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Introduction

What is Algebraic Geometry?

The study of geometric objects determined by algebraic “data”, i.e. polynomials. Some
examples are lines in R2, conics in R2, planes in R3, spheres, ellipsoids, etc. in R3.

Geometric objects of interest include: solution sets to systems of polynomial equations,
study them using algebraic techniques. For example: is the solution set finite or infinite?

Example 0.0.1 Let f, g ∈ C[x, y, z] and let V = {(x, y, z) ∈ C3 | f(x, y, z) = 0 = g(x, y, z)}.
Assume that V 6= ∅ (Hilbert’s Nullstellensatz says that this is equivalent to (f, g) 6= C[x, y, z]).
Then V is infinite. This is an application of two algebraic results: Hilbert’s Nullstellensatz and
Noether’s Normalization Lemma.
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Chapter 1

Affine Space

1.1 Algebraic Subsets

Notation: Throughout these notes, k will represent a field.

Definition 1.1.1 Given an integer n > 1, the set Ank = kn = {(a1, . . . , an) | a1, . . . , an ∈ k} is a
affine n-space over k.

Example 1.1.2 AnR = Rn (as a set), and A1
k = k (as a set).

Fact 1.1.3 Given f ∈ k[x1, . . . , xn] and a = (a1, . . . , an) ∈ Ank , the element f(a) ∈ k is well-
defined, i.e. f : Ank → k is a well-defined function. These are called “regular functions.” k[x1, . . . , xn]
is the ring of regular functions on Ank .

Note: Different polynomials can describe the same function.

Example 1.1.4 Let k = Z/pZ for a prime p, f(x) = x, and g(x) = xp. Fermat’s Little Theorem
implies that xp = x for all x ∈ k.

Definition 1.1.5 For each S ⊆ k[x1, . . . , xn] set V (S) = {a ∈ Ank | f(a) = 0∀ f ∈ S}. V is for
“variety” or “vanishing.” V (S) is the solution set to the system of polynomial equations

{f = 0 | f ∈ S}

and is called the vanishing locus for S. Notation: If S = {f1, . . . , fm}, we write V (f1, . . . , fm)
instead of V ({f1, . . . , fm}).

Example 1.1.6 V (0) = Ank = V (∅) and V (1) = ∅ = V (k[x1, . . . , xn]).

In A2
R: V (ax+ by + c) = line, V (x2 + y2 − 1) = circle, and similarly for other conics.

In A3
R: V (ax + by + cz + d) = plane, V (ax + by + cz + d, αx + βy + γz + δ) is a line as

long as the two planes are distinct and non-parallel, V (a2x2 + b2y2 + c2z2 − d2) = ellipsoid where
a, b, c, d 6= 0.
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1. Affine Space

Example 1.1.7 In A1
k: either V (S) = ∅, V (S) = A1

k or V (S) is finite, and for every finite set V
there exists S such that V = V (S).

Definition 1.1.8 A subset V ⊆ Ank is an algebraic subset if there exists S ⊆ k[x1, . . . , xn] such
that V = V (S).

Lemma 1.1.9 Let S ⊆ S′ ⊆ k[x1, . . . , xn]. Then V (S) ⊇ V (S′).

Proof: Exercise �

Proposition 1.1.10 Let S ⊆ k[x1, . . . , xn] and I = (S) ⊆ k[x1, . . . , xn]. Then V (S) = V (I).

Proof: Since I = (S) ⊇ S, the previous lemma implies V (I) ⊆ V (S).

For the other containment, let a ∈ V (S). Then for all f ∈ S, f(a) = 0. Therefore for all
f1, . . . , fm ∈ S, for all g1, . . . , gm ∈ k[x1, . . . , xn], and an arbitrary element h =

∑m
i=1 gifi ∈ I, we

have

h(a) =

m∑
i=1

gi(a)fi(a) = 0.

Thus a ∈ V (I) and V (S) = V (I). �

Notation 1.1.11 We will denote the ring R := k[x1, x2, . . . , xm].

Proposition 1.1.12 (a) For each Si ⊂ R and Ii = (Si)R

V (S1) ∪ V (S2) ∪ · · · ∪ V (Sm) = V (I1) ∪ V (I2) ∪ · · · ∪ V (Im)

= V (I1 ∩ I2 ∩ · · · ∩ Im)

= V (I1I2 · · · Im).

(b) For all λ ∈ Λ let Sλ ⊆ R and Iλ = (Sλ)R:⋂
λ∈Λ V (Sλ) =

⋂
λ∈Λ V (Iλ)

= V
(∑

λ∈Λ Iλ
)

= V
(⋃

λ∈Λ Sλ
)

where Λ is an index set that is not necessarily finite.

(c) The set of algebraic subsets of Ank is closed under finite unions and arbitrary intersections.

Proof: (a) We first note that V (S1) ∪ V (S2) ∪ · · · ∪ V (Sm) = V (I1) ∪ V (I2) ∪ · · · ∪ V (Im)
since V (St) = V (It) by the previous proposition.

Next we notice that Ij ⊇ I1 ∩ I2 ∩ · · · ∩ Im for all j. Hence by Lemma 1.1.9 we have

V (Ij) ⊆ V (I1 ∩ I2 ∩ · · · ∩ Im)

for all j. Therefore
⋃
j V (Ij) ⊆ V (I1 ∩ I2 ∩ · · · ∩ Im).
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1.1. Algebraic Subsets

Now since I1I2 · · · Im ⊆ I1 ∩ I2 ∩ · · · ∩ Im, by Lemma 1.1.9 we know

V (I1I2 · · · Im) ⊇ V (I1 ∩ I2 ∩ · · · ∩ Im).

Finally let a ∈ Ank \
⋃
j V (Ij). Then we have a 6∈ V (Ij) for all j. Therefore for all j there

exists fj ∈ Ij such that fj(a) 6= 0. So let f = f1f2 · · · fm ∈ I1I2 · · · Im. Then

f(a) = f1(a)f2(a) · · · fm(a) 6= 0.

Therefore a 6∈ V (I1 · I2 · · · Im). Hence what we have shown is

V (I1) ∪ V (I2) ∪ · · · ∪ V (Im) ⊆ V (I1 ∩ I2 ∩ · · · ∩ Im)

⊆ V (I1I2 · · · Im)

⊆ V (I1) ∪ V (I2) ∪ · · · ∪ V (Im)

giving us equality at each stage.

(b) Again by Lemma 1.1.9,
⋂
λ∈Λ V (Sλ) =

⋂
λ∈Λ V (Iλ) since V (Sλ) = V (Iλ) for all λ ∈ Λ.

Next we will show
⋂
λ∈Λ V (Iλ) = V (

∑
λ∈Λ Iλ). We will first show (⊇). Here we note

Iµ ⊆
∑
λ∈Λ

Iλ for all µ ∈ Λ.

Hence V (Iµ) ⊇ V (
∑
λ∈Λ Iλ) for all µ (again by Lemma 1.1.9). Therefore

⋂
µ V (Iµ) ⊇ V (

∑
λ∈Λ Iλ).

(⊆) Let a ∈
⋂
λ∈Λ V (Iλ). Then a ∈ V (Iλ) for all λ. Therefore for all fλ ∈ Iλ, fλ(a) = 0. So

let f ∈
∑
λ∈Λ Iλ. Then

f =

finite∑
λ∈Λ

fλ

where fλ ∈ Iλ for all λ. Therefore

f(a) =
∑
λ∈Λ

fλ =
∑
λ∈Λ

0 = 0.

Hence a ∈ V (
∑
λ∈Λ Iλ) as desired.

Now for the last equality we have

V
(⋃

λ∈Λ Sλ
)

= V
((⋃

λ∈Λ Sλ
)
R
)

= V
(∑

λ∈Λ Iλ
)

since
(⋃

λ∈Λ Sλ
)
R =

∑
λ∈Λ Iλ. �

Definition 1.1.13 A hypersurface in Ank is a subset of the form V (f) for a single f .

Corollary 1.1.14 Let V be an algebraic subset. Then V is a finite intersection of hypersurfaces.

Proof: Since V is algebraic and, V = V (S) = V (I) where I = (S)R. The Hilbert Basis
Theorem allows us to write I = (f1, f2, . . . , fn)R. Now apply V (−) to get:

V (I) = V (f1, f2, . . . , fm)

= V (f1R+ f2R+ · · ·+ fmR)

= V (f1R) ∩ V (f2R) ∩ · · · ∩ V (fmR)

= V (f1) ∩ V (f2) ∩ · · · ∩ V (fm).
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1. Affine Space

Hence V is a finite intersection of hypersufaces. �

Notation: Given a ∈ Ank , let ma := (x1 − a1, x2 − a2, . . . , xj − aj , . . . , xn − an)R.

Fact 1.1.15 ma ⊆ R is maximal because

φa : R→ k

: f 7→ f(a)

is a ring epimorphism such that ma = Ker(φa).

Proposition 1.1.16 {a} = V (ma) = V (x1 − a2, x2 − a2, . . . , xn − an). That is every singleton is
algebraic.

Proof: First notice that by the Proposition 1.1.10 we have the second equality. So we will
just show {a} = V (ma).

(⊆) Since a satisfies xi − ai for all i, we have a ∈ V (x1 − a1, x2 − a2, . . . , xn − an) and
{a} ⊆ V (x1 − a1, x2 − a2, . . . , xn − an).

(⊇) If b ∈ V (x1 − a1, x2 − a2, . . . , xn − an), then b satisfies xi − ai for all i. Therefore

bi − ai = 0

⇒ bi = ai for all i
⇒ b = a.

Hence V (x1 − a1, x2 − a2, . . . , xn − an) ⊆ {a}. �

Corollary 1.1.17 Every finite subset of Ank is algebraic.

Proof: {algebraic subsets} contains all singletons and is closed under finite unions. �

1.2 Zariski Topology

Definition 1.2.1 The Zariski Toplogy on Ank .

• A subset V ⊆ Ank is closed if it is algebraic.

• A subset U ⊆ Ank is open if Ank \ U is closed, i.e. algebraic. A set is open if and only if its
complement is an algebraic set.

Notation: For all f ∈ R, set Uf := {a ∈ Ank |f(a) 6= 0} = Ank \ V (f). Therefore Uf is open in the
Zariski Topology. These are “principal” open sets.

Theorem 1.2.2 The Zariski Toplogy is a topology.

Proof: ∅ is algebraic and is closed in the Zariski Topology. Therefore ∅c = Ank is open.
Similarly Ank is algebraic, hence closed. Thus (Ank )c = ∅ is open.

{algebraic sets} is closed under finite unions and arbitrary intersections. Thus {open sets}
is closed under finite intersections and arbitrary unions by DeMorgan’s laws. �
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1.2. Zariski Topology

Example 1.2.3 Zariski Toplogy on A1
k is “cofinite topology” where

{open sets} = {∅} ∪ {complement of finite sets}.

See Example 1.1.7

Theorem 1.2.4 Every open set in Ank is a finite union of sets of the form Uf .

Proof: Consider an open set U = Anh \ V (I). Then by Corollary 1.1.14

V (I) = V (f1) ∩ V (f2) ∩ · · · ∩ V (fm)

⇒ U = Ank \ V (I)

= (Ank \ V (f1)) ∩ (Ank \ V (f2)) ∩ · · · ∩ (Ank \ V (fm))

= Uf1 ∪ Uf2 ∪ · · · ∪ Ufm .

