f \in I(V(I))$ and $I \subseteq I(V(I))$. 2. is proved similarly.

3. Let $I \subseteq I(V(I))$. Then $\operatorname{rad}(I) \subseteq \operatorname{rad}(I(V(I)) = I(V(I))$.

4. \overline{V} is the closure of V in \mathbb{A}^n_k which is the intersection of all closed subsets of \mathbb{A}^n_k containing V. Also \overline{V} is the unique smallest closed subset of \mathbb{A}^n_k containing V.

So V(I(V)) is a closed subset of \mathbb{A}^n_k containing V and \overline{V} is the unique smallest such subset. So $\overline{V} \subseteq V(I(V))$.

Proposition 1.3.5 $\overline{V} = V(I(V))$.

Proof: In Proposition 1.3.4 we proved that $\overline{V} \subseteq V(I(V))$. So we only need to show the reverse containment. For this, we notice that since \overline{V} is a closed set we can write $\overline{V} = V(J)$. Hence

$$V \subseteq \overline{V} = V(J) \Rightarrow I(V) \supseteq I(\overline{V}) = I(V(J)) \supseteq J.$$

Therefore $V(I(V)) \subseteq V(J) = \overline{V}$.

Proposition 1.3.6 I(V(I(V))) = I(V).

Proof: (\supseteq) By Proposition 1.3.4 (a) we have $I(V(I(V))) \supseteq I(V)$.

 (\subseteq) By Proposition 1.3.4 (b) we have $V(I(V)) \supseteq V$. This implies $I(V(I(V))) \subseteq I(V)$.

Proposition 1.3.7 V(I(V(I))) = V(I).

Proof: Same proof as Proposition 1.3.6.

1.4 Hilbert's Nullstellensatz

Theorem 1.4.1 (Hilbert's Nullstellensatz) Assume that $k = \overline{k}$:

- (a) $I(V(I)) = \operatorname{rad}(I)$.
- (b) The only maximal ideals of $R = k[x_1, \ldots, x_n]$ are the $\mathfrak{m}_{\underline{a}}$ with $\underline{a} \in \mathbb{A}_k^n$. i.e.

```
 \mathbb{A}^n_k \longrightarrow \operatorname{m-Spec}(R) = \{ maximal \ ideals \ of \ R \} \underline{a} \longmapsto \mathfrak{m}_{\underline{a}}
```

is onto.

Proof: Maybe later.

Corollary 1.4.2 Assume that $k = \overline{k}$:

- (a) {algebraic subsets of \mathbb{A}^n_k } \rightleftharpoons {radical ideals of R}. Under this correspondence: { \underline{a} } \rightleftharpoons $\mathfrak{m}_{\underline{a}}$.
- (b) If $I \neq R$, then $V(I) \neq \emptyset$.

Proof: We know

$$V \xrightarrow{} I(V)$$
$$V(I) \xleftarrow{} I$$

are well-defined. So we only need to check that they are inverses. By Proposition 1.3.7:

and for the other direction we have:

(b) If $I \neq R$, then $I(V(R)) = \operatorname{rad}(I) \neq R$. So if $V(I) = \emptyset$, then $I(V(I)) = I(\emptyset) = R$ contradicting that $I(V(R)) \neq R$.

Example 1.4.3 $(k = \overline{k} \text{ is needed})$ Let $k = \mathbb{R}$ and $\mathfrak{m} = (x^2 + 1) \subseteq R = k[x]$. Then $k[x]/(x^2 + 1) \cong \mathbb{C}$

which is a field. Therefore \mathfrak{m} is a maximal ideal. But $I(V(\mathfrak{m})) = I(\emptyset) = R \neq \mathfrak{m} = \operatorname{rad}(\mathfrak{m})$.

1.5 Irreducible Closed Subsets

Definition 1.5.1 Let X be a topological space and $V \subseteq X$ a non-empty closed subset. Then V is *irreducible* if it can not be written as a union of two closed subsets properly contained in V.

Example 1.5.2 $\{\underline{a}\} \subseteq \mathbb{A}_k^n$ is irreducible. For $\underline{a} \neq \underline{b}$, the set $\{\underline{a}, \underline{b}\}$ is not irreducible since $\{\underline{a}, \underline{b}\} = \{\underline{a}\} \cup \{\underline{b}\}.$

Proviso 1.5.3 If V is not closed, then we need a modified definition.

Fact 1.5.4 If $V \subseteq \mathbb{A}_k^n$ is an algebraic subset, then V(I(V)) = V.

Proof: Apply Proposition 1.3.5.

Theorem 1.5.5 Let $V \subseteq \mathbb{A}_k^n$ be a closed subset. Then V is irreducible if and only if I(V) is prime.

Proof: (\Rightarrow) Assume that V is irreducible. Then $V \neq \emptyset$ and hence $I(V) \neq R$. Let $f, g \in R$ such that $fg \in I(V)$. Now define

$$J := I(V) + fR$$
$$K := I(V) + gR.$$

Note that $JK \subseteq I(V) \subseteq J \cap K$ since:

$$JK = \underbrace{I(V)^2 + f \cdot I(V) + g \cdot I(V)}_{\subseteq I(V)} + \underbrace{f \cdot gR}_{\subseteq I(V)} \subseteq I(V).$$

Also note that $J = I(V) + fR \supseteq I(V)$. Similarly $K \supseteq I(V)$. Hence $J \cap K \supseteq I(V)$ and thus

 $V(JK) \supseteq V(I(V)) \supseteq V(J \cap K).$

But $V(JK) = V(J) \cup V(K)$, V(I(V)) = V, and $V(J \cap K) = V(J) \cup V(K)$. Therefore

$$V(J) \cup V(K) \supseteq V \supseteq V(J) \cup V(K).$$

So $V = V(J) \cup V(K)$. Since V is irreducible V = V(J) or V = V(K). Thus $I(V) = I(V(J)) \supseteq J$ $(f \in J)$ or $I(V) = I(V(K)) \supseteq K$ $(g \in K)$. So if $fg \in I(V)$ then either $f \in I(V)$ or $g \in I(V)$ and I(V) is prime.

 (\Leftarrow) Assume that I(V) is prime. To show V is irreducible, let V_1 and V_2 be closed non-empty subsets such that $V = V_1 \cup V_2$. We need to show that $V = V_1$ or $V = V_2$. Note that for $\mathfrak{p} = I(V)$

$$V(\mathfrak{p}) = V = V_1 \cup V_2 = V(I_1) \cup V(I_2) = V(I_1 \cdot I_2)$$

So $\mathfrak{p} = I(V) = I(V(I_1 \cdot I_2)) \supseteq I_1 \cdot I_2$. Since \mathfrak{p} is prime: $\mathfrak{p} \supseteq I_j$ for some j. Therefore

$$V_i \subseteq V_1 \cup V_2 = V = V(\mathfrak{p}) \subseteq V(I_i) = V_i.$$

Thus $V = V_j = V(I_j)$ and V is irreducible.

Corollary 1.5.6 If $k = \overline{k}$ and $\mathfrak{p} \subseteq R$ is prime, then $V(\mathfrak{p})$ is irreducible.

Proof: By Theorem 1.4.1 (Hilbert's Nullstellensatz) $\mathfrak{p} = I(V(\mathfrak{p}))$. Because \mathfrak{p} is prime $I(V(\mathfrak{p}))$ is prime. Hence $V(\mathfrak{p})$ is irreducible by Theorem 1.5.5.

Question 1.5.7 If k is infinite and $\mathfrak{p} \subset R$ is prime, then $V(\mathfrak{p})$ is irreducible?

Example 1.5.8 Let $R = \mathbb{R}[X, Y]$. Set $f = Y^2 + X^2(X - 1)^2 \in R$.

Claim 1: $(f)R \subset R$ is prime.

<u>Claim 2</u>: $V(f) = \{(0,0), (1,0)\}$ is not irreducible.

2. Notice that $(a,b) \in V(f)$ if and only if b = 0 and a(a-1) = 0 if and only if (a,b) = (0,0) or (1,0).

1. Here we note that R is a UFD. Therefore we need to prove that f is irreducible. Let $f = \alpha \beta$. Since deg_V(f) = 2 we have two possibilities:

(a) $\deg_V(\alpha) = 2$ and $\deg_V(\beta) = 0$.

(b) $\deg_Y(\alpha) = 1$ and $\deg_Y(\beta) = 1$.

(a)
$$\deg_Y(\alpha) = 2$$
: write $\alpha = \alpha_0(X) + \alpha_1(X)Y + \alpha_2(X)Y^2$ and $\beta = \beta(X)$. Then

$$f = \alpha\beta = \beta(X)\alpha_0(X) + \beta(X)\alpha_1(X)Y + \beta(X)\alpha_2(X)Y^2.$$

 \mathbf{So}

$$\beta(X)\alpha_0(X) = X^2(X-1)^2$$

$$\alpha_1(X)\beta(X) = 0$$

$$\alpha_2(X)\beta(X) = 1.$$

The last line implies that β is constant and hence a unit.

(b)
$$\deg_Y(\alpha) = \deg_Y(\beta) = 1$$
: write $\alpha = \alpha_0(X) + \alpha_1(X)Y$ and $\beta = \beta_0(X) + \beta_1(X)Y$. Then
 $f = \alpha\beta = \alpha_0(X)\beta_0(X) + (\alpha_0(X)\beta_1(X) + \alpha_1(X)\beta_0(X))Y + \alpha_1(X)\beta_1(X)Y^2$

and so

$$\alpha_0(X)\beta_0(X) = X^2(X-1)^2 \alpha_1(X)\beta_1(X) = 1 \alpha_0(X)\beta_1(X) + \alpha_1(X)\beta_0(X) = 0.$$

The second line implies that α_1 and β_1 are both nonzero constants. Also the third line implies that $\beta_0 = -\alpha_1^{-1}\alpha_0\beta_1$ where both α_1^{-1} and β_1 are constants. Now the first line implies

$$(X(X-1))^{2} = \alpha_{0}(X) \left(0\alpha_{1}^{-1}\beta_{1}\right) \alpha_{0}(X)$$

= $-\beta_{1}^{2}\alpha_{0}(x)^{2}.$

Now evaluate at x = -1 to see the left hand side is > 0 and the right hand side is ≤ 0 which is a contradiction. Therefore f is irreducible.

So the answer to the Question 1.5.7 is no.

Proposition 1.5.9 If k is finite, then the only irreducible subsets of \mathbb{A}_k^n are $\{\underline{a}\}$.

Proof: Let $\emptyset \neq V \subseteq \mathbb{A}_k^n$ be closed such that $|V| \ge 2$. Note that $|V| < \infty$ because $|k| < \infty$. Also every subset of \mathbb{A}_k^n is closed. So

$$V = \{\underline{a}\} \cup (V \setminus \{\underline{a}\}) \text{ for all } \underline{a} \in V.$$

So V is the union of proper closed subsets.

Corollary 1.5.10 Let k be finite, then \mathbb{A}_k^n is reducible.

Proposition 1.5.11 If k is infinite, then \mathbb{A}_k^n is irreducible.

Proof: Suppose that $\mathbb{A}_k^n = V(I) \cup V(J)$ such that $V(I) \neq \mathbb{A}_k^n$ and $V(J) \neq \mathbb{A}_k^n$. Therefore $I \neq 0$ and $J \neq 0$. So there exists nonzero elements $f \in I$ and $g \in J$.

<u>Claim</u>: $\mathbb{A}_k^n = V(f) \cup V(g).$

 $f \in I$ implies that $V(f) \supseteq V(I)$. Similarly $V(g) \supseteq V(J)$. So

$$\mathbb{A}^n_k = V(I) \cup V(J) \subseteq V(f) \cup V(g) \subseteq \mathbb{A}^n_k$$

Now for all $\underline{a} \in \mathbb{A}_k^n$: $f(\underline{a}) = 0$ or $g(\underline{a}) = 0$. Therefore for all $\underline{a} \in \mathbb{A}_k^n$:

$$f(\underline{a})g(\underline{a}) = 0.$$

If $|k| = \infty$, then f = 0 or g = 0 by Lemma 1.2.7 contradicting that $0 \neq f, g$.

Corollary 1.5.12 If k is infinite, then k^n can not be written as a finite union of proper subspaces.

Lemma 1.5.13 Let X be a topological space. The following are equivalent:

- (i) Open sets satisfy the ascending chain condition.
- (ii) Closed sets satisfy the descending chain condition.

Proof: Exercise

Definition 1.5.14 X is *noetherian* if the closed sets satisfy the descending chain condition.

Theorem 1.5.15 \mathbb{A}^n_k is noetherian.

Proof: Let $V_1 \supseteq V_2 \supseteq \ldots$ be a descending chain of closed subsets in \mathbb{A}^n_k . Now apply I(-): $I(V_1) \subseteq I(V_2) \subseteq \ldots$

to get an ascending chain of ideals in $R = k[x_1, x_2, \dots, x_m]$. Since R is noetherian the above ascending chain must stabilize. Hence $I(V_j) = I(V_{j+1}) = \cdots$ for some j. Note that by Fact 1.5.4

$$V_j = V(I(V_j)) = V(I(V_{j+1})) = V_{j+1}.$$

Therefore the original chain must stabilize as well.

Fact 1.5.16 If X is a noetherian topological space, then every closed subset of X is noetherian and so is every open subset.

Lemma 1.5.17 Let X be a topological space. The following are equivalent:

- (i) X is noetherian.
- (ii) Every non-empty set of closed subsets of X has a minimal element.
- (iii) Every non-empty set of open subsets of X has a maximal element.