Thus since U is an arbitrary open set, every open set is a finite union of sets of the form Uf . �

Corollary 1.2.5 {Uf | f ∈ R} is a basis for the Zariski topology in Ank .

Goal: Open sets are really big (when k is infinite). See Theorem 1.2.8

If k is finite, then every subset of Ank is finite, therefore closed and open by Corollary 1.1.17.
Also, for all a, b ∈ Ank the sets {a} and {b} are open. Thus Ank is Hausdorff in this case.

Fact 1.2.6 For all f, g ∈ R, Uf ∩ Ug = Ufg.

Proof We note that since k is a field, it is also an integral domain. Therefore f(a) ·g(a) 6= 0
if and only if f(a) 6= 0 and g(a) 6= 0. Also f(a) · g(a) 6= 0 if and only if a ∈ Ufg. Another thing to
notice is f(a) 6= 0 and g(a) 6= 0 if and only if a ∈ Uf ∩ Ug. Therefore Ufg = Uf ∩ Ug. �

Lemma 1.2.7 Assume that k is infinite and let f, g ∈ R. If f(a) · g(a) = 0 for all a ∈ Ank , then
f · g = 0 in R. Therefore either f = 0 or g = 0.

Proof: We will use induction on n. Base Case: n = 1. A nonzero polynomial in k[x1] can
only have a finite number of zeros.

Inductive Step: Assume that n > 2 and that the result holds for polynomials in k[x2, . . . , xn].
Now write

f = f0 + x1f1 + x2
1f2 + · · ·+ xd1fd

g = g0 + x1g1 + x2
1g2 + · · ·+ xe1ge

such that all fi, gi ∈ k[x2, . . . , xn]. Assume f, g 6= 0. Therefore assume fd 6= 0 and ge 6= 0. The
induction hypothesis implies there exists b ∈ An−1

k such that fd(b) · ge(b) 6= 0. Hence

fg = f0g0 + · · ·+ fdgex
d+e
1 and f(a) · g(a) = 0

for all a ∈ Ank . Therefore h(x1) := f(x1, b) · g(x1, b) ∈ k[x1] where h(c) = 0 for all c ∈ k. Hence
h = 0. We also have

h(x1) = f0(b)g0(b) + f1(b)g1(b)x1 + · · ·+ fd(b)ge(b)x
d+e
1 6= 0.

Therefore h 6= 0 contradicting the above statement that h = 0. �
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1. Affine Space

Theorem 1.2.8 Assume that k is infinite and let U,U ′ ⊆ Ank where both U,U ′ are open and
non-empty. Then U ∩ U ′ 6= ∅.

Proof: Using Theorem 1.2.4, we will write

U = Uf1 ∪ Uf2 ∪ · · · ∪ Ufm and U ′ = Ug1 ∪ Ug2 ∪ · · · ∪ Ugp

where each Ufi , Ugj 6= ∅. Note that U ∩ U ′ ⊇ Uf1 ∩ Ug1 = Uf1g1 .

Claim: Uf1g1 6= ∅.

If Uf1g1 = ∅, then for all a ∈ Ank : f1(a)g1(a) = 0. Therefore Lemma 1.2.7 implies f1 = 0 or
g1 = 0. But this implies that Uf1 = ∅ or Ug1 = ∅ which contradicts that Uf1 , Ug1 6= ∅. �

Corollary 1.2.9 If k is infinite, then Ank is not Hausdorff.

Fact 1.2.10 If a, b ∈ Ank such that a 6= b, then there exists a neighborhood U of a such that b 6∈ U .

Proof: Let ai 6= bi for some i. Then b satisfies xi − bi, but a does not. Thus a ∈ Uxi−bi
and b 6∈ Uxi−bi . �

1.3 Geometric Ideals

Definition 1.3.1 Given V ⊆ Ank (any subset) I(V ) = ({f ∈ R | f(a) = 0 ∀ a ∈ V })R. We write
I(a1, a2, . . . ) := I({a1, a2, . . . }).

Example 1.3.2 I(∅) = R, I(a) = ma. If k is infinite then I(Ank ) = 0.

Proposition 1.3.3 (a) I(V ) is an ideal of R.

(b) If V ⊆ V ′, then I(V ) ⊇ I(V ′).

(c) I(V1 ∪ V2 ∪ · · · ∪ Vm) = I(V1) ∩ I(V2) ∩ · · · ∩ I(Vm).

(d) I(
⋂
λ∈Λ Vλ) ⊇

∑
λ∈Λ I(Vλ).

(e) rad(I(V )) = I(V ).

Proof: (a) and (b) are left as exercises. (c) (⊆) We first note

V1 ∪ V2 ∪ · · · ∪ Vm ⊇ Vj .

So by part (b) we know I(V1∪V2∪· · ·∪Vm) ⊆ I(Vj). Therefore I(V1∪V2∪· · ·∪Vm) ⊆
⋂m
i=1 I(Vi).

(⊇) Let f ∈ I(V1) ∩ I(V2) ∩ · · · ∩ I(Vm). Then f ∈ I(Vj) for all j. Therefore for all a ∈ Vj ,
f(a) = 0 for all j. Hence for all a ∈ V1 ∪ V2 ∪ · · · ∪ Vm, f(a) = 0. Thus

f ∈ I(V1 ∪ V2 ∪ · · · ∪ Vm).

(d) First note that
⋂
λ∈Λ Vλ ⊆ Vµ for all µ ∈ Λ. Therefore by part (b)

I
(⋂

λ∈Λ Iλ
)
⊇ I(Vµ).
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1.3. Geometric Ideals

Therefore I(
⋂
λ∈Λ Vλ) ⊇

∑
λ∈Λ I(Vλ).

(e) (⊇) rad(J) ⊇ J

(⊆) Let f ∈ rad(I(V )). Then there exists m such that fm ∈ I(V ). Therefore for all a ∈ V :

fm(a) = 0

(f(a))
m

= 0 in k.

Therefore f(a) = 0 and f ∈ I(V ). �

Proposition 1.3.4 Let I ⊆ R be an ideal:

(a) I ⊆ I(V (I)).

(b) V ⊆ V (I(V )).

(c) rad(I) ⊆ I(V (I)).

(d) V ⊆ V (I(V )).

Proof: 1. Let f ∈ I. Then by definition for all a ∈ V (I), we have f(a) = 0. Note that
g ∈ I(V (I)) if and only if g(a) = 0 for all a ∈ Ank . Therefore f ∈ I (V (I)) and I ⊆ I(V (I)). 2. is
proved similarly.

3. Let I ⊆ I(V (I)). Then rad(I) ⊆ rad(I(V (I)) = I(V (I)).

4. V is the closure of V in Ank which is the intersection of all closed subsets of Ank containing
V . Also V is the unique smallest closed subset of Ank containing V .

So V (I(V )) is a closed subset of Ank containing V and V is the unique smallest such subset.
So V ⊆ V (I(V )). �

Proposition 1.3.5 V = V (I(V )).

Proof: In Proposition 1.3.4 we proved that V ⊆ V (I(V )). So we only need to show the
reverse containment. For this, we notice that since V is a closed set we can write V = V (J). Hence

V ⊆ V = V (J)⇒ I(V ) ⊇ I(V ) = I(V (J)) ⊇ J.

Therefore V (I(V )) ⊆ V (J) = V . �

Proposition 1.3.6 I(V (I(V ))) = I(V ).

Proof: (⊇) By Proposition 1.3.4 (a) we have I(V (I(V ))) ⊇ I(V ).

(⊆) By Proposition 1.3.4 (b) we have V (I(V )) ⊇ V . This implies I(V (I(V ))) ⊆ I(V ). �

Proposition 1.3.7 V (I(V (I))) = V (I).

Proof: Same proof as Proposition 1.3.6. �
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1. Affine Space

1.4 Hilbert’s Nullstellensatz

Theorem 1.4.1 (Hilbert’s Nullstellensatz) Assume that k = k:

(a) I(V (I)) = rad(I).

(b) The only maximal ideals of R = k[x1, . . . , xn] are the ma with a ∈ Ank . i.e.

Ank −→ m- Spec(R) = {maximal ideals of R}
a 7−→ ma

is onto.

Proof: Maybe later. �

Corollary 1.4.2 Assume that k = k:

(a) {algebraic subsets of Ank}� {radical ideals of R}. Under this correspondence: {a}� ma.

(b) If I 6= R, then V (I) 6= ∅.

Proof: We know

V I(V )

V (I) I

are well-defined. So we only need to check that they are inverses. By Proposition 1.3.7:

V (I) I(V (I))

V (I(V (I)))

and for the other direction we have:

rad(I)

V (I) I(V (I)).

Nullstellensatz

(b) If I 6= R, then I(V (R)) = rad(I) 6= R. So if V (I) = ∅, then I(V (I)) = I(∅) = R
contradicting that I(V (R)) 6= R. �
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1.5. Irreducible Closed Subsets

Example 1.4.3 (k = k is needed) Let k = R and m = (x2 + 1) ⊆ R = k[x]. Then

k[x]/(x2 + 1) ∼= C

which is a field. Therefore m is a maximal ideal. But I(V (m)) = I(∅) = R 6= m = rad(m).

1.5 Irreducible Closed Subsets

Definition 1.5.1 Let X be a topological space and V ⊆ X a non-empty closed subset. Then V
is irreducible if it can not be written as a union of two closed subsets properly contained in V .

Example 1.5.2 {a} ⊆ Ank is irreducible. For a 6= b, the set {a, b} is not irreducible since

{a, b} = {a} ∪ {b}.

Proviso 1.5.3 If V is not closed, then we need a modified definition.

Fact 1.5.4 If V ⊆ Ank is an algebraic subset, then V (I(V )) = V .

Proof: Apply Proposition 1.3.5. �

Theorem 1.5.5 Let V ⊆ Ank be a closed subset. Then V is irreducible if and only if I(V ) is prime.

Proof: (⇒) Assume that V is irreducible. Then V 6= ∅ and hence I(V ) 6= R. Let f, g ∈ R
such that fg ∈ I(V ). Now define

J := I(V ) + fR

K := I(V ) + gR.

Note that JK ⊆ I(V ) ⊆ J ∩K since:

JK = I(V )2 + f · I(V ) + g · I(V )︸ ︷︷ ︸
⊆I(V )

+ f · gR︸ ︷︷ ︸
⊆I(V )

⊆ I(V ).

Also note that J = I(V ) + fR ⊇ I(V ). Similarly K ⊇ I(V ). Hence J ∩K ⊇ I(V ) and thus

V (JK) ⊇ V (I(V )) ⊇ V (J ∩K).

But V (JK) = V (J) ∪ V (K), V (I(V )) = V , and V (J ∩K) = V (J) ∪ V (K). Therefore

V (J) ∪ V (K) ⊇ V ⊇ V (J) ∪ V (K).

So V = V (J) ∪ V (K). Since V is irreducible V = V (J) or V = V (K). Thus I(V ) = I(V (J)) ⊇ J
(f ∈ J) or I(V ) = I(V (K)) ⊇ K (g ∈ K). So if fg ∈ I(V ) then either f ∈ I(V ) or g ∈ I(V ) and
I(V ) is prime.

(⇐) Assume that I(V ) is prime. To show V is irreducible, let V1 and V2 be closed non-empty
subsets such that V = V1 ∪ V2. We need to show that V = V1 or V = V2. Note that for p = I(V )

V (p) = V = V1 ∪ V2 = V (I1) ∪ V (I2) = V (I1 · I2).

So p = I(V ) = I(V (I1 · I2)) ⊇ I1 · I2. Since p is prime: p ⊇ Ij for some j. Therefore

Vj ⊆ V1 ∪ V2 = V = V (p) ⊆ V (Ij) = Vj .

Thus V = Vj = V (Ij) and V is irreducible. �

11
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Corollary 1.5.6 If k = k and p ⊆ R is prime, then V (p) is irreducible.

Proof: By Theorem 1.4.1 (Hilbert’s Nullstellensatz) p = I(V (p)). Because p is prime
I(V (p)) is prime. Hence V (p) is irreducible by Theorem 1.5.5. �

Question 1.5.7 If k is infinite and p ⊂ R is prime, then V (p) is irreducible?

Example 1.5.8 Let R = R[X,Y ]. Set f = Y 2 +X2(X − 1)2 ∈ R.

Claim 1: (f)R ⊂ R is prime.

Claim 2: V (f) = {(0, 0), (1, 0)} is not irreducible.

2. Notice that (a, b) ∈ V (f) if and only if b = 0 and a(a− 1) = 0 if and only if (a, b) = (0, 0)
or (1, 0).

1. Here we note that R is a UFD. Therefore we need to prove that f is irreducible. Let
f = αβ. Since degY (f) = 2 we have two possibilities:

(a) degY (α) = 2 and degY (β) = 0.

(b) degY (α) = 1 and degY (β) = 1.

(a) degY (α) = 2: write α = α0(X) + α1(X)Y + α2(X)Y 2 and β = β(X). Then

f = αβ = β(X)α0(X) + β(X)α1(X)Y + β(X)α2(X)Y 2.

So

β(X)α0(X) = X2(X − 1)2

α1(X)β(X) = 0

α2(X)β(X) = 1.

The last line implies that β is constant and hence a unit.

(b) degY (α) = degY (β) = 1: write α = α0(X) + α1(X)Y and β = β0(X) + β1(X)Y . Then

f = αβ = α0(X)β0(X) + (α0(X)β1(X) + α1(X)β0(X))Y + α1(X)β1(X)Y 2

and so

α0(X)β0(X) = X2(X − 1)2

α1(X)β1(X) = 1

α0(X)β1(X) + α1(X)β0(X) = 0.

The second line implies that α1 and β1 are both nonzero constants. Also the third line implies
that β0 = −α−1

1 α0β1 where both α−1
1 and β1 are constants. Now the first line implies

(X(X − 1))
2

= α0(X)
(
0α−1

1 β1

)
α0(X)

= −β2
1α0(x)2.

Now evaluate at x = −1 to see the left hand side is > 0 and the right hand side is 6 0 which is a
contradiction. Therefore f is irreducible.

12



1.5. Irreducible Closed Subsets

So the answer to the Question 1.5.7 is no.

Proposition 1.5.9 If k is finite, then the only irreducible subsets of Ank are {a}.

Proof: Let ∅ 6= V ⊆ Ank be closed such that |V | > 2. Note that |V | <∞ because |k| <∞.
Also every subset of Ank is closed. So

V = {a} ∪ (V \ {a}) for all a ∈ V.

So V is the union of proper closed subsets. �

Corollary 1.5.10 Let k be finite, then Ank is reducible.

Proposition 1.5.11 If k is infinite, then Ank is irreducible.

Proof: Suppose that Ank = V (I) ∪ V (J) such that V (I) 6= Ank and V (J) 6= Ank . Therefore
I 6= 0 and J 6= 0. So there exists nonzero elements f ∈ I and g ∈ J .

Claim: Ank = V (f) ∪ V (g).

f ∈ I implies that V (f) ⊇ V (I). Similarly V (g) ⊇ V (J). So

Ank = V (I) ∪ V (J) ⊆ V (f) ∪ V (g) ⊆ Ank .

Now for all a ∈ Ank : f(a) = 0 or g(a) = 0. Therefore for all a ∈ Ank :

f(a)g(a) = 0.

If |k| =∞, then f = 0 or g = 0 by Lemma 1.2.7 contradicting that 0 6= f, g. �

Corollary 1.5.12 If k is infinite, then kn can not be written as a finite union of proper subspaces.

Lemma 1.5.13 Let X be a topological space. The following are equivalent:

(i) Open sets satisfy the ascending chain condition.

(ii) Closed sets satisfy the descending chain condition.

Proof: Exercise �

Definition 1.5.14 X is noetherian if the closed sets satisfy the descending chain condition.

Theorem 1.5.15 Ank is noetherian.

Proof: Let V1 ⊇ V2 ⊇ . . . be a descending chain of closed subsets in Ank . Now apply I(−):

I(V1) ⊆ I(V2) ⊆ . . .

to get an ascending chain of ideals in R = k[x1, x2, . . . , xm]. Since R is noetherian the above
ascending chain must stabilize. Hence I(Vj) = I(Vj+1) = · · · for some j. Note that by Fact 1.5.4

Vj = V (I(Vj)) = V (I(Vj+1)) = Vj+1.

Therefore the original chain must stabilize as well. �
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1. Affine Space

Fact 1.5.16 If X is a noetherian topological space, then every closed subset of X is noetherian
and so is every open subset.

Lemma 1.5.17 Let X be a topological space. The following are equivalent:

(i) X is noetherian.

(ii) Every non-empty set of closed subsets of X has a minimal element.

(iii) Every non-empty set of open subsets of X has a maximal element.

Proof: Exercise �

Theorem 1.5.18 Let X be a noetherian topological space. Then every non-empty closed subset of
X is a finite union of irreducible non-empty closed subsets.

Proof: Suppose not. Then there exists a non-empty closed subset V ⊆ X that is not a
finite union of irreducible closed subsets (therefore reducible). Now define

Σ := {non-empty closed subsets of X not a finite union of irreducible closed subsets}.

Note that Σ 6= ∅ is a set of closed subsets. Let W ∈ Σ be a minimal element. Then W is reducible.
Therefore there exists closed subsets V1, V2 ⊆ X such that Vi (W andW = V1∪V2. W is minimal
in Σ and Vi (W is closed. Therefore Vi 6∈ Σ and thus

Vi = Vi,1 ∪ Vi,2 ∪ · · · ∪ Vi,mi

where Vi,j is irreducible. W = V1 ∪ V2 is a finite union of closed irreducible subsets contradicting
our assumption. �

Corollary 1.5.19 Every non-empty closed subset of Ank is a finite union of irreducible closed
subsets.

Proof: Apply Theorems 1.5.15 and 1.5.18. �

Theorem 1.5.20 (Uniqueness) Let V1, . . . , Vm, V
′
1 , . . . , V

′
m′ ∈ Ank be irreducible and closed such

that Vi 6⊆ Vj for all i 6= j and V ′i 6⊆ V ′j for all i 6= j and V1 ∪ · · · ∪ Vm = V ′1 ∪ · · · ∪ V ′m′ . Then
m = m′ and there exists σ ∈ Sm such that for all i = 1, . . . ,m: V ′σ(i) = Vi. This decomposition is
called an irredundant irreducible decomposition of V or a minimal irreducible decomposition of V .

Proof: We first note that V1 ⊆ V1 ∪ · · · ∪ Vm = V ′1 ∪ · · · ∪ V ′m′ . Then

V1 = (V ′1 ∪ · · · ∪ V ′m′) ∩ V1

= (V ′1 ∩ V1) ∪ · · · ∪ (V ′m′ ∩ V1) .

Since V1 is irreducible and V ′i ∩ V1 is closed we have V1 = V ′i ∩ V1 ⊆ V ′i for some i. By symmetry,
there exists j such that V ′i ⊆ Vj . But no containments for the V ’s implies j = 1 and hence V ′i = V1.
Now rearrange the V ’s to assume V1 = V ′1 .

14
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Similarly V2 = V ′` for some `. If ` = 1, then V2 = V ′1 = V1 which is a contradiction.
Therefore ` > 2. Again we can rearrange, so assume that V2 = V ′2 .

For p = 1, . . . ,m we use a similar argument and a rearrangement will give us Vp = V ′p .
Therefore m 6 m′. Symmetrically m′ 6 m and hence m = m′. Thus Vp = V ′p for all p. �

Fact 1.5.21 V 6= ∅ closed in Ank implies that V has an irredundant irreducible decomposition.
(Remove redundancies from a given irreducible decomposition.)

Definition 1.5.22 The Vi that occur in an irredundant irreducible decomposition of V are the
irreducible components of V .

Definition 1.5.23 Let X be a topological space and V ⊆ X be closed. The Krull dimension of
V is

dim(V ) := sup{m > 0 | ∃ V0 ( V1 ( · · · ( Vm ⊆ V such that each Vi is closed and irreducible}.

Definition 1.5.24 Let S be a commutative ring with identity. The Krull dimension of S is

dim(S) := sup{m > 0 | there exists p0 ( p1 ( · · · ( pm primes in S}

Theorem 1.5.25 Let V ⊆ Ank be closed, V 6= ∅ and R = k[x1, . . . , xn]. Then

dim(V ) 6 dim(R/I(V )).

If k = k, then equality holds.

Proof: Let V0 ( V1 ( · · · ( Vm ⊆ V be such that each Vi is irreducible and closed. Then
I(V0) ⊇ I(V1) ⊇ · · · ⊇ I(Vm) ⊇ I(V ). Recall that Vi is irreducible if and only if I(Vi) is prime
(Theorem 1.5.5). Note I(Vi) ⊆ R. So

I(V0)

I(V )
⊇ · · · ⊇ I(Vm)

I(V )

is a chain of prime ideals in R/I(V ). Then I(Vj)
I(V ) ) I(Vj+i)

I(V ) if and only if I(Vj) ) I(Vj+1). Suppose
that I(Vj) = I(Vj+1). Then Vj = V (I(Vj))) = V (I(Vj+1)) = Vj+1. Hence Vj = Vj+1 contradicting
our assumptions. Thus

I(V0) ) I(V1) ) · · · ) I(Vm) ⊇ I(V ).

Therefore dim(R/I(V )) > m and thus dim(R/I(V )) > dim(V ).

For the last statement assume that k = k. Let p0 ( p1 ( · · · ( pm be prime ideals in
R/I(V ). Then pi = Pi/I(V ) where Pi ⊆ R is a prime ideal containing I(V ). Now the above chain
of prime ideals gives us the following chain of prime ideals:

I(V ) ⊆ P0 ( P1 ( · · · ( Pm.

Therefore V = V (I(V )) ⊇ V (P0) ⊇ · · · ⊇ V (Pm). Corollary 1.5.6 tells us V (Pj) is irreducible.
Now by the Nullstellensatz (Theorem 1.4.1):

I(V (Pj)) = rad(Pj) = Pj ( Pj+1 = I(V (Pj+1))

Therefore V (Pj) ) V (Pj+1). �
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Example 1.5.26 If k = k, then dim(Ank ) = dim(k[x1, . . . , xn]) = n. If |k| < ∞, then dim(Ank ) =
0 < n since the only irreducible closed subsets are {a}.