Proof: Exercise

Theorem 1.5.18 Let X be a noetherian topological space. Then every non-empty closed subset of X is a finite union of irreducible non-empty closed subsets.

Proof: Suppose not. Then there exists a non-empty closed subset $V \subseteq X$ that is <u>not</u> a finite union of irreducible closed subsets (therefore reducible). Now define

 $\Sigma := \{\text{non-empty closed subsets of } X \text{ not a finite union of irreducible closed subsets} \}.$

Note that $\Sigma \neq \emptyset$ is a set of closed subsets. Let $W \in \Sigma$ be a minimal element. Then W is reducible. Therefore there exists closed subsets $V_1, V_2 \subseteq X$ such that $V_i \subsetneq W$ and $W = V_1 \cup V_2$. W is minimal in Σ and $V_i \subsetneq W$ is closed. Therefore $V_i \notin \Sigma$ and thus

$$V_i = V_{i,1} \cup V_{i,2} \cup \dots \cup V_{i,m_i}$$

where $V_{i,j}$ is irreducible. $W = V_1 \cup V_2$ is a finite union of closed irreducible subsets contradicting our assumption.

Corollary 1.5.19 Every non-empty closed subset of \mathbb{A}_k^n is a finite union of irreducible closed subsets.

Proof: Apply Theorems 1.5.15 and 1.5.18.

Theorem 1.5.20 (Uniqueness) Let $V_1, \ldots, V_m, V'_1, \ldots, V'_{m'} \in \mathbb{A}^n_k$ be irreducible and closed such that $V_i \not\subseteq V_j$ for all $i \neq j$ and $V'_i \not\subseteq V'_j$ for all $i \neq j$ and $V_1 \cup \cdots \cup V_m = V'_1 \cup \cdots \cup V'_{m'}$. Then m = m' and there exists $\sigma \in S_m$ such that for all $i = 1, \ldots, m$: $V'_{\sigma(i)} = V_i$. This decomposition is called an irreducible decomposition of V or a minimal irreducible decomposition of V.

Proof: We first note that $V_1 \subseteq V_1 \cup \cdots \cup V_m = V'_1 \cup \cdots \cup V'_{m'}$. Then

$$V_1 = (V'_1 \cup \dots \cup V'_{m'}) \cap V_1 = (V'_1 \cap V_1) \cup \dots \cup (V'_{m'} \cap V_1).$$

Since V_1 is irreducible and $V'_i \cap V_1$ is closed we have $V_1 = V'_i \cap V_1 \subseteq V'_i$ for some *i*. By symmetry, there exists *j* such that $V'_i \subseteq V_j$. But no containments for the *V*'s implies j = 1 and hence $V'_i = V_1$. Now rearrange the *V*'s to assume $V_1 = V'_1$.

Similarly $V_2 = V'_{\ell}$ for some ℓ . If $\ell = 1$, then $V_2 = V'_1 = V_1$ which is a **contradiction**. Therefore $\ell \ge 2$. Again we can rearrange, so assume that $V_2 = V'_2$.

For p = 1, ..., m we use a similar argument and a rearrangement will give us $V_p = V'_p$. Therefore $m \leq m'$. Symmetrically $m' \leq m$ and hence m = m'. Thus $V_p = V'_p$ for all p.

Fact 1.5.21 $V \neq \emptyset$ closed in \mathbb{A}_k^n implies that V has an irredundant irreducible decomposition. (Remove redundancies from a given irreducible decomposition.)

Definition 1.5.22 The V_i that occur in an irredundant irreducible decomposition of V are the *irreducible components* of V.

Definition 1.5.23 Let X be a topological space and $V \subseteq X$ be closed. The Krull dimension of V is

 $\dim(V) := \sup\{m \ge 0 \mid \exists V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_m \subseteq V \text{ such that each } V_i \text{ is closed and irreducible}\}.$

Definition 1.5.24 Let S be a commutative ring with identity. The *Krull dimension* of S is

 $\dim(S) := \sup\{m \ge 0 \mid \text{there exists } \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_m \text{ primes in } S\}$

Theorem 1.5.25 Let $V \subseteq \mathbb{A}_k^n$ be closed, $V \neq \emptyset$ and $R = k[x_1, \ldots, x_n]$. Then

$$\dim(V) \leqslant \dim(R/I(V)).$$

If $k = \overline{k}$, then equality holds.

Proof: Let $V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_m \subseteq V$ be such that each V_i is irreducible and closed. Then $I(V_0) \supseteq I(V_1) \supseteq \cdots \supseteq I(V_m) \supseteq I(V)$. Recall that V_i is irreducible if and only if $I(V_i)$ is prime (Theorem 1.5.5). Note $I(V_i) \subseteq R$. So

$$\frac{I(V_0)}{I(V)} \supseteq \dots \supseteq \frac{I(V_m)}{I(V)}$$

is a chain of prime ideals in R/I(V). Then $\frac{I(V_j)}{I(V)} \supseteq \frac{I(V_{j+i})}{I(V)}$ if and only if $I(V_j) \supseteq I(V_{j+1})$. Suppose that $I(V_j) = I(V_{j+1})$. Then $V_j = V(I(V_j)) = V(I(V_{j+1})) = V_{j+1}$. Hence $V_j = V_{j+1}$ contradicting our assumptions. Thus

$$I(V_0) \supseteq I(V_1) \supseteq \cdots \supseteq I(V_m) \supseteq I(V).$$

Therefore $\dim(R/I(V)) \ge m$ and thus $\dim(R/I(V)) \ge \dim(V)$.

For the last statement assume that $k = \overline{k}$. Let $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_m$ be prime ideals in R/I(V). Then $\mathfrak{p}_i = P_i/I(V)$ where $P_i \subseteq R$ is a prime ideal containing I(V). Now the above chain of prime ideals gives us the following chain of prime ideals:

$$I(V) \subseteq P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_m.$$

Therefore $V = V(I(V)) \supseteq V(P_0) \supseteq \cdots \supseteq V(P_m)$. Corollary 1.5.6 tells us $V(P_j)$ is irreducible. Now by the Nullstellensatz (Theorem 1.4.1):

$$I(V(P_j)) = \operatorname{rad}(P_j) = P_j \subsetneq P_{j+1} = I(V(P_{j+1}))$$

Therefore $V(P_j) \supseteq V(P_{j+1})$.

Example 1.5.26 If $k = \overline{k}$, then $\dim(\mathbb{A}_k^n) = \dim(k[x_1, \ldots, x_n]) = n$. If $|k| < \infty$, then $\dim(\mathbb{A}_k^n) = 0 < n$ since the only irreducible closed subsets are $\{\underline{a}\}$.

Fact 1.5.27 If $|k| = \infty$, then dim $(\mathbb{A}_k^n) = n$.

Sketch of Proof: It suffices to show \mathbb{A}_k^m is irreducible for all m. But this is true by Proposition 1.5.11.

Definition 1.5.28 R/I(V) is called the *coordinate ring* for V. This is also known as the *ring of regular functions* on V. Given $\overline{f} \in R/I(V)$, then \overline{f} defines a well-defined function $V \to k$.

1.6 Finding Irreducible Components

Question 1.6.1 How do we find irreducible components?

Definition 1.6.2 Let A be a commutative ring with identity. An ideal $I \subsetneq A$ is *irreducible* if it can not be written as an intersection of ideals non-trivially, i.e. for all ideals $J, K \subseteq A$, if $I = J \cap K$, then I = J or I = K.

Example 1.6.3 If $I \subsetneq A$ is prime, then I is irreducible.

Proof: Let $P \subset A$ be prime. Suppose that $P = J \cap K \supseteq JK$. Since P is prime we have that either $P \supseteq J$ or $P \supseteq K$. Hence

$$P = \underbrace{J \cap K}_{\subset K} \subseteq J$$

If $P \supseteq J$, then $J \subseteq P = J \cap K \subseteq J$, hence P = J. Similarly if $P \supseteq K$, then P = K. Therefore either P = J or P = K.

Proposition 1.6.4 Let A be a noetherian ring and let $I \subset A$ be irreducible. Then for all $x, y \in A$ if $xy \in I$, then either $x \in I$ or there exists $m \ge 1$ such that $y^m \in I$. (This says that I is "primary").

Proof: Assume that I is irreducible and let $x, y \in A$ such that $xy \in I$. Now consider the colon ideals

$$(I:y) \subseteq (I:y^2) \subseteq (I:y^3) \subseteq \cdots$$

Since A is noetherian, the above chain must stabilize. Therefore for some $m \ge 1$ we must have $(I: y^m) = (I: y^{m+1})$.

<u>Claim</u>: $(I + xA) \cap (I + y^m A) = I$.

 (\supseteq) Note that $I + xA \supseteq I$ and $I + y^mA \supseteq I$. Therefore $(I + xA) \cap (I + y^mA) \supseteq I$.

 (\subseteq) Let $\alpha \in (I + xA) \cap (I + y^m)A)$. Then we can write

(

$$\alpha = i + xr \quad \text{for } i \in I, r \in A \tag{1.1}$$

$$\alpha = j + y^m s \quad \text{for } j \in I, s \in A. \tag{1.2}$$

Multiplying (1.1) by y we see $\alpha y = iy + xry \in I$ since $\alpha y \in I$ and $xry \in I$ because $xy \in I$.

Multiplying (1.2) by y we see $\alpha y = jy + y^m sy = jy + y^{m+1}s$. Note that $y^{m+1}s = \alpha y - jy \in I$. Therefore $s \in (I : y^{m+1}) = (I : y^m)$ and hence $\alpha = j + y^m s \in I$. Thus $(I + xA) \cap (I + y^mA) \subseteq I$.

Now since I is irreducible, we have $I = I + xA \ni x$ or $I = I + y^mA \ni y^m$.

Proposition 1.6.5 Let A be noetherian and $I \subseteq A$ be an ideal. Then I is prime if and only if I is irreducible and I = rad(I).

Proof: (\Rightarrow) Let *I* be a prime ideal. Then by Example 1.6.3 we have that *I* is irreducible. Now, since *I* is prime we also have that $I = \operatorname{rad}(I)$.

 (\Leftarrow) Assume that $I = \operatorname{rad}(I)$ is irreducible. To show that I is prime, let $x, y \in A$ such that $xy \in I$. Since I is irreducible Proposition 1.6.4 implies that $x \in I$ or $y^m \in I$ for some m. But since $I = \operatorname{rad}(I)$ it follows that $x \in I$ or $y \in I$. Hence I is prime.

Proposition 1.6.6 Let A be noetherian and $I \subset A$ be an irreducible ideal. Then rad(I) is prime.

Proof: Since $I \neq A$ we have $\operatorname{rad}(I) \neq A$. Let $x, y \in A$ such that $xy \in \operatorname{rad}(I)$. Then $x^m y^m \in I$ for some m. Proposition 1.6.5 implies that $x^m \in I$ or $y^{ml} \in I$. Therefore $x \in \operatorname{rad}(I)$ or $y \in \operatorname{rad}(I)$. Hence $\operatorname{rad}(I)$ is prime.

Fact 1.6.7 If $I \subseteq A$ is an irreducible ideal and $I = J_1 \cap J_2 \cap \cdots \cap J_m$, then $I = J_i$ for some *i*.

Proof: Use induction on m along with the definition of I being irreducible.

Definition 1.6.8 A *irreducible decomposition* of an ideal is a decomposition $I = Q_1 \cap Q_2 \cap \cdots \cap Q_m$ such that each Q_i is irreducible. Such a decomposition is *irreduntant* if it has no redundancies: if $i \neq j$, then $Q_i \not\subseteq Q_j$.

Proposition 1.6.9 If A is noetherian and $I \subseteq A$ is an ideal, then I has an irredundant irreducible decomposition. Moreover if the Q_i 's are prime, then the Q_i 's in the irreducible decomposition are unique (up to order).

Proof: Step 1: Every ideal in A has an irreducible decomposition.

Assume there exists an ideal in A that does not have an irreducible decomposition. Then let

 $\Sigma = \{ \text{ideals } I \text{ that do not have an irreducible decomposition} \}.$

Then $\Sigma \neq 0$ is a collection of ideals. Since A is noetherian, Σ has a maximal element I. Then I is not irreducible (if I were irreducible, then I = I is an irreducible decomposition). Therefore there exists ideals J, K such that $I = J \cap K$ and $I \neq J$ and $I \neq K$. Then $I \subsetneq J$ and $I \subsetneq K$. Since I is maximal in Σ we have $J, K \notin \Sigma$. Then we can write

$$J = Q_1 \cap \dots \cap Q_m$$
$$K = L_1 \cap \dots \cap L_t$$

as irreducible decompositions. This implies that

$$I = J \cap K = Q_1 \cdots \cap Q_m \cap L_1 \cap \cdots \cap L_t$$

is an irreducible decomposition contradicting that I does not have an irreducible decomposition.

Step 2: If $I = Q_1 \cap \cdots \cap Q_m$ is an irreducible decomposition, then the Q_i 's can be reordered so that there exists t such that

$$I = Q_1 \cap \dots \cap Q_t$$

is irredundant.

If $Q_1 \cap \cdots \cap Q_m$ is irredundant, then we are done. If not, then there exists $i \neq j$ such that $Q_i \subseteq Q_j$. Reorder to assume $Q_i \subseteq Q_m$. Then

$$I = Q_1 \cap \cdots \cap Q_{m-1} \cap Q_m = Q_1 \cap \cdots \cap Q_{m-1}.$$

This process terminates in a finite number of steps because $m < \infty$.