Fact 1.5.27 If |k| =∞, then dim(Ank ) = n.

Sketch of Proof: It suffices to show Amk is irreducible for all m. But this is true by
Proposition 1.5.11. �

Definition 1.5.28 R/I(V ) is called the coordinate ring for V . This is also known as the ring of
regular functions on V . Given f ∈ R/I(V ), then f defines a well-defined function V → k.

1.6 Finding Irreducible Components

Question 1.6.1 How do we find irreducible components?

Definition 1.6.2 Let A be a commutative ring with identity. An ideal I ( A is irreducible if it
can not be written as an intersection of ideals non-trivially, i.e. for all ideals J,K ⊆ A, if I = J∩K,
then I = J or I = K.

Example 1.6.3 If I ( A is prime, then I is irreducible.

Proof: Let P ⊂ A be prime. Suppose that P = J ∩K ⊇ JK. Since P is prime we have
that either P ⊇ J or P ⊇ K. Hence

P = J ∩K︸ ︷︷ ︸
⊆K

⊆ J.

If P ⊇ J , then J ⊆ P = J ∩K ⊆ J , hence P = J . Similarly if P ⊇ K, then P = K. Therefore
either P = J or P = K. �

Proposition 1.6.4 Let A be a noetherian ring and let I ⊂ A be irreducible. Then for all x, y ∈ A
if xy ∈ I, then either x ∈ I or there exists m > 1 such that ym ∈ I. (This says that I is “primary”).

Proof: Assume that I is irreducible and let x, y ∈ A such that xy ∈ I. Now consider the
colon ideals

(I : y) ⊆ (I : y2) ⊆ (I : y3) ⊆ · · · .

Since A is noetherian, the above chain must stabilize. Therefore for some m > 1 we must have
(I : ym) = (I : ym+1).

Claim: (I + xA) ∩ (I + ymA) = I.

(⊇) Note that I + xA ⊇ I and I + ymA ⊇ I. Therefore (I + xA) ∩ (I + ymA) ⊇ I.

(⊆) Let α ∈ (I + xA) ∩ (I + ym)A). Then we can write

α = i+ xr for i ∈ I, r ∈ A (1.1)
α = j + yms for j ∈ I, s ∈ A. (1.2)

Multiplying (1.1) by y we see αy = iy + xry ∈ I since αy ∈ I and xry ∈ I because xy ∈ I.
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Multiplying (1.2) by y we see αy = jy+ymsy = jy+ym+1s. Note that ym+1s = αy−jy ∈ I.
Therefore s ∈ (I : ym+1) = (I : ym) and hence α = j + yms ∈ I. Thus (I + xA) ∩ (I + ymA) ⊆ I.

Now since I is irreducible, we have I = I + xA 3 x or I = I + ymA 3 ym. �

Proposition 1.6.5 Let A be noetherian and I ⊆ A be an ideal. Then I is prime if and only if I
is irreducible and I = rad(I).

Proof: (⇒) Let I be a prime ideal. Then by Example 1.6.3 we have that I is irreducible.
Now, since I is prime we also have that I = rad(I).

(⇐) Assume that I = rad(I) is irreducible. To show that I is prime, let x, y ∈ A such that
xy ∈ I. Since I is irreducible Proposition 1.6.4 implies that x ∈ I or ym ∈ I for some m. But since
I = rad(I) it follows that x ∈ I or y ∈ I. Hence I is prime. �

Proposition 1.6.6 Let A be noetherian and I ⊂ A be an irreducible ideal. Then rad(I) is prime.

Proof: Since I 6= A we have rad(I) 6= A. Let x, y ∈ A such that xy ∈ rad(I). Then
xmym ∈ I for some m. Proposition 1.6.5 implies that xm ∈ I or yml ∈ I. Therefore x ∈ rad(I) or
y ∈ rad(I). Hence rad(I) is prime. �

Fact 1.6.7 If I ⊆ A is an irreducible ideal and I = J1 ∩ J2 ∩ · · · ∩ Jm, then I = Ji for some i.

Proof: Use induction on m along with the definition of I being irreducible. �

Definition 1.6.8 A irreducible decomposition of an ideal is a decomposition I = Q1∩Q2∩· · ·∩Qm
such that each Qi is irreducible. Such a decomposition is irreduntant if it has no redundancies: if
i 6= j, then Qi 6⊆ Qj .

Proposition 1.6.9 If A is noetherian and I ⊆ A is an ideal, then I has an irredundant irreducible
decomposition. Moreover if the Qi’s are prime, then the Qi’s in the irreducible decomposition are
unique (up to order).

Proof: Step 1: Every ideal in A has an irreducible decomposition.

Assume there exists an ideal in A that does not have an irreducible decomposition. Then
let

Σ = {ideals I that do not have an irreducible decomposition}.

Then Σ 6= 0 is a collection of ideals. Since A is noetherian, Σ has a maximal element I. Then I is
not irreducible (if I were irreducible, then I = I is an irreducible decomposition). Therefore there
exists ideals J,K such that I = J ∩K and I 6= J and I 6= K. Then I ( J and I ( K. Since I is
maximal in Σ we have J,K 6∈ Σ. Then we can write

J = Q1 ∩ · · · ∩Qm
K = L1 ∩ · · · ∩ Lt

as irreducible decompositions. This implies that

I = J ∩K = Q1 · · · ∩Qm ∩ L1 ∩ · · · ∩ Lt

17
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is an irreducible decomposition contradicting that I does not have an irreducible decomposition.

Step 2: If I = Q1 ∩ · · · ∩Qm is an irreducible decomposition, then the Qi’s can be reordered
so that there exists t such that

I = Q1 ∩ · · · ∩Qt

is irredundant.

If Q1 ∩ · · · ∩Qm is irredundant, then we are done. If not, then there exists i 6= j such that
Qi ⊆ Qj . Reorder to assume Qi ⊆ Qm. Then

I = Q1 ∩ · · · ∩Qm−1 ∩Qm = Q1 ∩ · · · ∩Qm−1.

This process terminates in a finite number of steps because m <∞.

Step 3: Uniqueness when irredundant and each Qi is prime.

Suppose that
I = Q1 ∩ · · · ∩Qm = L1 ∩ · · · ∩ Lt

are irredundant decompositions such that all Qi and Li are prime. Then

L1 ∩ · · · ∩ Lt = Q1 ∩ · · · ∩Qm ⊆ Q1.

Since Q1 is prime there exists j such that Q1 ⊇ Lj . Similarly there exists i such that Lj ⊇ Qi
because Lj is prime. Note that the decomposition Q1 ∩ · · · ∩Qm is irredundant, so we must have
i = 1 and hence Q1 = Lj . Now reorder the L’s to assume that Q1 = L1. Similarly there exists s
such that Q2 = Ls. Note that s 6= 1 because then Q2 = L1 = Q1 which is a redundancy. Therefore
assume s = 2. Similarly reorder the L’s to get Li = Qi for i = 1, . . . ,m. This implies that m 6 t.
By symmetry t 6 m. �

We note that the Qi’s must be prime in order to have uniqueness for irredundant decompo-
sitions. Consider the following example.

Example 1.6.10 Consider the ideal (x2, xy2) ∈ k[x, y]. Note that this is an ideal such that

(y + x, x2) ∩ (x, (y + x)2) = (x2, xy2) = (y, x2) ∩ (x, y2).

Note that both decompositions are irredundant, but (y + x, x2) 6= (y, x2) 6= (x, (y + x)2) and
(y + x, x2) 6= (x, y2) 6= (x, (y + x)2). So uniqueness fails.

Proposition 1.6.11 Let A be a commutative ring with identity and let I ⊆ A be an ideal. Then

(a) I = rad(I) if and only if I = P1 ∩ · · · ∩ Pm for some primes Pi.

(b) If I = rad(I), then I has a unique irredundant prime decomposition (up to reordering).

Proof: (a) (⇒) Let I = Q1 ∩ · · · ∩Qm be an irreducible decomposition. Then

I = rad(I) = rad(Q1 ∩ · · · ∩Qm) = rad(Q1) ∩ · · · ∩ rad(Qm).

Then by Proposition 1.6.6 each rad(Qi) is prime.
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(⇐) Let I = P1 ∩ · · · ∩ Pm where Pi is prime. Then

rad(I) = rad(P1 ∩ · · · ∩ Pm)

= rad(P1) ∩ · · · ∩ rad(Pm)

= P1 ∩ · · · ∩ Pm
= I.

(b) Part (a) implies that I has a prime decomposition. Remove the redundancies to get an
irredundant prime decomposition. Then Proposition 1.6.9 implies the decomposition is unique. �

Now: How do we find irreducible components of V = V (I)?

Proposition 1.6.12 Assume k = k, and let I = rad(I) = P1 ∩ · · · ∩ Pm be an irredundant prime
decomposition. Then the irreducible components of V (I) ⊆ Ank are V (P1), . . . , V (Pm).

Proof: We first have

V (I) = V (P1 ∩ · · · ∩ Pm) = V (P1) ∪ · · · ∪ V (Pm).

Then Theorem 1.4.1 (Hilbert’s Nullstellensatz) implies that I(V (Pi)) = rad(Pi) = Pi for all i.
Therefore V (Pi) is irreducible for all i.

Next we check that this decomposition is irredundant. If V (Pi) ⊆ V (Pj) for some i 6= j,
then

I(V (Pi))︸ ︷︷ ︸
=Pi

⊇ I(V (Pj))︸ ︷︷ ︸
=Pj

.

But this contradicts the original irredundancy. �

Example 1.6.13 Assume k = k and consider V (xy, yz) ⊆ A3
k. Then I = (xy, yz)R = (x, z)R ∩

(y)R is an irredundant prime decomposition. Therefore the components of V (I) are V (x, z) and
V (y).

x

V (x, z)

y

V (y)

z
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Proposition 1.6.14 Let k = k and I ⊆ R (not necessarily = rad(I)). Let I = Q1 ∩ · · · ∩Qm be
an irreducible decomposition, and consider

rad(I) = rad(Q1) ∩ · · · ∩ rad(Qm) = P1 ∩ · · · ∩ Pt.

In the last expression, we have removed the redundancies and reordered the ideals, and we have
t 6 m. Then the irreducible components of V (I) = V (rad(I)) are V (P1), . . . , V (Pt).

Proof: Apply Proposition 1.6.12. �

Fact 1.6.15 In R = k[x1, . . . , xn] each ideal
(
x
ei1
i1
, . . . , x

eim
im

)
R = J where eij > 1 is irreducible

such that rad(J) = (xi1 , . . . , xim)R.

Example 1.6.16 Assume k = k and consider I = (x2, y) ∩ (x, z3) ∩ (y2, z4).

rad(I) = rad(x2, y)R ∩ rad(x, z3) ∩ rad(y2, z4)

= (x, y)R ∩ (x, z)R ∩ (y, z)R.

The irreducible components of V (I) are V (x, y), V (x, z), and V (y, z), i.e., the z-axis, the y-axis,
and the x-axis, respectfully.

Now what if k 6= k?

Example 1.6.17 Let V (x2 + y2(y − 1)2) = {(0, 0), (0, 1)} = {(0, 0)} ∪ {(0, 1)}. The irreducible
components are {(0, 0)} and {(0, 1)}. Then if I = (x2 + y2(y − 1)2)R, the prime decomposition of
I does not give irreducible components of V (I). We need to decompose I(V (I)).

Proposition 1.6.18 Let I(V (I)) = P1 ∩ · · · ∩ Pm be an irredundant prime decomposition. Then
the irreducible components of V (I) are V (P1), . . . , V (Pm).

Proof: Let V (I) = V1 ∪ · · · ∪ Vt be an irredundant irreducible decomposition. We need to
show that t = m and the Vi’s can be reordered to get Vi = V (Pi) for all i. Note that

P1 ∩ · · · ∩ Pm = I(V (I)) = I(V1) ∩ · · · ∩ I(Vt).

Since Vi is irreducible, we have I(Vi) is prime for all i. Now we need to show for i 6= j that
I(Vi) 6⊆ I(Vj). (Then each decomposition is irredundant. Therefore uniqueness kicks in.)

If I(Vi) ⊆ I(Vj), then V (I(Vi)) ⊇ V (I(Vj)). But V (I(Vi)) = V i = Vi and V (I(Vj)) = Vj .
Therefore Vi ⊇ Vj which contradicts the irredundancy of V1 ∪ · · · ∪ Vt. Hence I(V1)∪ · · · ∪ I(Vt) is
irredundant.

The uniqueness implies that m = t and the Vi’s can be reordered to get Pi = I(Vi) for all i.
Therefore V (Pi) = V (I(Vi)) = V i = Vi for all i. �

Example 1.6.19 Let k = R. Then V (x2 + y2(y − 1)2) = {(0, 0), (0, 1)} and

I(V (x2 + y2(y − 1)2)) = I({(0, 0), (0, 1)})
= m(0,0) ∩m(0,1)

= (x, y)R ∩ (x, y − 1)R.

So the irreducible components are V (x, y) = {(0, 0)} and V (x, y − 1) = {(0, 1)} .
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Exercises.

Assumptions: k is a field, and R = k[X1, . . . , Xn] for some n > 1.

Exercise 1.6.20 Let I ⊆ R be an ideal, and consider the “radical” of I:

rad I = {x ∈ R | xn ∈ I for some n > 0}.

Note that rad I is an ideal of R containing I. Prove that V (I) = V (rad I).

Exercise 1.6.21 Let S, S′ ⊆ R.

(a) Prove that if S ⊆ S′, then V (S) ⊇ V (S′).

(b) Prove or give a counterexample to the following: if V (S) ⊇ V (S′), then (S)R ⊆ (S′)R.

Exercise 1.6.22 For each a = (a1, . . . , an) ∈ Ank , set ma = (X1 − a1, . . . , Xn − an)R. Let S ⊆ R,
and prove that a ∈ V (S) if and only if ma ⊇ S.

Exercise 1.6.23 Let m > 1. A function F : Abk → Amk is regular if there are polynomials
f1, . . . , fm ∈ R such that F (a) = (f1(a), . . . , fm(a)) for all a ∈ Abk.

(a) Prove that every regular function F : Ank → Amk is continuous.

(b) Prove that if F : Ank → Amk and G : Apk → Ank are regular, then so is the composition
F ◦G : Apk → Amk .

Exercise 1.6.24 Assume that k is algebraically closed. Let f be a non-constant polynomial in
k[X1, . . . , Xn], and consider V (f) ⊂ Ank .

(a) Prove that V (f) 6= ∅.

(b) Prove that if n > 2, then V (f) is infinite.

Exercise 1.6.25 Are the following closed sets irreducible or not? Justify your responses.

(a) V (X + Y 2) ⊆ A2
R.

(b) V (X2 + Y 2) ⊆ A2
R.

(c) V (X2 + Y 2) ⊆ A2
C.

Exercise 1.6.26 Let X be a noetherian topological space. Let Y ⊆ X be a subspace of X, that
is, a subset of Y with the subspace topology. Prove that Y is noetherian.

21





Chapter 2

Projective Space

2.1 Motivation

Sometimes to describe an object, we “parametrize” it in terms of something we already understand.

Example 2.1.1 A curve in R3, described in parametric form:

~f(t) = (x(t), y(t), z(t)) .

Example 2.1.2 Solution sets to under-determined systems of linear equations:

2x+ 3y + 4z = 0

x+ y − z = 0.

Solutions: (− 7
6 t, t,−

1
6 t).

General Principle: To understand T , cook up a function f : S → T where f is “nice” and S
is “understood.” Then transfer understanding of S to T via f .

Motivating Problem: Parametrize the set of lines in kn passing through the origin, i.e.
1-dimensional vector subspaces of kn.

A line is determined by a single non-zero vector ~v ∈ kn.

Span : kn \ {0} → {lines in kn passing through the origin}
~v 7→ Span(~v).

This is onto. Sadly it is not one-to-one. Note that Span(~v) = Span(~w) if and only if ~v ∈ Span(~w)
if and only if ~w ∈ Span(~v) if and only if there exists λ ∈ k× such that ~v = λ~w if and only if there
exists µ ∈ k× such that ~w = µ~v.

We will define ~v ∼ ~w if there exists λ ∈ k× such that ~v = λ~w. By the above notes, the
induced function

Span :
kn \ {0}
∼

→ Pnk

[~v] 7→ Span(~v)

is well-defined, one-to-one and onto.
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2. Projective Space

2.2 Projective Space Pn
k

Definition 2.2.1 For ~v, ~w ∈ kn+1 \ {~0} define ~v ∼ ~w if and only if there exists λ ∈ k× such that
~w = λ·~v. If ~v = (v0, v1, . . . , vn) then ~v ∼ ~w if and only if there exists λ ∈ k× such that wj = λ · · · vj
for all j = 0, 1, . . . , n.

Pnk :=
kn+1 \ {0}
∼

is called projective n-space over k. An element in Pnk looks like

v = (v0 : v1 : · · · : vn) = (λv0 : λv1 : · · · : λvn)

for all λ ∈ k×.

Example 2.2.2 (v0 : v1) ∈ P1
k. If v0 6= 0 then (v0 : v1) = (v0/v0 : v1/v0) = (1 : v′1) where

λ = 1/v0 and v′1 = v1/v0.

For α, β ∈ k: α 6= β implies that (1 : α) 6= (1 : β). So

A1
k ↪→ P1

k

α 7→ (1 : α).

If v0 = 0, then v1 6= 0 and (v0 : v1) = (0 : v1) = (0/v1 : v1/v1) = (0 : 1).

Symmetrically we have another

A1
k ↪→ P1

k

β 7→ (β : 1).

Here we see that P1
k ≈ a circle in R2.

More Generally: In Pnk , Uj = {v ∈ Pnk | vj 6= 0} for all j = 0, 1, . . . , n. Then

Pnk = U0 ∪ U1 ∪ · · · ∪ Un.

There also exists a bijection Ank → Uj for all j. If n > 2, then there exists a bijection Pn−1
k → Pnk \Uj

for all j.

Note that polynomials do not give well-defined functions on Pnk .

Example 2.2.3 f(x0, x1) = x0. (1 : 0)
f−→ 1 and (α : 0)

f−→ α.
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Being zero or not zero (evaluating polynomial) is also not well-defined. For α 6= 0:

g(x0, x1) = x2
0 − x3

1

g(1 : 1) = 12 − 13 = 0

g(α : α) = α2 − α3 = α2(1− α) = 0⇔ α = 1.

We will see that homogeneous polynomials will fix our problem.

2.3 Homogeneous Polynomials

Definition 2.3.1 Let R = k[x0, x1, . . . , xn] and let f ∈ R. Then f is homogeneous of degree d if
f is a linear combination over k of monomials of degree d.

Example 2.3.2 x2
0−x3

1 is not homogeneous. x3
0−x1x

2
2 is a homogeneous polynomial of degree 3.

Notation 2.3.3 Rd := {homogeneous polynomials f ∈ R of degree d}.

Note: 0 is homogeneous of degree d for all d.

Fact 2.3.4 Rd ⊆ R is a subspace over k.

Fact 2.3.5 (a) Every f ∈ k[x0, . . . , xn] = R can be written as f = f0 + f1 + · · ·+ fd such that
each fi ∈ k[x0, . . . , xn]i = Ri, i.e, each fi is homogeneous of degree i. This representation
is essentially unique.

(b) Therefore R ∼= R0 ⊕R1 ⊕R2 ⊕ · · · .

(c) Ri ×Rj −→ Ri+j by (f, g) 7−→ fg is a well-defined k-bilinear map.

(d) f ∈ Ri: f(λx0, λx1, . . . , λxn) = λif(x0, . . . , xn). Note that homogeneous is crucial.

(e) Let v = w ∈ Pnk where v = (v0 : v1 : · · · : vn) and w = (w0 : w1 : · · · : wn). Note that
~v = 〈v0, v1, . . . , vn〉 and ~w = 〈w0, w1, . . . , wn〉. Then f(~v) = 0 if and only if f(~w) = 0 for
f ∈ Ri.

Proof of (e): Assume that v = w, then ~w = λ~v for some λ ∈ k×. Therefore

f(~w) = f(λ~v) = λif(~v).

Hence f(~w) = 0 if and only if λif(~v) = 0 if and only if f(~v) = 0 since λ 6= 0. �

Notation 2.3.6 We write f(v) = 0 if f(~v) = 0. (This is well-defined by Fact 5.)

Note: f does not make a well-defined function Pnk → k.

Proposition 2.3.7 Let I ⊆ R be an ideal. The following are equivalent:
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2. Projective Space

(i) I is generated by a set of homogeneous polynomials.

(ii) I is generated by a finite set of homogeneous polynomials.

(iii) I = (I ∩R0)⊕ (I ∩R1)⊕ · · · .

(iv) Every f ∈ I can be written as f = f0 + · · ·+ fd such that each fi is in I ∩Ri.

(v) For all f ∈ I, if f =
∑d
i=0 fi such that each fi ∈ Ri, then fi ∈ I for all i.

Definition 2.3.8 If I ⊆ R is an ideal, then I is a homogeneous ideal if it satisfies the equivalent
conditions of Proposition 2.3.7.

Proof of Proposition 2.3.7: (i) ⇒ (ii): The Hilbert Basis Theorem implies that I is
finitely generated. If I = (S)R such that S is a set of homogeneous polynomials, then since I is
finitely generated there exists a finite subset S′ ⊆ S such that I = (S′)R.

(ii) ⇒ (iv): Let s1, . . . , sm ∈ R be homogeneous such that I = (s1, . . . , sm)R. Therefore
si ∈ I for all i. Say si ∈ Rdi . Let f ∈ I. Then there exists g1, . . . , gm ∈ R such that f =

∑
i gisi

where gi =
∑
j gi,j such that gi,j ∈ Rj . Then

f =
∑
i

gi,jsi
∑
i

∑
j

gi,jsi =
∑
t

∑
j+di

gi,jsi︸ ︷︷ ︸
ft∈Rt

.

This satisfies the desired conclusion because each fi is in (s1, . . . , sm)R = I.

(iv) ⇒ (iii): We first need to show that the sum is direct. So we need to show that
(I ∩Ri) ∩

(∑
j 6=i(I ∩Rj)

)
= 0. Note that 0 is in the left hand side. For the other containment:

(I ∩Ri) ∩
(∑

j 6=i I ∩Rj
)
⊆ Ri ∩

∑
j 6=iRi = 0

since R ∼= R0 ⊕R1 ⊕ · · · . Therefore the sum is direct.