Step 3: Uniqueness when irredundant and each Q_i is prime.

Suppose that

$$I = Q_1 \cap \dots \cap Q_m = L_1 \cap \dots \cap L_t$$

are irredundant decompositions such that all Q_i and L_i are prime. Then

$$L_1 \cap \cdots \cap L_t = Q_1 \cap \cdots \cap Q_m \subseteq Q_1.$$

Since Q_1 is prime there exists j such that $Q_1 \supseteq L_j$. Similarly there exists i such that $L_j \supseteq Q_i$ because L_j is prime. Note that the decomposition $Q_1 \cap \cdots \cap Q_m$ is irredundant, so we must have i = 1 and hence $Q_1 = L_j$. Now reorder the L's to assume that $Q_1 = L_1$. Similarly there exists s such that $Q_2 = L_s$. Note that $s \neq 1$ because then $Q_2 = L_1 = Q_1$ which is a redundancy. Therefore assume s = 2. Similarly reorder the L's to get $L_i = Q_i$ for $i = 1, \ldots, m$. This implies that $m \leq t$. By symmetry $t \leq m$.

We note that the Q_i 's must be prime in order to have uniqueness for irredundant decompositions. Consider the following example.

Example 1.6.10 Consider the ideal $(x^2, xy^2) \in k[x, y]$. Note that this is an ideal such that

 $(y+x,x^2) \cap (x,(y+x)^2) = (x^2,xy^2) = (y,x^2) \cap (x,y^2).$

Note that both decompositions are irredundant, but $(y + x, x^2) \neq (y, x^2) \neq (x, (y + x)^2)$ and $(y + x, x^2) \neq (x, y^2) \neq (x, (y + x)^2)$. So uniqueness fails.

Proposition 1.6.11 Let A be a commutative ring with identity and let $I \subseteq A$ be an ideal. Then

- (a) I = rad(I) if and only if $I = P_1 \cap \cdots \cap P_m$ for some primes P_i .
- (b) If I = rad(I), then I has a unique irredundant prime decomposition (up to reordering).

Proof: (a) (\Rightarrow) Let $I = Q_1 \cap \cdots \cap Q_m$ be an irreducible decomposition. Then

$$I = \operatorname{rad}(I) = \operatorname{rad}(Q_1 \cap \cdots \cap Q_m) = \operatorname{rad}(Q_1) \cap \cdots \cap \operatorname{rad}(Q_m)$$

Then by Proposition 1.6.6 each $rad(Q_i)$ is prime.

 (\Leftarrow) Let $I = P_1 \cap \cdots \cap P_m$ where P_i is prime. Then

$$\operatorname{rad}(I) = \operatorname{rad}(P_1 \cap \dots \cap P_m)$$
$$= \operatorname{rad}(P_1) \cap \dots \cap \operatorname{rad}(P_m)$$
$$= P_1 \cap \dots \cap P_m$$
$$= I.$$

(b) Part (a) implies that I has a prime decomposition. Remove the redundancies to get an irredundant prime decomposition. Then Proposition 1.6.9 implies the decomposition is unique.

Now: How do we find irreducible components of V = V(I)?

Proposition 1.6.12 Assume $k = \overline{k}$, and let $I = \operatorname{rad}(I) = P_1 \cap \cdots \cap P_m$ be an irredundant prime decomposition. Then the irreducible components of $V(I) \subseteq \mathbb{A}_k^n$ are $V(P_1), \ldots, V(P_m)$.

Proof: We first have

$$V(I) = V(P_1 \cap \cdots \cap P_m) = V(P_1) \cup \cdots \cup V(P_m).$$

Then Theorem 1.4.1 (Hilbert's Nullstellensatz) implies that $I(V(P_i)) = \operatorname{rad}(P_i) = P_i$ for all *i*. Therefore $V(P_i)$ is irreducible for all *i*.

Next we check that this decomposition is irredundant. If $V(P_i) \subseteq V(P_j)$ for some $i \neq j$, then

$$\underbrace{I(V(P_i))}_{=P_i} \supseteq \underbrace{I(V(P_j))}_{=P_j}$$

But this contradicts the original irredundancy.

Example 1.6.13 Assume $k = \overline{k}$ and consider $V(xy, yz) \subseteq \mathbb{A}^3_k$. Then $I = (xy, yz)R = (x, z)R \cap (y)R$ is an irredundant prime decomposition. Therefore the components of V(I) are V(x, z) and V(y).

Proposition 1.6.14 Let $k = \overline{k}$ and $I \subseteq R$ (not necessarily = rad(I)). Let $I = Q_1 \cap \cdots \cap Q_m$ be an irreducible decomposition, and consider

$$\operatorname{rad}(I) = \operatorname{rad}(Q_1) \cap \cdots \cap \operatorname{rad}(Q_m) = P_1 \cap \cdots \cap P_t.$$

In the last expression, we have removed the redundancies and reordered the ideals, and we have $t \leq m$. Then the irreducible components of V(I) = V(rad(I)) are $V(P_1), \ldots, V(P_t)$.

Proof: Apply Proposition 1.6.12.

Fact 1.6.15 In $R = k[x_1, \ldots, x_n]$ each ideal $(x_{i_1}^{e_{i_1}}, \ldots, x_{i_m}^{e_{i_m}}) R = J$ where $e_{i_j} \ge 1$ is irreducible such that $\operatorname{rad}(J) = (x_{i_1}, \ldots, x_{i_m}) R$.

Example 1.6.16 Assume $k = \overline{k}$ and consider $I = (x^2, y) \cap (x, z^3) \cap (y^2, z^4)$.

$$\operatorname{rad}(I) = \operatorname{rad}(x^2, y)R \cap \operatorname{rad}(x, z^3) \cap \operatorname{rad}(y^2, z^4)$$
$$= (x, y)R \cap (x, z)R \cap (y, z)R.$$

The irreducible components of V(I) are V(x, y), V(x, z), and V(y, z), i.e., the z-axis, the y-axis, and the x-axis, respectfully.

Now what if $k \neq \overline{k}$?

Example 1.6.17 Let $V(x^2 + y^2(y-1)^2) = \{(0,0), (0,1)\} = \{(0,0)\} \cup \{(0,1)\}$. The irreducible components are $\{(0,0)\}$ and $\{(0,1)\}$. Then if $I = (x^2 + y^2(y-1)^2)R$, the prime decomposition of I does not give irreducible components of V(I). We need to decompose I(V(I)).

Proposition 1.6.18 Let $I(V(I)) = P_1 \cap \cdots \cap P_m$ be an irredundant prime decomposition. Then the irreducible components of V(I) are $V(P_1), \ldots, V(P_m)$.

Proof: Let $V(I) = V_1 \cup \cdots \cup V_t$ be an irredundant irreducible decomposition. We need to show that t = m and the V_i 's can be reordered to get $V_i = V(P_i)$ for all *i*. Note that

$$P_1 \cap \dots \cap P_m = I(V(I)) = I(V_1) \cap \dots \cap I(V_t).$$

Since V_i is irreducible, we have $I(V_i)$ is prime for all *i*. Now we need to show for $i \neq j$ that $I(V_i) \not\subseteq I(V_j)$. (Then each decomposition is irredundant. Therefore uniqueness kicks in.)

If $I(V_i) \subseteq I(V_j)$, then $V(I(V_i)) \supseteq V(I(V_j))$. But $V(I(V_i)) = \overline{V}_i = V_i$ and $V(I(V_j)) = V_j$. Therefore $V_i \supseteq V_j$ which contradicts the irredundancy of $V_1 \cup \cdots \cup V_t$. Hence $I(V_1) \cup \cdots \cup I(V_t)$ is irredundant.

The uniqueness implies that m = t and the V_i 's can be reordered to get $P_i = I(V_i)$ for all i. Therefore $V(P_i) = V(I(V_i)) = \overline{V}_i = V_i$ for all i.

Example 1.6.19 Let $k = \mathbb{R}$. Then $V(x^2 + y^2(y-1)^2) = \{(0,0), (0,1)\}$ and

$$I(V(x^{2} + y^{2}(y - 1)^{2})) = I(\{(0, 0), (0, 1)\})$$

= $\mathfrak{m}_{(0,0)} \cap \mathfrak{m}_{(0,1)}$
= $(x, y)R \cap (x, y - 1)R.$

So the irreducible components are $V(x, y) = \{(0, 0)\}$ and $V(x, y - 1) = \{(0, 1)\}$.

Exercises.

Assumptions: k is a field, and $R = k[X_1, \ldots, X_n]$ for some $n \ge 1$.

Exercise 1.6.20 Let $I \subseteq R$ be an ideal, and consider the "radical" of I:

rad $I = \{ x \in R \mid x^n \in I \text{ for some } n \ge 0 \}.$

Note that rad I is an ideal of R containing I. Prove that $V(I) = V(\operatorname{rad} I)$.

Exercise 1.6.21 Let $S, S' \subseteq R$.

- (a) Prove that if $S \subseteq S'$, then $V(S) \supseteq V(S')$.
- (b) Prove or give a counterexample to the following: if $V(S) \supseteq V(S')$, then $(S)R \subseteq (S')R$.

Exercise 1.6.22 For each $\underline{a} = (a_1, \ldots, a_n) \in \mathbb{A}_k^n$, set $\mathfrak{m}_{\underline{a}} = (X_1 - a_1, \ldots, X_n - a_n)R$. Let $S \subseteq R$, and prove that $\underline{a} \in V(S)$ if and only if $\mathfrak{m}_{\underline{a}} \supseteq S$.

Exercise 1.6.23 Let $m \ge 1$. A function $F \colon \mathbb{A}_k^b \to \mathbb{A}_k^m$ is *regular* if there are polynomials $f_1, \ldots, f_m \in \mathbb{R}$ such that $F(\underline{a}) = (f_1(\underline{a}), \ldots, f_m(\underline{a}))$ for all $\underline{a} \in \mathbb{A}_k^b$.

- (a) Prove that every regular function $F \colon \mathbb{A}_k^n \to \mathbb{A}_k^m$ is continuous.
- (b) Prove that if $F \colon \mathbb{A}_k^n \to \mathbb{A}_k^m$ and $G \colon \mathbb{A}_k^p \to \mathbb{A}_k^n$ are regular, then so is the composition $F \circ G \colon \mathbb{A}_k^p \to \mathbb{A}_k^m$.

Exercise 1.6.24 Assume that k is algebraically closed. Let f be a non-constant polynomial in $k[X_1, \ldots, X_n]$, and consider $V(f) \subset \mathbb{A}_k^n$.

- (a) Prove that $V(f) \neq \emptyset$.
- (b) Prove that if $n \ge 2$, then V(f) is infinite.

Exercise 1.6.25 Are the following closed sets irreducible or not? Justify your responses.

- (a) $V(X+Y^2) \subseteq \mathbb{A}^2_{\mathbb{R}}$.
- (b) $V(X^2 + Y^2) \subseteq \mathbb{A}^2_{\mathbb{R}}$.
- (c) $V(X^2 + Y^2) \subseteq \mathbb{A}^2_{\mathbb{C}}$.

Exercise 1.6.26 Let X be a noetherian topological space. Let $Y \subseteq X$ be a subspace of X, that is, a subset of Y with the subspace topology. Prove that Y is noetherian.

Chapter 2

Projective Space

2.1 Motivation

Sometimes to describe an object, we "parametrize" it in terms of something we already understand.

Example 2.1.1 A curve in \mathbb{R}^3 , described in parametric form:

$$f(t) = (x(t), y(t), z(t))$$

Example 2.1.2 Solution sets to under-determined systems of linear equations:

$$2x + 3y + 4z = 0$$
$$x + y - z = 0.$$

Solutions: $\left(-\frac{7}{6}t, t, -\frac{1}{6}t\right)$.

General Principle: To understand T, cook up a function $f: S \to T$ where f is "nice" and S is "understood." Then transfer understanding of S to T via f.

Motivating Problem: Parametrize the set of lines in k^n passing through the origin, i.e. 1-dimensional vector subspaces of k^n .

A line is determined by a single non-zero vector $\vec{v} \in k^n$.

Span :
$$k^n \setminus \{0\} \to \{\text{lines in } k^n \text{ passing through the origin}\}$$

 $\vec{v} \mapsto \text{Span}(\vec{v}).$

This is onto. Sadly it is not one-to-one. Note that $\operatorname{Span}(\vec{v}) = \operatorname{Span}(\vec{w})$ if and only if $\vec{v} \in \operatorname{Span}(\vec{w})$ if and only if $\vec{w} \in \operatorname{Span}(\vec{v})$ if and only if there exists $\lambda \in k^{\times}$ such that $\vec{v} = \lambda \vec{w}$ if and only if there exists $\mu \in k^{\times}$ such that $\vec{w} = \mu \vec{v}$.

We will define $\vec{v} \sim \vec{w}$ if there exists $\lambda \in k^{\times}$ such that $\vec{v} = \lambda \vec{w}$. By the above notes, the induced function

$$\overline{\operatorname{Span}}: \frac{k^n \setminus \{0\}}{\sim} \to \mathbb{P}^n_k$$
$$[\vec{v}] \mapsto \operatorname{Span}(\vec{v})$$

is well-defined, one-to-one and onto.