(⊆) Let f ∈ I. Then (iv) implies for fi ∈ Ri:

f = f0 + f1 + · · ·+ fd︸ ︷︷ ︸
∈(I∩R0)⊕(I∩R1)⊕···

.

(⊇) Note that for each Rj , I ∩Rj ⊆ I.

(iii) ⇒ (v): Assume (iii) and let f ∈ I. Then f =
∑
i fi such that fi ∈ Ri for all i. We need

to show fi ∈ I for all i. Condition (iii) implies f =
∑
i f̃i such that f̃ ∈ I ∩ Ri. Note that by the

uniqueness of representation in R = R0 ⊕R1 · · · , the condition f =
∑
i fi implies fi = f̃i for all i.

Therefore fi ∈ I for all i.

(v) ⇒ (i): Assume (v) and let S =
⋃∞
i=1 (I ∩Ri) = {homogeneous f ∈ I} ⊆ I. Therefore

(S)R ⊆ I.

(⊇) Let f ∈ I such that f = f0 + · · · fd where each fi ∈ Ri. (v) implies that each fi ∈ I.
Thus fi ∈ I ∩Ri for all i. Therefore f = a sum of elements of S. Hence f ∈ (S)R. �
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2.3. Homogeneous Polynomials

Example 2.3.9 If f1, . . . , fm are homogeneous, then I = (f1, . . . , fm)R is a homogeneous ideal.

Notation 2.3.10 Let I ⊆ R be homogeneous. For all d let

Id := {homogeneous polynomials in I of degree d}.

Fact 2.3.11 Id = I ∩Rd.

Lemma 2.3.12 Let I, J ⊆ R be homogeneous ideals. Then:

(a) I = (
⋃∞
d=0 Id)R.

(b) I ⊆ J if and only if Id ⊆ Jd for all d.

(c) I = J if and only if Id = Jd.

Proof: (a) (⊇) Each Id ⊆ I. Therefore
⋃∞
d=0 Id ⊆ I. This implies that (

⋃∞
d=0 Id)R ⊆ I.

(⊆) Let f ∈ I. Then f =
∑e
d=0 fd for each fd ∈ R. Since I is homogeneous, fd ∈ I for all

d. Therefore f ∈ I ∩Rd = Id. Hence

f =

e∑
d=0

fd ∈

( ∞⋃
d=0

Id

)
R.

(b) (⇒) If I ⊆ J , then I ∩Rd ⊆ J ∩Rd, i.e., Id ⊆ Jd.

(⇐) If Id ⊆ Jd for all d, then
⋃∞
d=0 Id ⊆

⋃∞
d=0 Jd. This implies that

I =

( ∞⋃
d=0

Id

)
R ⊆

( ∞⋃
d=0

Jd

)
R = J.

(c) This follows from (b) �

Lemma 2.3.13 Let I ⊆ R be a homogeneous ideal. Then rad(I) is a homogeneous ideal.

Proof: Let f =
∑e
d=0 fd ∈ rad(I) such that each fd ∈ Rd. We need to show that each

fd ∈ rad(I), We will use induction on e.

Base Case (e = 0): Here f = f0. Since f ∈ rad(I), we have f0 ∈ rad(I).

Induction step: Assume for e > 1 the result holds for

g =

e−1∑
d=0

gd.

Since f ∈ rad(I), there exists m > 1 such that fm ∈ I. Now write

fm = fm0 + · · ·+ fme ∈ I
fm = (fm)0 + (fm)1 + · · · (fm)me
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2. Projective Space

such that each (fm)j ∈ Rj . Then fme = (fm)me. Since I is homogeneous we have fme ∈ I and so
fe ∈ rad(I). Note that rad(I) is an ideal, therefore f − fe ∈ rad(I) and

f − fe =

e−1∑
d=0

fd.

By the induction hypothesis fi ∈ rad(I) for i = 1, . . . , e− 1. �

2.4 The Zariski Topology on Pn
k

Definition 2.4.1 The Zariski topology on Pnk
Let S ⊆ R be a set of homogeneous elements of R. Define

V (S) := {a ∈ Pnk | f(a) = 0 for all f ∈ S}.

• Closed sets: V (S)

• Open sets: Pnk \ V (S).

Let f ∈ R be homogeneous: Uf := Pnk \ V (f) is the “principal open set.”

If T ⊆ R (not necessarily homogeneous), then

V (T ) := V ({t ∈ T | t is homogeneous}).

If S = {f1, . . . , fm}, then V (S) = V (f1, . . . , fm).

Definition 2.4.2 Lines in P1
k: V (ax1 + bx2 + cx0). Projective ellipse: V

(
x2

a2 + y2

b2 − z
2
)

or

V
(
x2
1

a2 +
x2
2

b2 − x
2
0

)
. If x0 = 1 (so a copy of A2

k) we recover our original lines and ellipses. See
Example 1.1.6.

Example 2.4.3 Closed sets in P1
k are V (1) = ∅, V (0) = P1

k and (any) finite sets. If f is non-
constant, we need to show V (f) is finite. Let (a0 : a1) ∈ P1

k.

First type of point: a0 = 1. Then f(a) = f(1, a1). So a1 is a root of f(1, x1) 6= 0.

f = c0x
d
0 + c1x

d−1
0 x1 + · · ·+ cd−1x0x

d−1
1 + cdx

d
1

f(1, x1) = c0 + c1x1 + · · ·+ xd−1x
d−1
1 + cdx

d
1.

Since f is non-constant, f 6= 0. Therefore some ci 6= 0. Thus there are only a finite number of
roots. Hence f has only a finite number of roots of the form (1 : a1).

Second type of point: a0 = 0. So assume a1 = 1. Then either (0 : 1) is a root of f or not.
Either way you get at most one more point. Therefore there are only finitely many. If S 6= ∅ is a
set of homogeneous polynomials, let f ∈ S be non-constant. Then V (S) ⊆ V (f) is finite. (Note
that Proposition 2.4.14 implies that any finite set is closed.)

Lemma 2.4.4 If T ⊆ T ′ ⊆ R, then V (T ) ⊇ V (T ′).
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2.4. The Zariski Topology on Pnk

Proof: Exercise. �

Lemma 2.4.5 Let S ⊆ R be the set of homogeneous elements and I = (S)R. Then f is homoge-
neous of degree d and in I if an only if there exists homogeneous polynomials g1, . . . , gm ∈ R and
s1, . . . , sm ∈ S such that f =

∑
i gisi and deg(gi) + deg(si) = d for all i.

Proof: (⇒) Let f ∈ I be homogeneous of degree d. Then we can write f = g1s1 + · · ·+gpsp
such that each gi ∈ R and each si is homogeneous of degree δi. Hence

gi = gi 0 + · · ·+ gi e

such that gi j ∈ Rj . Now we can write f as

f =
∑
j

gi jsi + · · ·+
∑
j

gp jsp

= g1 d−δ1s1 + g2 d−δ2s2 + · · ·+ gp p−δp + ( remaining gi jsi’s︸ ︷︷ ︸
has no terms of degree d

)

where gi jsi is homogeneous of degree j + δi and gp jsp is homogeneous of degree j + δp Therefore
the last terms must sum to 0 since f only has terms of degree d. Therefore

f = g1 d−δ1s1 + g2 d−δ2s2 + · · ·+ gp p−δp .

(⇐) In this case f is homogeneous and in I since all gi · si are homogeneous of degree d and
si ∈ I. �

Lemma 2.4.6 Let S ⊆ R consist of homogeneous elements of R and let I = (S)R. Then
V (I) = V (S).

Proof: (⊆) Note that I = (S)R ⊇ S. By Lemma 2.4.4 we have V (I) ⊆ V (S).

(⊇) Let a ∈ V (S) and let f ∈ I be homogeneous. Then we can write

f = g1s1 + · · ·+ gpsp

such that each gi ∈ R is homogeneous and si ∈ S by Lemma 2.4.5. Then

f(a) = g1(a) s1(a)︸ ︷︷ ︸
=0

+ · · ·+ gp(a) sp(a)︸ ︷︷ ︸
=0

= 0.

Hence a ∈ V (I). �

Lemma 2.4.7 Let Iλ ⊆ R be homogeneous ideals (λ ∈ Λ). Then the ideals
⋂
λ∈Λ Iλ and

∑
λ∈Λ Iλ

are homogeneous. If Λ = {1, . . . ,m} then I1 · · · Im is homogeneous.

Proof: Iλ = (Sλ)R where Sλ consists of homogeneous polynomials. Then

∑
λ∈Λ

Iλ =

(⋃
λ∈Λ

Sλ

)
R
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2. Projective Space

where
⋃
λ∈Λ Sλ is a set of homogeneous polynomials. Thus it is a homogeneous ideal.

If Λ = {1, . . . ,m}, then I1 · · · Im = ({s1, . . . , sm | si ∈ S1 for all i})R is generated by a set
of homogeneous polynomial. To show that

⋃
λ∈Λ Iλ is homogeneous, let

f = f0 + f1 + · · ·+ fd ∈
⋂
λ∈Λ

Iλ

such that fi ∈ Ri for all i. We need to show that fi ∈
⋂
λ∈Λ Iλ for all i. Since f ∈

⋂
λ∈Λ Iλ, we

have f ∈ Iλ for all λ. Since Iλ is homogeneous fi ∈ Iλ for all λ. Therefore fi ∈
⋂
λ∈Λ Iλ. �

Proposition 2.4.8 Let S1, . . . , Sm, Sλ ⊆ R consisting of homogeneous elements of R. Ij = (Sj)R,
Iλ = (Sλ)R are homogeneous ideals:

1. V (S1) ∪ · · · ∪ V (Sm) = V (I1) ∪ · · · ∪ V (Im) = V (I1 ∩ · · · ∩ Im) = V (I1 · · · Im).

2.
⋂
λ∈Λ V (Sλ) =

⋂
λ∈Λ V (Iλ) = V

(∑
λ∈Λ Iλ

)
= V

(⋃
λ∈Λ Sλ

)
.

3. The set of projective algebraic subsets is closed under finite unions and arbitrary intersections.

Proof: Exercise �

Fact 2.4.9 Let S ⊆ R be a set of homogeneous polynomials in R. Then V (S) = V ((S)R)

Definition 2.4.10 If f ∈ R is homogeneous, then V (f) is a projective hypersurface.

Corollary 2.4.11 Every algebraic subset of Pnk is a finite intersection of projective hypersurfaces.

Proof: V (S) = V (I) = V (f1, . . . , fm) where (S)R = I = (f1, . . . , fm)R and each fi is
homogeneous. �

Proposition 2.4.12 {a} = V (({aixj − ajxi | 0 6 i < j 6 n})R) = V ({a`xj − ajx` | 0 6 j 6 n})
for some a` 6= 0 where a = (a0 : a1 : · · · : an).

Proof: We first note that V
(
{aixj − ajxi}i,j

)
⊆ V

(
{a`xj − ajx`}j

)
since a`xj − ajx` =

±aixj′ − aj′xi for some i, j′

Next we will show {a} ⊆ V
(
{aixj − ajxi}i,j

)
. If we evaluate aixj − ajxi at a we get

aiaj − ajai = 0. Therefore {a} ⊆ V
(
{aixj − ajxi}i,j

)
.