2.2 Projective Space \mathbb{P}^n_k

Definition 2.2.1 For $\vec{v}, \vec{w} \in k^{n+1} \setminus {\{\vec{0}\}}$ define $\vec{v} \sim \vec{w}$ if and only if there exists $\lambda \in k^{\times}$ such that $\vec{w} = \lambda \cdot \vec{v}$. If $\vec{v} = (v_0, v_1, \ldots, v_n)$ then $\vec{v} \sim \vec{w}$ if and only if there exists $\lambda \in k^{\times}$ such that $w_j = \lambda \cdots v_j$ for all $j = 0, 1, \ldots, n$.

$$\mathbb{P}^n_k := \frac{k^{n+1} \setminus \{0\}}{\sim}$$

is called *projective n-space* over k. An element in \mathbb{P}^n_k looks like

$$\underline{v} = (v_0 : v_1 : \dots : v_n) = (\lambda v_0 : \lambda v_1 : \dots : \lambda v_n)$$

for all $\lambda \in k^{\times}$.

Example 2.2.2 $(v_0 : v_1) \in \mathbb{P}^1_k$. If $v_0 \neq 0$ then $(v_0 : v_1) = (v_0/v_0 : v_1/v_0) = (1 : v_1')$ where $\lambda = 1/v_0$ and $v_1' = v_1/v_0$.

For $\alpha, \beta \in k$: $\alpha \neq \beta$ implies that $(1 : \alpha) \neq (1 : \beta)$. So

$$\mathbb{A}^1_k \hookrightarrow \mathbb{P}^1_k$$
$$\alpha \mapsto (1:\alpha).$$

If $v_0 = 0$, then $v_1 \neq 0$ and $(v_0 : v_1) = (0 : v_1) = (0/v_1 : v_1/v_1) = (0 : 1)$.

Symmetrically we have another

$$\mathbb{A}^1_k \hookrightarrow \mathbb{P}^1_k$$
$$\beta \mapsto (\beta : 1)$$

Here we see that $\mathbb{P}^1_k \approx$ a circle in \mathbb{R}^2 .

More Generally: In \mathbb{P}_k^n , $U_j = \{ \underline{v} \in \mathbb{P}_k^n \mid v_j \neq 0 \}$ for all $j = 0, 1, \dots, n$. Then

$$\mathbb{P}_k^n = U_0 \cup U_1 \cup \cdots \cup U_n.$$

There also exists a bijection $\mathbb{A}_k^n \to U_j$ for all j. If $n \ge 2$, then there exists a bijection $\mathbb{P}_k^{n-1} \to \mathbb{P}_k^n \setminus U_j$ for all j.

Note that polynomials do <u>not</u> give well-defined functions on \mathbb{P}_k^n .

Example 2.2.3 $f(x_0, x_1) = x_0$. $(1:0) \xrightarrow{f} 1$ and $(\alpha:0) \xrightarrow{f} \alpha$.

Being zero or not zero (evaluating polynomial) is also <u>not</u> well-defined. For $\alpha \neq 0$:

$$g(x_0, x_1) = x_0^2 - x_1^3$$

$$g(1:1) = 1^2 - 1^3 = 0$$

$$g(\alpha:\alpha) = \alpha^2 - \alpha^3 = \alpha^2(1-\alpha) = 0 \Leftrightarrow \alpha = 1.$$

We will see that homogeneous polynomials will fix our problem.

2.3 Homogeneous Polynomials

Definition 2.3.1 Let $R = k[x_0, x_1, ..., x_n]$ and let $f \in R$. Then f is homogeneous of degree d if f is a linear combination over k of monomials of degree d.

Example 2.3.2 $x_0^2 - x_1^3$ is not homogeneous. $x_0^3 - x_1 x_2^2$ is a homogeneous polynomial of degree 3.

Notation 2.3.3 $R_d := \{\text{homogeneous polynomials } f \in R \text{ of degree } d\}.$

<u>Note</u>: 0 is homogeneous of degree d for all d.

Fact 2.3.4 $R_d \subseteq R$ is a subspace over k.

- Fact 2.3.5 (a) Every $f \in k[x_0, ..., x_n] = R$ can be written as $f = f_0 + f_1 + \cdots + f_d$ such that each $f_i \in k[x_0, ..., x_n]_i = R_i$, i.e., each f_i is homogeneous of degree *i*. This representation is essentially unique.
 - (b) Therefore $R \cong R_0 \oplus R_1 \oplus R_2 \oplus \cdots$.
 - (c) $R_i \times R_j \longrightarrow R_{i+j}$ by $(f,g) \longmapsto fg$ is a well-defined k-bilinear map.
 - (d) $f \in R_i$: $f(\lambda x_0, \lambda x_1, \dots, \lambda x_n) = \lambda^i f(x_0, \dots, x_n)$. Note that homogeneous is crucial.
 - (e) Let $\underline{v} = \underline{w} \in \mathbb{P}_k^n$ where $\underline{v} = (v_0 : v_1 : \cdots : v_n)$ and $\underline{w} = (w_0 : w_1 : \cdots : w_n)$. Note that $\vec{v} = \langle v_0, v_1, \dots, v_n \rangle$ and $\vec{w} = \langle w_0, w_1, \dots, w_n \rangle$. Then $f(\vec{v}) = 0$ if and only if $f(\vec{w}) = 0$ for $f \in R_i$.

Proof of (e): Assume that $\underline{v} = \underline{w}$, then $\vec{w} = \lambda \vec{v}$ for some $\lambda \in k^{\times}$. Therefore

$$f(\vec{w}) = f(\lambda \vec{v}) = \lambda^i f(\vec{v}).$$

Hence $f(\vec{w}) = 0$ if and only if $\lambda^i f(\vec{v}) = 0$ if and only if $f(\vec{v}) = 0$ since $\lambda \neq 0$.

Notation 2.3.6 We write $f(\underline{v}) = 0$ if $f(\vec{v}) = 0$. (This is well-defined by Fact 5.)

<u>Note</u>: f does not make a well-defined function $\mathbb{P}^n_k \to k$.

Proposition 2.3.7 Let $I \subseteq R$ be an ideal. The following are equivalent:

- (i) I is generated by a set of homogeneous polynomials.
- (ii) I is generated by a finite set of homogeneous polynomials.
- (*iii*) $I = (I \cap R_0) \oplus (I \cap R_1) \oplus \cdots$.
- (iv) Every $f \in I$ can be written as $f = f_0 + \cdots + f_d$ such that each f_i is in $I \cap R_i$.
- (v) For all $f \in I$, if $f = \sum_{i=0}^{d} f_i$ such that each $f_i \in R_i$, then $f_i \in I$ for all i.

Definition 2.3.8 If $I \subseteq R$ is an ideal, then I is a *homogeneous ideal* if it satisfies the equivalent conditions of Proposition 2.3.7.

Proof of Proposition 2.3.7: (i) \Rightarrow (ii): The Hilbert Basis Theorem implies that I is finitely generated. If I = (S)R such that S is a set of homogeneous polynomials, then since I is finitely generated there exists a finite subset $S' \subseteq S$ such that I = (S')R.

(ii) \Rightarrow (iv): Let $s_1, \ldots, s_m \in R$ be homogeneous such that $I = (s_1, \ldots, s_m)R$. Therefore $s_i \in I$ for all *i*. Say $s_i \in R_{d_i}$. Let $f \in I$. Then there exists $g_1, \ldots, g_m \in R$ such that $f = \sum_i g_i s_i$ where $g_i = \sum_j g_{i,j}$ such that $g_{i,j} \in R_j$. Then

$$f = \sum_{i} g_{i,j} s_i \sum_{i} \sum_{j} g_{i,j} s_i = \sum_{t} \underbrace{\sum_{j+d_i} g_{i,j} s_i}_{f_t \in R_t}.$$

This satisfies the desired conclusion because each f_i is in $(s_1, \ldots, s_m)R = I$.

(iv) \Rightarrow (iii): We first need to show that the sum is direct. So we need to show that $(I \cap R_i) \cap \left(\sum_{j \neq i} (I \cap R_j)\right) = 0$. Note that 0 is in the left hand side. For the other containment:

$$(I \cap R_i) \cap \left(\sum_{j \neq i} I \cap R_j\right) \subseteq R_i \cap \sum_{j \neq i} R_i = 0$$

since $R \cong R_0 \oplus R_1 \oplus \cdots$. Therefore the sum is direct.

 (\subseteq) Let $f \in I$. Then (iv) implies for $f_i \in R_i$:

$$f = \underbrace{f_0 + f_1 + \dots + f_d}_{\in (I \cap R_0) \oplus (I \cap R_1) \oplus \dots}.$$

 (\supseteq) Note that for each R_j , $I \cap R_j \subseteq I$.

(iii) \Rightarrow (v): Assume (iii) and let $f \in I$. Then $f = \sum_i f_i$ such that $f_i \in R_i$ for all i. We need to show $f_i \in I$ for all i. Condition (iii) implies $f = \sum_i \tilde{f}_i$ such that $\tilde{f} \in I \cap R_i$. Note that by the uniqueness of representation in $R = R_0 \oplus R_1 \cdots$, the condition $f = \sum_i f_i$ implies $f_i = \tilde{f}_i$ for all i. Therefore $f_i \in I$ for all i.

(v) \Rightarrow (i): Assume (v) and let $S = \bigcup_{i=1}^{\infty} (I \cap R_i) = \{\text{homogeneous } f \in I\} \subseteq I$. Therefore $(S)R \subseteq I$.

 (\supseteq) Let $f \in I$ such that $f = f_0 + \cdots + f_d$ where each $f_i \in R_i$. (v) implies that each $f_i \in I$. Thus $f_i \in I \cap R_i$ for all *i*. Therefore f = a sum of elements of *S*. Hence $f \in (S)R$. **Example 2.3.9** If f_1, \ldots, f_m are homogeneous, then $I = (f_1, \ldots, f_m)R$ is a homogeneous ideal.

Notation 2.3.10 Let $I \subseteq R$ be homogeneous. For all d let

 $I_d := \{\text{homogeneous polynomials in } I \text{ of degree } d\}.$

Fact 2.3.11 $I_d = I \cap R_d$.

Lemma 2.3.12 Let $I, J \subseteq R$ be homogeneous ideals. Then:

- (a) $I = (\bigcup_{d=0}^{\infty} I_d) R.$
- (b) $I \subseteq J$ if and only if $I_d \subseteq J_d$ for all d.
- (c) I = J if and only if $I_d = J_d$.

Proof: (a) (\supseteq) Each $I_d \subseteq I$. Therefore $\bigcup_{d=0}^{\infty} I_d \subseteq I$. This implies that $(\bigcup_{d=0}^{\infty} I_d) R \subseteq I$.

(⊆) Let $f \in I$. Then $f = \sum_{d=0}^{e} f_d$ for each $f_d \in R$. Since I is homogeneous, $f_d \in I$ for all d. Therefore $f \in I \cap R_d = I_d$. Hence

$$f = \sum_{d=0}^{e} f_d \in \left(\bigcup_{d=0}^{\infty} I_d\right) R.$$

(b) (\Rightarrow) If $I \subseteq J$, then $I \cap R_d \subseteq J \cap R_d$, i.e., $I_d \subseteq J_d$. (\Leftarrow) If $I_d \subseteq J_d$ for all d, then $\bigcup_{d=0}^{\infty} I_d \subseteq \bigcup_{d=0}^{\infty} J_d$. This implies that

$$I = \left(\bigcup_{d=0}^{\infty} I_d\right) R \subseteq \left(\bigcup_{d=0}^{\infty} J_d\right) R = J.$$

(c) This follows from (b)

Lemma 2.3.13 Let $I \subseteq R$ be a homogeneous ideal. Then rad(I) is a homogeneous ideal.

Proof: Let $f = \sum_{d=0}^{e} f_d \in \operatorname{rad}(I)$ such that each $f_d \in R_d$. We need to show that each $f_d \in \operatorname{rad}(I)$, We will use induction on e.

Base Case (e = 0): Here $f = f_0$. Since $f \in rad(I)$, we have $f_0 \in rad(I)$.

Induction step: Assume for $e \ge 1$ the result holds for

$$g = \sum_{d=0}^{e-1} g_d.$$

Since $f \in rad(I)$, there exists $m \ge 1$ such that $f^m \in I$. Now write

$$f^{m} = f_{0}^{m} + \dots + f_{e}^{m} \in I$$

$$f^{m} = (f^{m})_{0} + (f^{m})_{1} + \dots + (f^{m})_{me}$$

such that each $(f^m)_j \in R_j$. Then $f_e^m = (f^m)_{me}$. Since I is homogeneous we have $f_e^m \in I$ and so $f_e \in \operatorname{rad}(I)$. Note that $\operatorname{rad}(I)$ is an ideal, therefore $f - f_e \in \operatorname{rad}(I)$ and

$$f - f_e = \sum_{d=0}^{e-1} f_d.$$

By the induction hypothesis $f_i \in rad(I)$ for $i = 1, \ldots, e - 1$.

2.4 The Zariski Topology on \mathbb{P}^n_k

Definition 2.4.1 The Zariski topology on \mathbb{P}^n_k

Let $S \subseteq R$ be a set of homogeneous elements of R. Define

$$V(S) := \{ \underline{a} \in \mathbb{P}_k^n \mid f(\underline{a}) = 0 \text{ for all } f \in S \}$$

- Closed sets: V(S)
- Open sets: $\mathbb{P}_k^n \setminus V(S)$.

Let $f \in R$ be homogeneous: $U_f := \mathbb{P}^n_k \setminus V(f)$ is the "principal open set."

If $T \subseteq R$ (not necessarily homogeneous), then

$$V(T) := V(\{t \in T \mid t \text{ is homogeneous}\}).$$

If $S = \{f_1, \dots, f_m\}$, then $V(S) = V(f_1, \dots, f_m)$.

Definition 2.4.2 Lines in \mathbb{P}_k^1 : $V(ax_1 + bx_2 + cx_0)$. Projective ellipse: $V\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - z^2\right)$ or $V\left(\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} - x_0^2\right)$. If $x_0 = 1$ (so a copy of \mathbb{A}_k^2) we recover our original lines and ellipses. See Example 1.1.6.

Example 2.4.3 Closed sets in \mathbb{P}^1_k are $V(1) = \emptyset$, $V(0) = \mathbb{P}^1_k$ and (any) finite sets. If f is non-constant, we need to show V(f) is finite. Let $(a_0 : a_1) \in \mathbb{P}^1_k$.

First type of point: $a_0 = 1$. Then $f(\underline{a}) = f(1, a_1)$. So a_1 is a root of $f(1, x_1) \neq 0$.

$$f = c_0 x_0^d + c_1 x_0^{d-1} x_1 + \dots + c_{d-1} x_0 x_1^{d-1} + c_d x_1^d$$

$$f(1, x_1) = c_0 + c_1 x_1 + \dots + x_{d-1} x_1^{d-1} + c_d x_1^d.$$

Since f is non-constant, $f \neq 0$. Therefore some $c_i \neq 0$. Thus there are only a finite number of roots. Hence f has only a finite number of roots of the form $(1 : a_1)$.

Second type of point: $a_0 = 0$. So assume $a_1 = 1$. Then either (0:1) is a root of f or not. Either way you get at most one more point. Therefore there are only finitely many. If $S \neq \emptyset$ is a set of homogeneous polynomials, let $f \in S$ be non-constant. Then $V(S) \subseteq V(f)$ is finite. (Note that Proposition 2.4.14 implies that any finite set is closed.)

Lemma 2.4.4 If $T \subseteq T' \subseteq R$, then $V(T) \supseteq V(T')$.

Proof: Exercise.

Lemma 2.4.5 Let $S \subseteq R$ be the set of homogeneous elements and I = (S)R. Then f is homogeneous of degree d and in I if an only if there exists homogeneous polynomials $g_1, \ldots, g_m \in R$ and $s_1, \ldots, s_m \in S$ such that $f = \sum_i g_i s_i$ and $\deg(g_i) + \deg(s_i) = d$ for all i.

Proof: (\Rightarrow) Let $f \in I$ be homogeneous of degree d. Then we can write $f = g_1 s_1 + \cdots + g_p s_p$ such that each $g_i \in R$ and each s_i is homogeneous of degree δ_i . Hence

$$g_i = g_{i\,0} + \dots + g_{i\,e}$$

such that $g_{ij} \in R_j$. Now we can write f as

$$f = \sum_{j} g_{ij} s_i + \dots + \sum_{j} g_{pj} s_p$$

= $g_{1d-\delta_1} s_1 + g_{2d-\delta_2} s_2 + \dots + g_{pp-\delta_p} + (\underbrace{\text{remaining } g_{ij} s_i's}_{\text{has no terms of degree } d})$

where $g_{ij}s_i$ is homogeneous of degree $j + \delta_i$ and $g_{pj}s_p$ is homogeneous of degree $j + \delta_p$. Therefore the last terms must sum to 0 since f only has terms of degree d. Therefore

$$f = g_{1\,d-\delta_1}s_1 + g_{2\,d-\delta_2}s_2 + \dots + g_{p\,p-\delta_p}.$$

(⇐) In this case f is homogeneous and in I since all $g_i \cdot s_i$ are homogeneous of degree d and $s_i \in I$.

Lemma 2.4.6 Let $S \subseteq R$ consist of homogeneous elements of R and let I = (S)R. Then V(I) = V(S).

Proof: (\subseteq) Note that $I = (S)R \supseteq S$. By Lemma 2.4.4 we have $V(I) \subseteq V(S)$.

 (\supseteq) Let $\underline{a} \in V(S)$ and let $f \in I$ be homogeneous. Then we can write

$$f = g_1 s_1 + \dots + g_p s_p$$

such that each $g_i \in R$ is homogeneous and $s_i \in S$ by Lemma 2.4.5. Then

$$f(\underline{a}) = g_1(\underline{a})\underbrace{s_1(\underline{a})}_{=0} + \dots + g_p(\underline{a})\underbrace{s_p(\underline{a})}_{=0} = 0.$$

Hence $\underline{a} \in V(I)$.

Lemma 2.4.7 Let $I_{\lambda} \subseteq R$ be homogeneous ideals $(\lambda \in \Lambda)$. Then the ideals $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ and $\sum_{\lambda \in \Lambda} I_{\lambda}$ are homogeneous. If $\Lambda = \{1, \ldots, m\}$ then $I_1 \cdots I_m$ is homogeneous.

Proof: $I_{\lambda} = (S_{\lambda}) R$ where S_{λ} consists of homogeneous polynomials. Then

$$\sum_{\lambda \in \Lambda} I_{\lambda} = \left(\bigcup_{\lambda \in \Lambda} S_{\lambda}\right) R$$

where $\bigcup_{\lambda \in \Lambda} S_{\lambda}$ is a set of homogeneous polynomials. Thus it is a homogeneous ideal.

If $\Lambda = \{1, \ldots, m\}$, then $I_1 \cdots I_m = (\{s_1, \ldots, s_m \mid s_i \in S_1 \text{ for all } i\}) R$ is generated by a set of homogeneous polynomial. To show that $\bigcup_{\lambda \in \Lambda} I_{\lambda}$ is homogeneous, let

$$f = f_0 + f_1 + \dots + f_d \in \bigcap_{\lambda \in \Lambda} I_\lambda$$

such that $f_i \in R_i$ for all *i*. We need to show that $f_i \in \bigcap_{\lambda \in \Lambda} I_\lambda$ for all *i*. Since $f \in \bigcap_{\lambda \in \Lambda} I_\lambda$, we have $f \in I_\lambda$ for all λ . Since I_λ is homogeneous $f_i \in I_\lambda$ for all λ . Therefore $f_i \in \bigcap_{\lambda \in \Lambda} I_\lambda$.

Proposition 2.4.8 Let $S_1, \ldots, S_m, S_\lambda \subseteq R$ consisting of homogeneous elements of R. $I_j = (S_j)R$, $I_\lambda = (S_\lambda)R$ are homogeneous ideals:

- 1. $V(S_1) \cup \cdots \cup V(S_m) = V(I_1) \cup \cdots \cup V(I_m) = V(I_1 \cap \cdots \cap I_m) = V(I_1 \cdots I_m).$
- 2. $\bigcap_{\lambda \in \Lambda} V(S_{\lambda}) = \bigcap_{\lambda \in \Lambda} V(I_{\lambda}) = V\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right) = V\left(\bigcup_{\lambda \in \Lambda} S_{\lambda}\right).$
- 3. The set of projective algebraic subsets is closed under finite unions and arbitrary intersections.

Proof: Exercise

Fact 2.4.9 Let $S \subseteq R$ be a set of homogeneous polynomials in R. Then V(S) = V((S)R)

Definition 2.4.10 If $f \in R$ is homogeneous, then V(f) is a projective hypersurface.

Corollary 2.4.11 Every algebraic subset of \mathbb{P}^n_k is a finite intersection of projective hypersurfaces.

Proof: $V(S) = V(I) = V(f_1, \ldots, f_m)$ where $(S)R = I = (f_1, \ldots, f_m)R$ and each f_i is homogeneous.

Proposition 2.4.12 $\{\underline{a}\} = V\left((\{a_i x_j - a_j x_i \mid 0 \leq i < j \leq n\})R\right) = V\left(\{a_\ell x_j - a_j x_\ell \mid 0 \leq j \leq n\}\right)$ for some $a_\ell \neq 0$ where $\underline{a} = (a_0 : a_1 : \dots : a_n)$.

Proof: We first note that $V\left(\{a_ix_j - a_jx_i\}_{i,j}\right) \subseteq V\left(\{a_\ell x_j - a_jx_\ell\}_j\right)$ since $a_\ell x_j - a_jx_\ell = \pm a_ix_{j'} - a_{j'}x_i$ for some i, j'

Next we will show $\{\underline{a}\} \subseteq V\left(\{a_i x_j - a_j x_i\}_{i,j}\right)$. If we evaluate $a_i x_j - a_j x_i$ at \underline{a} we get $a_i a_j - a_j a_i = 0$. Therefore $\{\underline{a}\} \subseteq V\left(\{a_i x_j - a_j x_i\}_{i,j}\right)$.

For the last containment assume that $\underline{b} \in \mathbb{P}_k^n$ satisfies $a_{\ell} x_j - a_j x_{\ell}$ for all ℓ . Then

 $a_{\ell}b_j - a_jb_{\ell} = 0$

for $a_{\ell} \neq 0$. Therefore $b_j = \frac{a_j b_{\ell}}{a_{\ell}} = \frac{b_{\ell}}{a_{\ell}} a_j$. Now set $\lambda = \frac{b_{\ell}}{a_{\ell}}$. Then

$$\underline{a} = (a_0 : a_1 : \dots : a_n) = (\lambda a_0 : \lambda a_1 : \dots : \lambda a_n)$$
$$= (b_0 : b_1 : \dots : b_n) = \underline{b}.$$

Hence $V\left(\left\{a_{\ell}x_{j}-a_{j}x_{\ell}\right\}_{\ell}\right)\subseteq\left\{\underline{a}\right\}.$

Theorem 2.4.13 The Zariski topology on \mathbb{P}^n_k is a topology.

Proof: Similar to Theorem 1.2.2.

Proposition 2.4.14 Every finite subset of \mathbb{P}^n_k is closed.

Proof: Exercise

Example 2.4.15 The Zariski topology on \mathbb{P}^1_k is the cofinite topology. See Example 2.4.3 and Proposition 2.4.14.

Proposition 2.4.16 Every open subset in \mathbb{P}^n_k is a finite union of principal open sets.

Proof: Similar to Theorem 1.2.4

Corollary 2.4.17 \mathbb{P}^n_k is compact.

Proof: Exercise

Corollary 2.4.18 {principal open sets of \mathbb{P}^n_k } is a basis for the Zariski topology.

Proof: Similar to Corollary 1.2.5

Fact 2.4.19 $U_f \cap U_g = U_{fg}$ for all $f, g \in R$.

Proof: Similar to Fact 1.2.6.

Theorem 2.4.20 If k is infinite and $U, U' \subseteq R$ are non-empty open subsets, then $U \cap U' \neq \emptyset$.

Proof: Similar to Theorem 1.2.8.

Corollary 2.4.21 If k is infinite, then \mathbb{P}_k^n is <u>not</u> Hausdorff.

Proof: Similar to Corollary 1.2.9.

Fact 2.4.22 If $\underline{a}, \underline{b} \in \mathbb{P}_k^n$ and $\underline{a} \neq \underline{b}$, then there exists a neighborhood $U \subseteq \mathbb{P}_k^n$ of \underline{a} such that $\underline{b} \notin U$.

Proof: Set $U = \mathbb{P}_k^n \setminus \{\underline{b}\}$. Then U is the compliment of a closed subset. Therefore U is open with $\underline{a} \in U$ and $\underline{b} \notin U$.

<u>Note</u>: $U_{b_i x_j - b_j x_i}$ will work for some choice of *i* and *j*.

2.5 Geometric Ideals in \mathbb{P}^n_k

Definition 2.5.1 Let $V \subseteq \mathbb{P}_k^n$. Then define

 $I(V) := (\{\text{homogeneous } f \in R \mid f(\underline{a}) = 0 \text{ for all } \underline{a} \in V\}) R.$

We write $I(\underline{a}_1, \ldots, \underline{a}_m) = I(\{\underline{a}_1, \ldots, \underline{a}_m\}).$

<u>Note</u>: I(V) is a homogeneous ideal of R since it is generated by a set of homogeneous polynomials.

Example 2.5.2 $I(\emptyset) = R$, and $I(\mathbb{P}^n_k) = 0$ if k is infinite.

Fact 2.5.3 (Division Algorithm for homogeneous polynomials) Let f be a homogeneous polynomial of degree d, and let b be a non-zero homogeneous polynomial of degree 1. Write $b = b_0 X_0 + \cdots + b_n X_n$ such that each b_i is in k, and assume that $b_j \neq 0$ for some j. Then there exist polynomials q and r such that f = qb + r where q is homogeneous of degree d - 1, and r is homogeneous of degree d and constant with respect to X_j .

Proof: Exercise.

Proposition 2.5.4 Let $\underline{a} \in \mathbb{P}_k^n$. Then $I(\underline{a}) = (\{a_i x_j - a_j x_i \mid 0 \leq i < j \leq n\}) R$.

Proof: (\supseteq) <u>a</u> satisfies each $a_i x_j - a_j x_i$. Therefore each $a_i x_j - a_j x_i \in I(\underline{a})$.