For the last containment assume that b ∈ Pnk satisfies a`xj − ajx` for all `. Then

a`bj − ajb` = 0

for a` 6= 0. Therefore bj =
ajb`
a`

= b`
a`
aj . Now set λ = b`

a`
. Then

a = (a0 : a1 : · · · : an) = (λa0 : λa1 : · · · : λan)

= (b0 : b1 : · · · : bn) = b.

Hence V
(
{a`xj − ajx`}`

)
⊆ {a}. �
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Theorem 2.4.13 The Zariski topology on Pnk is a topology.

Proof: Similar to Theorem 1.2.2. �

Proposition 2.4.14 Every finite subset of Pnk is closed.

Proof: Exercise �

Example 2.4.15 The Zariski topology on P1
k is the cofinite topology. See Example 2.4.3 and

Proposition 2.4.14.

Proposition 2.4.16 Every open subset in Pnk is a finite union of principal open sets.

Proof: Similar to Theorem 1.2.4 �

Corollary 2.4.17 Pnk is compact.

Proof: Exercise �

Corollary 2.4.18 {principal open sets of Pnk} is a basis for the Zariski topology.

Proof: Similar to Corollary 1.2.5

Fact 2.4.19 Uf ∩ Ug = Ufg for all f, g ∈ R.

Proof: Similar to Fact 1.2.6. �

Theorem 2.4.20 If k is infinite and U,U ′ ⊆ R are non-empty open subsets, then U ∩ U ′ 6= ∅.

Proof: Similar to Theorem 1.2.8. �

Corollary 2.4.21 If k is infinite, then Pnk is not Hausdorff.

Proof: Similar to Corollary 1.2.9. �

Fact 2.4.22 If a, b ∈ Pnk and a 6= b, then there exists a neighborhood U ⊆ Pnk of a such that b 6∈ U .

Proof: Set U = Pnk \ {b}. Then U is the compliment of a closed subset. Therefore U is
open with a ∈ U and b 6∈ U . �

Note: Ubixj−bjxi will work for some choice of i and j.
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2. Projective Space

2.5 Geometric Ideals in Pn
k

Definition 2.5.1 Let V ⊆ Pnk . Then define

I(V ) := ({homogeneous f ∈ R | f(a) = 0 for all a ∈ V })R.

We write I (a1, . . . , am)) = I ({a1, . . . , am}).

Note: I(V ) is a homogeneous ideal of R since it is generated by a set of homogeneous
polynomials.

Example 2.5.2 I(∅) = R, and I(Pnk ) = 0 if k is infinite.

Fact 2.5.3 (Division Algorithm for homogeneous polynomials) Let f be a homogeneous poly-
nomial of degree d, and let b be a non-zero homogeneous polynomial of degree 1. Write b =
b0X0 + · · · bnXn such that each bi is in k, and assume that bj 6= 0 for some j. Then there ex-
ist polynomials q and r such that f = qb + r where q is homogeneous of degree d − 1, and r is
homogeneous of degree d and constant with respect to Xj .

Proof: Exercise. �

Proposition 2.5.4 Let a ∈ Pnk . Then I(a) = ({aixj − ajxi | 0 6 i < j 6 n})R.

Proof: (⊇) a satisfies each aixj − ajxi. Therefore each aixj − ajxi ∈ I(a).

(⊆) First let J := ({aixj − ajxi | 0 6 i < j 6 n})R. Since I(a) is homogeneous it is gener-
ated by the set of its homogeneous elements. We need to show every homogeneous element of I(a)
is in J . Let f ∈ I(a)d. Then f(a) = 0. Assume a` 6= 0. We will use the division algorithm with

a`x0 − a0x`, a`x1 − a1x`, . . . , a`xn − anx`.

Now f = q1 · (a`x0 − a0x`) + r1 such that q1, r1 are homogeneous and r1 is constant with respect
to x0. Then we can write r1 = q2 · (a`x1 − a1x`) + r2 such that q2, r2 where r2 is constant with
respect to x0 and x1. We repeat this process to get

ri = qi (a`xi − aix`) + ri+1

for all i 6= `. Therefore

f = q0 (a`x0 − a0x`) + · · ·+ q`−1 (a`x`−1 − a`−1x`)

+ q`+1 (a`x`+1 − a`+1x`) + · · ·+ qn (a`xn − anx`) + r

where r is constant with respect to all xi 6= x`. Therefore r = c · xd` and hence 0 = r(a) = c · ad`
where a` 6= 0. Thus c = 0⇒ r = 0. �

Proposition 2.5.5 Let V, V1, · · · ⊆ Pnk .

(a) If V ⊆ V1, then I(V ) ⊇ I(V1).
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2.6. Projective Nullstellensatz

(b) I(V1 ∪ · · · ∪ Vm) = I(V1) ∩ · · · ∩ I(Vm).

(c) I
(⋃

λ∈Λ Vλ
)
⊇
∑
λ∈Λ I(Vλ).

(d) rad (I(V )) = I(V ).

Proof:

(a) Assume V = V1. To show I(V ) ⊇ I(V1), it suffices to show I (V )d ⊇ I(V1)d for all
d. Let f ∈ I(V1)2. Then f(a) = 0 for all a ∈ V1. Therefore a ∈ V since V ⊆ V1. Hence
f ∈ I(V ) ∩Rd = I(V )d.

(b) through (d) are proved similarly to Proposition 1.3.3. �

Proposition 2.5.6 Let I ⊆ R be a homogeneous ideal and V ⊆ Pnk . Then

(a) I ⊆ rad(I) ⊆ I(V (I)).

(b) V ⊆ V = V (I(V )).

(c) V (I(V (I))) = V (I).

(d) I(V (I(V ))) = I(V ).

Proof: Similar to the proof of Proposition 1.3.4. �

2.6 Projective Nullstellensatz

Theorem 2.6.1 (Projective Nullstellensatz) Let I ⊆ R = k[x0, . . . , xn] be a homogeneous
ideal such that k = k. Then

(a) If V (I) 6= ∅, then I(V (I)) = rad(I).

(b) Let M = (x0, . . . , xn)R which is maximal. The following are equivalent:

(i) V (I) = ∅.
(ii) rad(I) ⊇M.

(iii) rad(I) = M or rad(I) = R.

(iv) rad(I) = M or I = R.

(v) for all i = 0, . . . , n there exists ei > 1 such that xeii ∈ I.

Proof: (a) Define Iaff and Vaff for points in Ank and Iproj and Vproj for points in Pnk . Assume
that Vproj(I) 6= ∅. By Proposition 2.5.6 rad(I) ⊆ Iproj(Vproj(I)).

Claim: rad(I) ⊆ Iproj(Vproj(I)) ⊆ Iaff(Vaff(I)) = rad(I).

To prove the claim let f ∈ Iproj(Vproj(I)).

Case 1: Assume f ∈ Rd. We need to show f ∈ Iaff(Vaff(I)). By definition we need to show
f(a) = 0 for all a ∈ Vaff(I). Since Vproj(I) 6= ∅ we know d > 1 (or else f = 0).

Sub-case 1: a = 0. Since f is homogeneous of degree d > 1 we have f(a) = f(0) = 0.
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Sub-case 2: a 6= 0. Then some aj 6= 0. Therefore a represents a point in a ∈ Pnk . Let
a = (a0, a1, . . . , an). Then we write a = (a0 : a1 : · · · : an).

Let g ∈ Ie ⊆ I. Then since a ∈ Vaff(I), we have g(a) = g(a) = 0. Therefore a ∈ Vproj(I).

Now since f ∈ Iproj(Vproj(I))d we have f(a) = f
(
a
)

= 0. Hence f ∈ Iaff(Vaff(I)) and hence
Case 1 is satisfied.

Case 2: (general case) Let f =
∑m
i=1 fi ∈ Iproj(Vproj(I)). Since Iproj(Vproj(I)) is a homo-

geneous ideal, each fi ∈ Iproj(Vproj(I)). Hence case 1 implies that fi ∈ Vaff(Iaff(I)). Therefore

f =

m∑
i=0

fi ∈ Iaff(Vaff(I)).

Now the original Nullstellensatz gives us Iaff(Vaff(I)) = rad(I). Thus the claim is satisfied and we
must have that Iproj(Vproj(I)) = rad(I).

(b) We note that (ii)⇔ (iii) is because M is maximal, and (iii)⇔ (iv) is because rad(I) = R
if and only if I = R. For (ii) ⇒ (v), if M ⊆ rad(I), then for all i = 0, . . . , n there exists ei > 1
such that xeii ∈ I. We will now prove (v) ⇒ (i) and (i) ⇒ (iv).

(v) ⇒ (i): Assume (v) and suppose a ∈ Vproj(I) such that a = (a0 : a1 : · · · : an). Then a
satisfies every polynomial in I, e.g. xeii . But a ∈ Pnk implies ai 6= 0 for some i contradicting that a
satisfies xeii .

(i)⇒ (iv): Assume Vproj(I) = ∅. If I = R, then we are done. So assume that I 6= R. Then I
contains no units, i.e. no non-zero constants. Therefore I0 = I ∩R0 = 0. Hence every polynomial
in I has constant term 0. Thus I ⊆M. We now have

rad(I) ⊆ rad(M) = M.

(⊆) Note that by the original Nullestensatz Iaff(Vaff(I)) = rad(I) ⊆ M = m0. Therefore
0 ∈ Vaff(I).

Claim: Vaff(I) = {0}.

Note that for this claim we have already shown (⊇). For the other containment let a ∈ Vaff(I)
and suppose a 6= 0. Then a represents some point a ∈ Pnk , say a = (a0 : a1 : · · · : an). Then a
satisfies all f ∈ I and hence a satisfies all homogeneous f ∈ I. Therefore a satisfies all homogeneous
f ∈ I. Thus a ∈ Vproj(I) contradicting that Vproj(I) = ∅. Hence Vaff(I) = {0}.

Now by the original Nullestensatz we have rad(I) = Iaff(Vaff(I)) = Iaff ({0}) = m0 = M. �

Definition 2.6.2 The ideal M, as in Theorem 2.6.1, is the irrelevant maximal ideal of R.

Fact 2.6.3 M is the unique homogeneous maximal ideal of R and it contains every homogeneous
ideal I 6= R.

Corollary 2.6.4 Assume k = k. Then

(a) {non-empty closed subsets of Pnk}� {homogeneous ideals I ⊆ R such that I = rad(I) ( M}
defined by
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V I(V )

V (I) I.

(b) If I = rad(I) ( M is homogeneous, then V (I) 6= ∅.

Proof: Similar to Corollary 1.4.2. �

2.7 Irreducible Closed Subsets

Lemma 2.7.1 Let I ( R be a homogeneous ideal. The following are equivalent:

(a) I is prime.

(b) For all homogeneous ideals J,K: if JK ⊆ I, then J ⊆ I or K ⊆ I.

(c) For all homogeneous f, g ∈ R: if f, g ∈ I, then f ∈ I or g ∈ I.

Proof: (a) ⇒ (c) is by definition of a prime ideal.

(c)⇒ (b): Assume (c) and suppose J 6⊆ I andK 6⊆ I where J andK are homogeneous ideals.
Then there exists d, e > 0 such that Jd 6⊆ Id and Ke 6⊆ Ie. Therefore there exists homogeneous
f ∈ J \ I and g ∈ K \ I. (c) then implies f, g 6∈ I. Therefore fg ∈ JK and hence JK 6⊆ I.