 (\subseteq) First let $J := (\{a_i x_j - a_j x_i \mid 0 \le i < j \le n\}) R$. Since $I(\underline{a})$ is homogeneous it is generated by the set of its homogeneous elements. We need to show every homogeneous element of $I(\underline{a})$ is in J. Let $f \in I(\underline{a})_d$. Then $f(\underline{a}) = 0$. Assume $a_\ell \neq 0$. We will use the division algorithm with

$$a_\ell x_0 - a_0 x_\ell, a_\ell x_1 - a_1 x_\ell, \dots, a_\ell x_n - a_n x_\ell.$$

Now $f = q_1 \cdot (a_\ell x_0 - a_0 x_\ell) + r_1$ such that q_1, r_1 are homogeneous and r_1 is constant with respect to x_0 . Then we can write $r_1 = q_2 \cdot (a_\ell x_1 - a_1 x_\ell) + r_2$ such that q_2, r_2 where r_2 is constant with respect to x_0 and x_1 . We repeat this process to get

$$r_i = q_i \left(a_\ell x_i - a_i x_\ell \right) + r_{i+1}$$

for all $i \neq \ell$. Therefore

$$f = q_0 (a_{\ell} x_0 - a_0 x_{\ell}) + \dots + q_{\ell-1} (a_{\ell} x_{\ell-1} - a_{\ell-1} x_{\ell}) + q_{\ell+1} (a_{\ell} x_{\ell+1} - a_{\ell+1} x_{\ell}) + \dots + q_n (a_{\ell} x_n - a_n x_{\ell}) + r$$

where r is constant with respect to all $x_i \neq x_\ell$. Therefore $r = c \cdot x_\ell^d$ and hence $0 = r(\underline{a}) = c \cdot a_\ell^d$ where $a_\ell \neq 0$. Thus $c = 0 \Rightarrow r = 0$.

Proposition 2.5.5 Let $V, V_1, \dots \subseteq \mathbb{P}_k^n$.

(a) If
$$V \subseteq V_1$$
, then $I(V) \supseteq I(V_1)$.

- (b) $I(V_1 \cup \cdots \cup V_m) = I(V_1) \cap \cdots \cap I(V_m).$ (c) $I(\bigcup_{\lambda \in \Lambda} V_\lambda) \supseteq \sum_{\lambda \in \Lambda} I(V_\lambda).$
- (d) $\operatorname{rad}(I(V)) = I(V).$

Proof:

(a) Assume $V = V_1$. To show $I(V) \supseteq I(V_1)$, it suffices to show $I(V)_d \supseteq I(V_1)_d$ for all d. Let $f \in I(V_1)_2$. Then $f(\underline{a}) = 0$ for all $\underline{a} \in V_1$. Therefore $\underline{a} \in V$ since $V \subseteq V_1$. Hence $f \in I(V) \cap R_d = I(V)_d$.

(b) through (d) are proved similarly to Proposition 1.3.3.

Proposition 2.5.6 Let $I \subseteq R$ be a homogeneous ideal and $V \subseteq \mathbb{P}_k^n$. Then

- (a) $I \subseteq \operatorname{rad}(I) \subseteq I(V(I)).$
- (b) $V \subseteq \overline{V} = V(I(V)).$
- (c) V(I(V(I))) = V(I).
- (d) I(V(I(V))) = I(V).

Proof: Similar to the proof of Proposition 1.3.4.

2.6 Projective Nullstellensatz

Theorem 2.6.1 (Projective Nullstellensatz) Let $I \subseteq R = k[x_0, ..., x_n]$ be a homogeneous ideal such that $k = \overline{k}$. Then

- (a) If $V(I) \neq \emptyset$, then $I(V(I)) = \operatorname{rad}(I)$.
- (b) Let $\mathfrak{M} = (x_0, \ldots, x_n)R$ which is maximal. The following are equivalent:
 - (i) $V(I) = \emptyset$.
 - (*ii*) $\operatorname{rad}(I) \supseteq \mathfrak{M}$.
 - (iii) $\operatorname{rad}(I) = \mathfrak{M} \text{ or } \operatorname{rad}(I) = R.$
 - (iv) $\operatorname{rad}(I) = \mathfrak{M} \text{ or } I = R.$
 - (v) for all i = 0, ..., n there exists $e_i \ge 1$ such that $x_i^{e_i} \in I$.

Proof: (a) Define I_{aff} and V_{aff} for points in \mathbb{A}^n_k and I_{proj} and V_{proj} for points in \mathbb{P}^n_k . Assume that $V_{\text{proj}}(I) \neq \emptyset$. By Proposition 2.5.6 rad $(I) \subseteq I_{\text{proj}}(V_{\text{proj}}(I))$.

<u>Claim</u>: $\operatorname{rad}(I) \subseteq I_{\operatorname{proj}}(V_{\operatorname{proj}}(I)) \subseteq I_{\operatorname{aff}}(V_{\operatorname{aff}}(I)) = \operatorname{rad}(I).$

To prove the claim let $f \in I_{\text{proj}}(V_{\text{proj}}(I))$.

Case 1: Assume $f \in R_d$. We need to show $f \in I_{\text{aff}}(V_{\text{aff}}(I))$. By definition we need to show $f(\underline{a}) = 0$ for all $\underline{a} \in V_{\text{aff}}(I)$. Since $V_{\text{proj}}(I) \neq \emptyset$ we know $d \ge 1$ (or else f = 0).

Sub-case 1: $\underline{a} = \underline{0}$. Since f is homogeneous of degree $d \ge 1$ we have $f(\underline{a}) = f(\underline{0}) = 0$.

Sub-case 2: $\underline{a} \neq \underline{0}$. Then some $a_j \neq 0$. Therefore \underline{a} represents a point in $\underline{a} \in \mathbb{P}_k^n$. Let $\underline{a} = (a_0, a_1, \ldots, a_n)$. Then we write $\underline{a} = (a_0 : a_1 : \cdots : a_n)$.

Let $g \in I_e \subseteq I$. Then since $\underline{a} \in V_{\text{aff}}(I)$, we have $g(\underline{a}) = g(\underline{a}) = 0$. Therefore $\underline{a} \in V_{\text{proj}}(I)$.

Now since $f \in I_{\text{proj}}(V_{\text{proj}}(I))_d$ we have $f(\underline{a}) = f(\underline{a}) = 0$. Hence $f \in I_{\text{aff}}(V_{\text{aff}}(I))$ and hence Case 1 is satisfied.

Case 2: (general case) Let $f = \sum_{i=1}^{m} f_i \in I_{\text{proj}}(V_{\text{proj}}(I))$. Since $I_{\text{proj}}(V_{\text{proj}}(I))$ is a homogeneous ideal, each $f_i \in I_{\text{proj}}(V_{\text{proj}}(I))$. Hence case 1 implies that $f_i \in V_{\text{aff}}(I_{\text{aff}}(I))$. Therefore

$$f = \sum_{i=0}^{m} f_i \in I_{\text{aff}}(V_{\text{aff}}(I))$$

Now the original Nullstellensatz gives us $I_{\text{aff}}(V_{\text{aff}}(I)) = \text{rad}(I)$. Thus the claim is satisfied and we must have that $I_{\text{proj}}(V_{\text{proj}}(I)) = \text{rad}(I)$.

(b) We note that (ii) \Leftrightarrow (iii) is because \mathfrak{M} is maximal, and (iii) \Leftrightarrow (iv) is because $\operatorname{rad}(I) = R$ if and only if I = R. For (ii) \Rightarrow (v), if $\mathfrak{M} \subseteq \operatorname{rad}(I)$, then for all $i = 0, \ldots, n$ there exists $e_i \ge 1$ such that $x_i^{e_i} \in I$. We will now prove (v) \Rightarrow (i) and (i) \Rightarrow (iv).

 $(\mathbf{v}) \Rightarrow (\mathbf{i})$: Assume (\mathbf{v}) and suppose $\underline{a} \in V_{\text{proj}}(I)$ such that $\underline{a} = (a_0 : a_1 : \cdots : a_n)$. Then \underline{a} satisfies every polynomial in I, e.g. $x_i^{e_i}$. But $\underline{a} \in \mathbb{P}_k^n$ implies $a_i \neq 0$ for some i contradicting that \underline{a} satisfies $x_i^{e_i}$.

(i) \Rightarrow (iv): Assume $V_{\text{proj}}(I) = \emptyset$. If I = R, then we are done. So assume that $I \neq R$. Then I contains no units, i.e. no non-zero constants. Therefore $I_0 = I \cap R_0 = 0$. Hence every polynomial in I has constant term 0. Thus $I \subseteq \mathfrak{M}$. We now have

$$\operatorname{rad}(I) \subseteq \operatorname{rad}(\mathfrak{M}) = \mathfrak{M}.$$

 (\subseteq) Note that by the original Nullestensatz $I_{\text{aff}}(V_{\text{aff}}(I)) = \text{rad}(I) \subseteq \mathfrak{M} = \mathfrak{m}_{\underline{0}}$. Therefore $\underline{0} \in V_{\text{aff}}(I)$.

<u>Claim</u>: $V_{\text{aff}}(I) = \{\underline{0}\}.$

Note that for this claim we have already shown (\supseteq) . For the other containment let $\underline{a} \in V_{\text{aff}}(I)$ and suppose $\underline{a} \neq 0$. Then \underline{a} represents some point $\underline{a} \in \mathbb{P}_k^n$, say $\underline{a} = (a_0 : a_1 : \cdots : a_n)$. Then \underline{a} satisfies all $f \in I$ and hence \underline{a} satisfies all homogeneous $f \in I$. Therefore \underline{a} satisfies all homogeneous $f \in I$. Thus $\underline{a} \in V_{\text{proj}}(I)$ contradicting that $V_{\text{proj}}(I) = \emptyset$. Hence $V_{\text{aff}}(I) = \{\underline{0}\}$.

Now by the original Nullestensatz we have $\operatorname{rad}(I) = I_{\operatorname{aff}}(V_{\operatorname{aff}}(I)) = I_{\operatorname{aff}}(\{\underline{0}\}) = \mathfrak{m}_{\underline{0}} = \mathfrak{M}.$

Definition 2.6.2 The ideal \mathfrak{M} , as in Theorem 2.6.1, is the *irrelevant maximal ideal* of R.

Fact 2.6.3 \mathfrak{M} is the unique homogeneous maximal ideal of R and it contains every homogeneous ideal $I \neq R$.

Corollary 2.6.4 Assume $k = \overline{k}$. Then

(a) {non-empty closed subsets of \mathbb{P}^n_k } \rightleftharpoons {homogeneous ideals $I \subseteq R$ such that $I = \operatorname{rad}(I) \subsetneq \mathfrak{M}$ } defined by

(b) If $I = \operatorname{rad}(I) \subsetneq \mathfrak{M}$ is homogeneous, then $V(I) \neq \emptyset$.

Proof: Similar to Corollary 1.4.2.

2.7 Irreducible Closed Subsets

Lemma 2.7.1 Let $I \subsetneq R$ be a homogeneous ideal. The following are equivalent:

- (a) I is prime.
- (b) For all homogeneous ideals J, K: if $JK \subseteq I$, then $J \subseteq I$ or $K \subseteq I$.
- (c) For all homogeneous $f, g \in R$: if $f, g \in I$, then $f \in I$ or $g \in I$.

Proof: (a) \Rightarrow (c) is by definition of a prime ideal.

(c) \Rightarrow (b): Assume (c) and suppose $J \not\subseteq I$ and $K \not\subseteq I$ where J and K are homogeneous ideals. Then there exists $d, e \ge 0$ such that $J_d \not\subseteq I_d$ and $K_e \not\subseteq I_e$. Therefore there exists homogeneous $f \in J \setminus I$ and $g \in K \setminus I$. (c) then implies $f, g \notin I$. Therefore $fg \in JK$ and hence $JK \not\subseteq I$.

(b) \Rightarrow (a): Assume (b). Let $f, g \in R \setminus I$. We need to show that $fg \notin I$. Now we will write

$$f = f_0 + f_1 + \dots + f_d$$
$$g = g_0 + g_1 + \dots + g_e.$$

Therefore some $f_i \notin I$ and $g_j \notin I$.

Case 1: $f_d, g_e \notin I$. Note that if we take $J = (f_d)R$ and $K = (g_e)R$, then (b) implies that we have $f_d g_e \notin I$. Now

$$fg = f_0g_0 + (f_1g_0 + f_0g_1) + \dots + f_dg_e$$

If $fg \in I$, then since I is homogeneous we have $f_dg_e \in I$ which is a contradiction.

Case 2: (general case) Assume without loss of generality that $f_{\alpha} \in I$ for all $\alpha > i$ and $g_{\beta} \in I$ for all $\beta > j$. Then

$$f = f_0 + f_1 + \dots + f_i + \underbrace{f_{i+1} + \dots + f_d}_{:=\tilde{f} \in I}$$
$$g = g_0 + g_1 + \dots + g_j + \underbrace{g_{j+1} + \dots + g_e}_{:=\tilde{q} \in I}.$$

Now define $f' := f - \tilde{f} = f_0 + \cdots + f_i \notin I$ and $g' := g - \tilde{g} = g_0 + \cdots + g_j \notin I$. Case 1 now implies that $f'g' \notin I$. Therefore

$$\begin{split} fg &= (f' + \tilde{f})(g' + \tilde{g}) \\ &= \underbrace{f'g'}_{\not\in I} + \underbrace{f'\tilde{g}}_{\in I} + \underbrace{\tilde{f}g'}_{\in I} + \underbrace{\tilde{f}\tilde{g}}_{\in I} \not\in I \end{split}$$

Therefore $fg \notin I$.

Theorem 2.7.2 Let $V \subseteq \mathbb{P}_k^n$ be closed. Then V is irreducible if and only if I(V) is prime.

Proof: (\Rightarrow) Assume that V is irreducible. Then since $V \neq \emptyset$ we have that $I(V) \neq R$. To show I(V) is prime, we will use Lemma 2.7.1. Let $f, g \in R$ be homogeneous such that $fg \in I(V)$. Let J = I(V) + fR and K = I(V) + gR. These are homogeneous ideals because I(V) is homogeneous and f, g are homogeneous. As before: $JK \subseteq I(V) \subseteq J \cap K$. This implies that

$$V(JK) \supseteq \underbrace{V(I(V))}_{=V} \supseteq \underbrace{V(J \cap K)}_{=V(JK)}.$$

Therefore $V = V(JK) = V(J) \cup V(K)$. Since V is irreducible either V = V(J) or V = V(K). This now implies that either $I(V) = I(V(J)) \ni f$ or $I(V) = I(V(K)) \ni g$. Hence I(V) is prime.

(\Leftarrow) Similar to the proof of Theorem 1.5.5.

Corollary 2.7.3 If $R = k[x_0, \ldots, x_n]$ such that $k = \overline{k}$ and $\mathfrak{p} \subset R$, $\mathfrak{p} \neq \mathfrak{M} = (x_0, \ldots, x_n)R$, is prime, then $V(\mathfrak{p})$ is irreducible.

Proof: Theorem 2.6.1 implies that $V(\mathfrak{p}) \neq \emptyset$ and $I(V(\mathfrak{p})) = \operatorname{rad}(\mathfrak{p}) = \mathfrak{p}$. Therefore Theorem 2.7.2 implies that $V(\mathfrak{p})$ is irreducible.

Proposition 2.7.4 If k is finite, then the only irreducible closed subsets of \mathbb{P}_k^n are $\{\underline{a}\}$.

Proof: Similar to Proposition 1.5.9.

Corollary 2.7.5 If k is finite, then \mathbb{P}_k^n is reducible.

Lemma 2.7.6 Let k be infinite and $f, g \in R$ be homogeneous. If $f(\underline{a})g(\underline{a}) = 0$ for all $\underline{a} \in \mathbb{P}_k^n$, then either f = 0 or g = 0.

Proof: Let $0 \neq f, g \in R$ be homogeneous. It suffices to show that $f(\underline{a})g(\underline{a}) = 0$ for all $\underline{a} \in \mathbb{A}_k^{n+1}$. Then Lemma 1.2.7 implies that either f = 0 or g = 0, a contradiction.

First assume that f is constant, say f = c, then f is a unit. Therefore $g(\underline{a}) = 0$ for all $\underline{a} \in \mathbb{P}_k^n$. If g is constant, then we are done. Suppose that g is not constant. Since g is homogeneous, it follows that $g(\underline{0}) = 0$. If $\underline{0} \neq \underline{a} \in \mathbb{A}_k^{n+1}$, then \underline{a} represents $\underline{a} \in \mathbb{P}_k^n$, so $g(\underline{a}) = g(\underline{a}) = 0$. Thus $g(\underline{a}) = 0$ for all $\underline{a} \in \mathbb{A}_k^n$. Therefore g = 0 since k is infinite. Similarly if g is constant, then f = 0.

Now assume f, g are both are non-constant. Let $\underline{a} \in \mathbb{A}_k^{n+1}$. If $\underline{a} = \underline{0}$, then $f(\underline{a})g(\underline{a}) = 0$. So assume that $\underline{a} \neq 0$. Then \underline{a} represents $\underline{a} \in \mathbb{P}_k^n$ and

$$f(\underline{a})g(\underline{a}) = f(\underline{a})g(\underline{a}) = 0.$$

Therefore either $f(\underline{a}) = f(\underline{a}) = 0$ or $g(\underline{a}) = g(\underline{a}) = 0$.

Proposition 2.7.7 If k is infinite, then \mathbb{P}^n_k is irreducible.

Proof: Suppose $\mathbb{P}_k^n = V(I) \cup V(J) = V(IJ)$ where $I, J \subseteq R$ are homogeneous ideals. If I = 0, then $V(I) = V(0) = \mathbb{P}_k^n$. Similarly if J = 0.

Now assume that $I, J \neq 0$. Then there exists homogeneous $0 \neq f \in I$ and $0 \neq g \in J$. Then

$$\mathbb{P}^n_k = V(I) \cup V(J) \subseteq V(f) \cup V(g) \subseteq \mathbb{P}^n_k.$$

Hence $f, g \neq 0$ are homogeneous such that $f(\underline{a})g(\underline{a}) = 0$ for all $\underline{a} \in \mathbb{P}_k^n$. Therefore by Lemma 2.7.6 f = 0 or g = 0 which contradicts that both $f, g \neq 0$.

Theorem 2.7.8 \mathbb{P}^n_k is noetherian.

Proof: Similar to Theorem 1.5.15.

Corollary 2.7.9 Every closed subset $V \subseteq \mathbb{P}_k^n$ is a union of a finite number of irreducible closed subsets. Also if you assume

$$V = V_1 \cup V_2 \cup \cdots \cup V_m$$

such that $V_i \not\subseteq V_i$ (for all $i \neq j$), then the decomposition is unique up to the order of the V_i 's.

Proof: Exercise

Theorem 2.7.10 Let $V \subseteq \mathbb{P}_k^n$ be closed. Then $\dim(V) \leq \dim(R/I(V)) - 1$.

Proof: Let $\emptyset \neq V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_m \subseteq V$ be a chain of irreducible subsets in V. Then

$$I(V) \subseteq \underbrace{I(V_m) \subseteq \cdots \subseteq I(V_1) \subseteq I(V_0) \subsetneq \mathfrak{M}}_{\text{prime}}.$$

We note that $I(V_0) \subsetneq \mathfrak{M}$ since $V_0 \neq \emptyset$. Also note that if V_i is irreducible, then $I(V_i)$ is prime by Theorem 2.7.2 and $V(I(V_i)) = V_i$. Therefore $I(V_i) \subsetneq I(V_{i-1})$ for all $i \ge 1$. Hence R/I(V) has a chain of primes with m + 1 links. Thus $\dim(R/I(V)) \ge m + 1$.

Fact 2.7.11 If k is infinite, then $\dim(\mathbb{P}^n_k) = n$.

Proof: Exercise

Definition 2.7.12 Define k[V] := R/I(V). This is the homogeneous coordinate ring for V.

2.8 Regular Functions

Definition 2.8.1 Let $f : \mathbb{P}^n_k \to \mathbb{P}^m_k$ be a function. Then f is a *regular* function if there exists homogeneous polynomials

$$f_0, f_1, \dots, f_m \in k[x_0, x_1, \dots, x_n]$$

(all have the same degree) such that $f(\underline{a}) = (f_0(\underline{a}) : f_1(\underline{a}) : \cdots : f_m(\underline{a}))$ for all $\underline{a} \in \mathbb{P}_k^n$.

Fact 2.8.2 The function defined in Definition 2.8.1 is a well-defined function as long as

$$V(f_0) \cap \dots \cap V(f_m) = \emptyset.$$

We need this to make sure that $f(\underline{a}) \neq (0:0:\cdots:0)$.

Since f_i is homogeneous of degree d, we have $f_i(\lambda a_0, \lambda a_1, \dots, \lambda a_n) = \lambda^d f_i(a_0, a_1, \dots, a_n)$. Let

$$\underline{b} = (\lambda a_0 : \lambda a_2, : \dots : \lambda a_n) = \underline{a}$$

(assuming $\lambda \neq 0$ in k). Then

$$f(\underline{b}) = (f_0(\underline{b}) : f_1(\underline{b}) : \dots : f_n(\underline{b}))$$

= $(\lambda^d f_0(\underline{a}) : \lambda^d f_1(\underline{a}) : \dots : \lambda^d f_n(\underline{a}))$
= $f(\underline{a}).$

Fact 2.8.3 If f is a regular function, then f is continuous. Also the composition of regular functions is regular.

Examples of Continuous Functions

- 1. $\mathbb{A}_k^n \xrightarrow{F} \mathbb{A}_k^m$ such that $F(\underline{a}) = (f_1(\underline{a}), \dots, f_n(\underline{a}))$ where each f_i is a polynomial.
- 2. $\mathbb{P}_k^n \xrightarrow{F} \mathbb{P}_k^m$ such that $F(\underline{a}) = (f_0(\underline{a}) : \cdots : f_m(\underline{a}))$ and such that each $f_i \in k[X_1, \ldots, X_m]_d$ and $V(f_0) \cap \cdots \cap V(f_m) = \emptyset$.
- 3. Let $U = U_{f_0} \cup U_{f_1} \cup \cdots \cup U_{f_m} \subseteq \mathbb{P}^n_k$ where $f_i \in k[X_0, \ldots, X_n]_d$. Define $U \xrightarrow{F} \mathbb{P}^m_k$ where $F(\underline{a}) := (f_0(\underline{a}) : \cdots : f_m(\underline{a})).$
- 4. $f_i : \mathbb{A}_k^n \to \mathbb{P}_k^n$, where $f_i(\underline{a}) = (a_1 : \cdots : a_{i-1} : 1 : a_{i+1} : \cdots : a_n)$.
- 5. $g_i: \mathbb{P}_k^{n-1} \to \mathbb{P}_k^n$ where $g_i(\underline{a}) = (a_0: \cdots : a_{i-1}: 0: a_{i+1}: \cdots : a_{n-1}).$

2.9 Finding Irreducible Components

Definition 2.9.1 Let $R = k[x_0, ..., x_n]$, and $I \subsetneq R$ be a homogeneous ideal. *I* is *h*-irreducible if it is irreducible with respect to homogeneous ideals, i.e., for all homogeneous ideals J, K if $I = J \cap K$, then I = J or I = K.

Fact 2.9.2 If $I \subsetneq R$ is homogeneous and irreducible, then I is h-irreducible.

Proposition 2.9.3 If $I \subsetneq R$ is h-irreducible and $a, b \in R$ are homogeneous such that $ab \in I$, then $a \in I$ or $b^m \in I$ for some m.

Proof: Note that $(I:b) \subseteq (I:b^2) \subseteq \cdots$. Since R is noetherian, the ascending chaing condition implies that for some m we have $(I:b^m) = (I:b^{m+1})$. Then as in the proof of Proposition 1.6.4 we have

$$I = \underbrace{(I+aR)}_{\text{homogeneous}} \cap \underbrace{(I+b^mR)}_{\text{homogeneous}}$$

Therefore since I is h-irreducible, we have $I = I + aR \ni a$ or $I = I + b^m R \ni b^m$

Lemma 2.9.4 If $I \subseteq R$ is a homogeneous ideal, then I is prime if and only if I is h-irreducible and $I = \operatorname{rad}(I)$.

Proof: (\Rightarrow) Assume that *I* is prime. Then by Proposition 1.6.5, we have that *I* is irreducible and *I* = rad(*I*). Hence by Fact 2.9.2, *I* is h-irreducible.

 (\Leftarrow) Now assume that I is h-irreducible and $I = \operatorname{rad}(I)$. Then $I \subsetneq R$. To show I is prime, let $a, b \in R$ be homogeneous such that $ab \in I$. Proposition 2.9.3 implies that $a \in I$ or $b^m \in I$ for some m. Since $I = \operatorname{rad}(I)$, we must have $a \in I$ or $b \in I$, so I is prime.

Lemma 2.9.5 Let $I \subsetneq R$ be an h-irreducible ideal. Then rad(I) is a prime and homogeneous ideal.

Sketch of Proof: Assume that I is an h-irreducible ideal. Then it is homogeneous. Hence by Lemma 2.3.13 we have rad(I) is homogeneous. Also, rad(I) is prime by checking homogeneous elements; see the proof of Proposition 1.6.6.

Definition 2.9.6 Let $I \subsetneq R$ be a homogeneous ideal. An *h*-irreducible decomposition $I = Q_1 \cap \cdots \cap Q_m$ such that each Q_i is h-irreducible. The decomposition is irredundant if for all $i \neq j$, then $Q_i \not\subseteq Q_j$.

Proposition 2.9.7 Let $I \subsetneq R$ be a homogeneous ideal. Then I has an irredundant h-irreducible decomposition.

Proof: Similar to the proof of Proposition 1.6.9

Proposition 2.9.8 If $I \subsetneq R$ is a homogeneous ideal and $P_1, \ldots, P_m, Q_1, \ldots, Q_\ell$ are homogeneous primes such that

$$P_1 \cap \dots \cap P_m = Q_1 \cap \dots \cap Q_\ell$$

and if $i \neq j$, then $P_i \not\subseteq P_j$ and $Q_i \not\subseteq Q_j$. Then $m = \ell$ and there exists $\sigma \in S_m$ such that $P_i = Q_{\sigma(i)}$ for all i.

Proof: This is a corollary to Theorem 1.5.20.

Proposition 2.9.9 Let $I \subsetneq R$ be a homogeneous ideal. Then I = rad(I) if and only if for some prime ideals P_1, \ldots, P_m such that $I = P_1 \cap \cdots \cap P_m$.

Proof: Similar to the proof of Proposition 1.6.11 (a).

Corollary 2.9.10 If I = rad(I) is homogeneous and $\mathfrak{p}_1 \ldots, \mathfrak{p}_m$ are prime ideals such that $I = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_m$ is an irredundant decomposition, then each \mathfrak{p}_i is homogeneous.

_

Proof: Let P_1, \ldots, P_ℓ be homogeneous prime ideals such that $I = P_1 \cap \cdots \cap P_\ell$ is an irredundant decomposition. The uniqueness implies that $\mathfrak{p}_i = P_{\sigma(i)}$ is homogeneous.

Question 2.9.11 How do we find irreducible components for $V(I) \subseteq \mathbb{P}_k^n$?

Theorem 2.9.12 Assume that $k = \overline{k}$ and $I \subsetneq R$ is a homogeneous ideal such that $V(I) \neq \emptyset$ and $\operatorname{rad}(I) = P_1 \cap \cdots \cap P_m$ is an irredundant prime decomposition (hence P_i 's are homogeneous). Then the irreducible components of V(I) are $V(P_1), \ldots, V(P_m)$.

Proof: Note that each $V(P_i) \neq \emptyset$. So we need to show $P_i \neq \mathfrak{M}$. If $P_i = \mathfrak{M}$, then $P_j \subseteq \mathfrak{M} = P_i$ for all j. Since the decomposition is irredundant we have that $I = P_i = \mathfrak{M}$. But this contradicts that $V(I) \neq \emptyset$.

Theorem 2.9.13 Assume $k = \overline{k}$ and $I \subseteq R$ is homogeneous such that $V(I) \neq \emptyset$. Let $I = Q_1 \cap \cdots \cap Q_m$ be an h-irreducible decomposition. Then

$$\operatorname{rad}(I) = \operatorname{rad}(Q_1) \cap \cdots \cap \operatorname{rad}(Q_m).$$

Remove redundancies and reorder to assume $\operatorname{rad}(I) = \operatorname{rad}(Q_1) \cap \cdots \cap \operatorname{rad}(Q_\ell)$ is an irredundant homogeneous prime decomposition. Then the irreducible components of V(I) are $V(\operatorname{rad}(Q_1)) = V(Q_1), \ldots, V(\operatorname{rad}(Q_\ell) = V(Q_\ell)$.

Theorem 2.9.14 Let $I \subsetneq R$ be a homogeneos ideal such that $V(I) \neq \emptyset$. Then I(V(I)) =rad $(I(V(I))) \subsetneq R$, so $I(V(I)) = P_1 \cap \cdots \cap P_m$ such that each P_i is homogeneous and prime. Assume the decomposition is irredundant. Then the irreducible components of V(I) are $V(P_1), \ldots, V(P_m)$.

Proof: Similar to the proof of Proposition 1.6.18

Chapter 3

Sheaves

3.1 Presheaves

Definition 3.1.1 Let X be a topological space. A presheaf of abelian groups on X is a rule \mathcal{G} :

- 1. For all open subsets $U \subseteq X$, $\mathcal{G}(U)$ is an abelian group.
- 2. For every pair of open subsets $U \subseteq U' \subseteq X$ there is an abelian group homomorphism $\mathcal{G}: (U', U): \mathcal{G}(U') \to \mathcal{G}(U).$

such that

- (a) $\mathcal{G}(\emptyset) = 0;$
- (b) $\mathcal{G}(U, U) = \mathrm{id}_{\mathcal{G}(U)};$
- (c) If $U \subseteq U' \subseteq U'' \subseteq X$ are open, then we have the following commutative diagram

The group $\mathcal{G}(U)$ is the group of "sections" of \mathcal{G} over U. The homomorphisms $\mathcal{G}(U', U)$ is the "restriction map." To rephrase: Let X be a topological space. Set Open(X) = the category of open subsets of X with morphisms = containments. Set $\mathcal{A}b =$ the category of abelian groups with group homomorphisms = \mathbb{Z} -Mod. A presheaf of abelian groups is nothing more than a contravariant functor $\mathcal{G} : \text{Open}(X) \to \mathcal{A}b$.

Example 3.1.2 For all open sets $U \subseteq X$, let

$$\mathcal{G}(U) = \{ \text{continuous functions } U \to \mathbb{R} \}.$$

If $U \subseteq U'$, then $\mathcal{G}(U', U)$ = restriction of functions $\mathcal{G}(U') \to \mathcal{G}(U)$ where $f \mapsto f|_U$. Define addition in $\mathcal{G}(U)$ pointwise:

$$f+g)(u) = f(u) + g(u).$$

This makes \mathcal{G} into a presheaf of abelian groups on X.

Definition 3.1.3 A presheaf of rings on X is a presheaf \mathcal{G} of additive abelian groups such that each $\mathcal{G}(U)$ is a ring and each $\mathcal{G}(U', U)$ is a ring homomorphism (i.e. $\mathcal{G} : \operatorname{Open}(X) \to \operatorname{Rings}$).

Similarly for a *presheaf of k-algebras*:

- A k-algebra is a ring homomorphism $\phi: k \to R$.
- A morphism of k-algebras is a commutative diagram of ring homomorphisms:

Example 3.1.4 Let $k \to k[x_1, \ldots, x_n]$ be a k-algebra and let $J \subseteq k[x_1, \ldots, x_n]$ be an ideal. Then the following diagram commutes:

Example 3.1.5 The presheaf \mathcal{G} from Example 3.1.2 is a presheaf of \mathbb{R} -algebras. Multiplication in $\mathcal{G}(U)$ is pointwise $(f \cdot g)(u) = f(u) \cdot g(u)$. The map $\mathbb{R} \xrightarrow{\psi_U} \mathcal{G}(U)$ where $r \mapsto$ constant function, i.e., $\psi_U(r) : U \to \mathbb{R}$ is given by $\psi_U(r)(u) = r$. The map $\mathcal{G}(U', U) : \mathcal{G}(U') \to \mathcal{G}(U)$ by restriction is a k-algebra homomorphism (constant) u is constant on U).

3.2 Regular Functions on \mathbb{A}^n_k

Definition 3.2.1 Let $U \subseteq \mathbb{A}_k^n$ be open and let $\phi : U \to k$ be a function.

1. ϕ is regular at $\alpha \in U$ if there exists an open set $U(\alpha) \subseteq U$ such that $\alpha \in U(\alpha)$ and there exists polynomials $p_{\alpha}, q_{\alpha} \in R = k[x_1, \ldots, x_n]$ such that $U(\alpha) \subseteq U_{q_{\alpha}}$ and for all $\beta \in U(\alpha)$ we have $\phi(\beta) = \frac{p_{\alpha}(\beta)}{q_{\alpha}(\beta)}$.

In other words, there exists $\frac{p_{\alpha}}{q_{\alpha}} \in k(x_1, \ldots, x_n)$ such that $\phi = \frac{p_{\alpha}}{q_{\alpha}}$ on some neighborhood of α on which $\frac{p_{\alpha}}{q_{\alpha}}$ is a well-defined function.

2. ϕ is regular on U if it is regular at α for all $\alpha \in U$.

Example 3.2.2 Let $f \in R = k[x_1, \ldots, x_n]$ and $\emptyset \neq U \subseteq \mathbb{A}^n_k$ be an open set. Then $\frac{f}{1} = f$ defines a regular function on U.

Example 3.2.3 Let $f \in R$ and consider $U_f \subseteq \mathbb{A}_k^n$. Then for all $g \in R$ and for all $m \in \mathbb{N}$, we have $\frac{g}{fm}$ is regular on U_f .

Proposition 3.2.4 Let $\lambda \in k$. Then the constant function $U \to k$, given by $u \mapsto \lambda$, is regular.

Proof: Let $\lambda \in k \subseteq R$ be a polynomial. Then Example 3.2.2 implies that the constant function is regular.

Lemma 3.2.5 Let $\emptyset \neq U \subseteq \mathbb{A}_k^n$ be open and let $\phi : U \to k$ be a function. Then ϕ is regular on U if and only if there exists an open cover $U_1 \cup \cdots \cup U_m = U$ and $p_1, \ldots, p_m, q_1, \ldots, q_m \in R$ such that $q_i \neq 0$ for all i and $U_i \subseteq U_{q_i}$ for all i and $\phi|_{U_i} = \frac{p_i}{q_i}\Big|_{U_i}$ for all i.

Proof: (\Leftarrow) Assume that such p_1, q_i , and U_i exist. Then for every $\alpha \in U$ there exists *i* such that $\alpha \in U_{q_i}$ since $U = U_1 \cup \cdots \cup U_m$. Set

$$U(\alpha) = U_i$$
$$p_\alpha = p_1$$
$$q_\alpha = q_i.$$

Then $\phi|_{U(\alpha)} = \phi|_{U_i} = \left. \frac{p_i}{q_i} \right|_{U_i} = \left. \frac{p_\alpha}{q_\alpha} \right|_{U(\alpha)}$. Hence ϕ is regular on U.

 (\Rightarrow) Assume that ϕ is regular. We use the notation from Definition 3.2.1. Then $U = \bigcup_{\alpha \in U} U(\alpha)$ since $\alpha \in U(\alpha) \subseteq U$ for all $\alpha \in U$. Since \mathbb{A}^n_k is noetherian, we have U is noetherian and hence this open cover has a finite sub-cover

$$U = U(\alpha_1) \cup \cdots \cup U(\alpha_m)$$

Set $q_i = q_{\alpha_i}$, $p_i = p_{\alpha_i}$, and $U_i = U(\alpha_i)$. Then $U = \bigcup_{i=1}^m U(\alpha_i) = \bigcup_{i=1}^m U_i$, and

$$\phi|_{U(\alpha_i)} = \left. \frac{p_i}{q_i} \right|_{U(\alpha_i)} = \left. \frac{p_i}{q_i} \right|_{U_i}$$

Exercise 3.2.6 Let X be a topological space and $Z \subseteq X$ be a subset and let $X = U_1 \cup \cdots \cup U_m$ be an open cover. Then Z is closed in X if and only if $Z \cap U_i$ is closed in U_i for all i.

Proposition 3.2.7 Let $\phi: U \to k = \mathbb{A}_k^1$ be a regular function. Then ϕ is continuous.

Proof: We need to show $\phi^{-1}(V)$ is closed where V is closed. So let $V \subseteq k$ be a nontrivial closed subset. Then V is finite by Example 1.1.7, say $V = \{a_1, \ldots, a_m\}$. Hence

$$\phi^{-1}(\{a_1,\ldots,a_n\}) = \phi^{-1}(a_1) \cup \cdots \cup \phi^{-1}(a_m).$$

So it suffices to show that $\phi^{-1}(a)$ is closed in U for all $a \in k$. Since ϕ is regular, Lemma 3.2.5 provides an open cover $U = U_1 \cup \cdots \cup U_m$ and nonzero $q_1, \ldots, q_m \in R$ such that each $U_i \subseteq U_{q_i}$ and there exists $p_1, \ldots, p_m \in R$ such that $\phi|_{U_i} = \frac{p_i}{q_i}\Big|_{U_i}$ for all i. Then for all $\alpha \in U_i$, we have

$$\alpha \in \phi^{-1}(a) \Leftrightarrow \phi(\alpha) = a$$
$$\Leftrightarrow \frac{p_i(\alpha)}{q_i(\alpha)} = a$$
$$\Leftrightarrow p_i(\alpha) = a \cdot q_i(\alpha)$$
$$\Leftrightarrow \alpha \in \underbrace{V(p_i - aq_i)}_{\text{closed in } \mathbb{A}_i^n}$$

Hence $\phi^{-1}(a) \cap U_i = V(p_i - aq_i) \cap U_i$ is closed in U_i . Therefore by Exercise 3.2.6 we have that $\phi^{-1}(a) \subseteq U$ is closed.

Proposition 3.2.8 If $\phi: U \to k$ is regular and $U' \subseteq U$ is open, then $\phi|_{U'}: U' \to k$ is regular.

Proof: Let $U = U_1 \cup \cdots \cup U_m$ be an open cover such that $\phi|_{U_i} = \frac{p_i}{q_i}$ for all i. Set $U'_i = U_i \cap U'$. Then

$$(\phi|_{U'})|_{U'_i} = \phi|_{U'_i} = (\phi_{U_i})|_{U'_i} = \left(\frac{p_i}{q_i}\Big|_{U_i}\right)\Big|_{U'_i} = \frac{p_i}{q_i}\Big|_{U'_i}$$

Therefore $\phi|_{U_i}$ is regular.

Definition 3.2.9 Let $U \subseteq \mathbb{A}_k^n$ be open. Define $\mathcal{O}_{\mathbb{A}_k^n}(U) = \{\text{regular functions } U \to k\}$ and define $\mathcal{O}_{\mathbb{A}_k^n}(\emptyset) = 0$. Let $U' \subseteq U$ and define $\mathcal{O}_{\mathbb{A}_k^n}(U, U') : \mathcal{O}_{\mathbb{A}_k^n}(U) \to \mathcal{O}_{\mathbb{A}_k^n}(U')$ by $\phi \mapsto \phi|_{U'}$. Note that Proposition 3.2.8 implies that this map is well-defined.

Index

 $\mathcal{O}_{\mathbb{A}^n_k}, 44$ k-algebra, 42 Affine Space, 3 Algebraic Subset Affine, 4 Coordinate Ring, 16 Geometric Ideals, 8 h-irreducible, 38 h-irreducible Decomposition, 39 Hilbert's Nullstellensatz, 10 Projective, 33 Homogeneous Coordinate Ring, 37 Homogeneous Ideal, 26 Homogeneous Polynomial, 25 Hypersurface, 5 Projective, 30 Irreducible Closed Subset, 11 Irreducible Decomposition of an Ideal, 17 Irreducible Ideal, 16 Irredundant Irreducible Decomposition, 14 Irrelevant Maximal Ideal, 34 Krull Dimension Ring, 15 Topological Space, 15 Morphism of k-algebras, 42 Noetherian Topological Space, 13 Presheaf k-algebras, 42

Abelian Groups, 41 Rings, 42 Projective *n*-space, 24 Regular Affine, 42 Regular Function, 37 Ring of Regular Functions, 16 Vanishing Locus, 3 Zariski Topology on \mathbb{A}_k^n , 6 on \mathbb{P}_k^n , 28