(b) ⇒ (a): Assume (b). Let f, g ∈ R \ I. We need to show that fg 6∈ I. Now we will write

f = f0 + f1 + · · ·+ fd

g = g0 + g1 + · · ·+ ge.

Therefore some fi 6∈ I and gj 6∈ I.

Case 1: fd, ge 6∈ I. Note that if we take J = (fd)R and K = (ge)R, then (b) implies that
we have fdge 6∈ I. Now

fg = f0g0 + (f1g0 + f0g1) + · · ·+ fdge.

If fg ∈ I, then since I is homogeneous we have fdge ∈ I which is a contradiction.

Case 2: (general case) Assume without loss of generality that fα ∈ I for all α > i and
gβ ∈ I for all β > j. Then

f = f0 + f1 + · · ·+ fi + fi+1 + · · ·+ fd︸ ︷︷ ︸
:=f̃∈I

g = g0 + g1 + · · ·+ gj + gj+1 + · · ·+ ge︸ ︷︷ ︸
:=g̃∈I

.

Now define f ′ := f − f̃ = f0 + · · · fi 6∈ I and g′ := g − g̃ = g0 + · · · + gj 6∈ I. Case 1 now implies
that f ′g′ 6∈ I. Therefore

fg = (f ′ + f̃)(g′ + g̃)

= f ′g′︸︷︷︸
6∈I

+ f ′g̃︸︷︷︸
∈I

+ f̃g′︸︷︷︸
∈I

+ f̃ g̃︸︷︷︸
∈I

6∈ I.

Therefore fg 6∈ I. �
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Theorem 2.7.2 Let V ⊆ Pnk be closed. Then V is irreducible if and only if I(V ) is prime.

Proof: (⇒) Assume that V is irreducible. Then since V 6= ∅ we have that I(V ) 6= R. To
show I(V ) is prime, we will use Lemma 2.7.1. Let f, g ∈ R be homogeneous such that fg ∈ I(V ).
Let J = I(V )+fR andK = I(V )+gR. These are homogeneous ideals because I(V ) is homogeneous
and f, g are homogeneous. As before: JK ⊆ I(V ) ⊆ J ∩K. This implies that

V (JK) ⊇ V (I(V ))︸ ︷︷ ︸
=V

⊇ V (J ∩K)︸ ︷︷ ︸
=V (JK)

.

Therefore V = V (JK) = V (J) ∪ V (K). Since V is irreducible either V = V (J) or V = V (K).
This now implies that either I(V ) = I(V (J)) 3 f or I(V ) = I(V (K)) 3 g. Hence I(V ) is prime.

(⇐) Similar to the proof of Theorem 1.5.5. �

Corollary 2.7.3 If R = k[x0, . . . , xn] such that k = k and p ⊂ R, p 6= M = (x0, . . . , xn)R, is
prime, then V (p) is irreducible.

Proof: Theorem 2.6.1 implies that V (p) 6= ∅ and I(V (p)) = rad(p) = p. Therefore Theorem
2.7.2 implies that V (p) is irreducible. �

Proposition 2.7.4 If k is finite, then the only irreducible closed subsets of Pnk are {a}.

Proof: Similar to Proposition 1.5.9. �

Corollary 2.7.5 If k is finite, then Pnk is reducible.

Lemma 2.7.6 Let k be infinite and f, g ∈ R be homogeneous. If f(a)g(a) = 0 for all a ∈ Pnk , then
either f = 0 or g = 0.

Proof: Let 0 6= f, g ∈ R be homogeneous. It suffices to show that f(a)g(a) = 0 for all
a ∈ An+1

k . Then Lemma 1.2.7 implies that either f = 0 or g = 0, a contradiction.

First assume that f is constant, say f = c, then f is a unit. Therefore g(a) = 0 for all a ∈ Pnk .
If g is constant, then we are done. Suppose that g is not constant. Since g is homogeneous, it
follows that g(0) = 0. If 0 6= a ∈ An+1

k , then a represents a ∈ Pnk , so g(a) = g(a) = 0. Thus
g(a) = 0 for all a ∈ Ank . Therefore g = 0 since k is infinite. Similarly if g is constant, then f = 0.

Now assume f, g are both are non-constant. Let a ∈ An+1
k . If a = 0, then f(a)g(a) = 0. So

assume that a 6= 0. Then a represents a ∈ Pnk and

f(a)g(a) = f(a)g(a) = 0.

Therefore either f(a) = f(a) = 0 or g(a) = g(a) = 0. �

Proposition 2.7.7 If k is infinite, then Pnk is irreducible.
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Proof: Suppose Pnk = V (I) ∪ V (J) = V (IJ) where I, J ⊆ R are homogeneous ideals. If
I = 0, then V (I) = V (0) = Pnk . Similarly if J = 0.

Now assume that I, J 6= 0. Then there exists homogeneous 0 6= f ∈ I and 0 6= g ∈ J . Then

Pnk = V (I) ∪ V (J) ⊆ V (f) ∪ V (g) ⊆ Pnk .

Hence f, g 6= 0 are homogeneous such that f(a)g(a) = 0 for all a ∈ Pnk . Therefore by Lemma 2.7.6
f = 0 or g = 0 which contradicts that both f, g 6= 0. �

Theorem 2.7.8 Pnk is noetherian.

Proof: Similar to Theorem 1.5.15. �

Corollary 2.7.9 Every closed subset V ⊆ Pnk is a union of a finite number of irreducible closed
subsets. Also if you assume

V = V1 ∪ V2 ∪ · · · ∪ Vm

such that Vi 6⊆ Vj (for all i 6= j), then the decomposition is unique up to the order of the Vi’s.

Proof: Exercise �

Theorem 2.7.10 Let V ⊆ Pnk be closed. Then dim(V ) 6 dim(R/I(V ))− 1.

Proof: Let ∅ 6= V0 ( V1 ( · · · ( Vm ⊆ V be a chain of irreducible subsets in V . Then

I(V ) ⊆ I(Vm) ⊆ · · · ⊆ I(V1) ⊆ I(V0) ( M︸ ︷︷ ︸
prime

.

We note that I(V0) ( M since V0 6= ∅. Also note that if Vi is irreducible, then I(Vi) is prime by
Theorem 2.7.2 and V (I(Vi)) = Vi. Therefore I(Vi) ( I(Vi−1) for all i > 1. Hence R/I(V ) has a
chain of primes with m+ 1 links. Thus dim(R/I(V )) > m+ 1. �

Fact 2.7.11 If k is infinite, then dim(Pnk ) = n.

Proof: Exercise �

Definition 2.7.12 Define k[V ] := R/I(V ). This is the homogeneous coordinate ring for V .

2.8 Regular Functions

Definition 2.8.1 Let f : Pnk → Pmk be a function. Then f is a regular function if there exists
homogeneous polynomials

f0, f1, . . . , fm ∈ k[x0, x1, . . . , xn]

(all have the same degree) such that f(a) = (f0(a) : f1(a) : · · · : fm(a)) for all a ∈ Pnk .
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Fact 2.8.2 The function defined in Definition 2.8.1 is a well-defined function as long as

V (f0) ∩ · · · ∩ V (fm) = ∅.

We need this to make sure that f(a) 6= (0 : 0 : · · · : 0).

Since fi is homogeneous of degree d, we have fi(λa0, λa1, . . . , λan) = λdfi (a0, a1, . . . , an). Let

b = (λa0 : λa2, : · · · : λan) = a

(assuming λ 6= 0 in k). Then

f(b) = (f0(b) : f1(b) : · · · : fn(b))

=
(
λdf0(a) : λdf1(a) : · · · : λdfn(a)

)
= f(a).

Fact 2.8.3 If f is a regular function, then f is continuous. Also the composition of regular
functions is regular.

Examples of Continuous Functions

1. Ank
F−→ Amk such that F (a) = (f1(a), . . . , fn(a)) where each fi is a polynomial.

2. Pnk
F−→ Pmk such that F (a) = (f0(a) : · · · : fm(a)) and such that each fi ∈ k[X1, . . . , Xm]d and

V (f0) ∩ · · · ∩ V (fm) = ∅.

3. Let U = Uf0 ∪ Uf1 ∪ · · · ∪ Ufm ⊆ Pnk where fi ∈ k[X0, . . . , Xn]d. Define U F−→ Pmk where
F (a) := (f0(a) : · · · : fm(a)).

4. fi : Ank → Pnk , where fi(a) = (a1 : · · · ai−1 : 1 : ai+1 : · · · : an).

5. gi : Pn−1
k → Pnk where gi(a) = (a0 : · · · : ai−1 : 0 : ai+1 : · · · an−1).

2.9 Finding Irreducible Components

Definition 2.9.1 Let R = k[x0, . . . , xn], and I ( R be a homogeneous ideal. I is h-irreducible if it
is irreducible with respect to homogeneous ideals, i.e., for all homogeneous ideals J,K if I = J∩K,
then I = J or I = K.

Fact 2.9.2 If I ( R is homogeneous and irreducible, then I is h-irreducible.

Proposition 2.9.3 If I ( R is h-irreducible and a, b ∈ R are homogeneous such that ab ∈ I, then
a ∈ I or bm ∈ I for some m.

Proof: Note that (I : b) ⊆ (I : b2) ⊆ · · · . Since R is noetherian, the ascending chaing condition
implies that for some m we have (I : bm) = (I : bm+1). Then as in the proof of Proposition 1.6.4
we have

I = (I + aR)︸ ︷︷ ︸
homogeneous

∩ (I + bmR)︸ ︷︷ ︸
homogeneous

Therefore since I is h-irreducible, we have I = I + aR 3 a or I = I + bmR 3 bm �
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Lemma 2.9.4 If I ⊆ R is a homogeneous ideal, then I is prime if and only if I is h-irreducible
and I = rad(I).

Proof: (⇒) Assume that I is prime. Then by Proposition 1.6.5, we have that I is irreducible
and I = rad(I). Hence by Fact 2.9.2, I is h-irreducible.

(⇐) Now assume that I is h-irreducible and I = rad(I). Then I ( R. To show I is prime,
let a, b ∈ R be homogeneous such that ab ∈ I. Proposition 2.9.3 implies that a ∈ I or bm ∈ I for
some m. Since I = rad(I), we must have a ∈ I or b ∈ I, so I is prime. �

Lemma 2.9.5 Let I ( R be an h-irreducible ideal. Then rad(I) is a prime and homogeneous
ideal.

Sketch of Proof: Assume that I is an h-irreducible ideal. Then it is homogemeneous.
Hence by Lemma 2.3.13 we have rad(I) is homogeneous. Also, rad(I) is prime by checking homo-
geneous elements; see the proof of Proposition 1.6.6. �

Definition 2.9.6 Let I ( R be a homogeneous ideal. An h-irreducible decomposition I = Q1 ∩
· · · ∩Qm such that each Qi is h-irreducible. The decomposition is irredundant if for all i 6= j, then
Qi 6⊆ Qj .

Proposition 2.9.7 Let I ( R be a homogeneous ideal. Then I has an irredundant h-irreducible
decomposition.

Proof: Similar to the proof of Proposition 1.6.9 �

Proposition 2.9.8 If I ( R is a homogeneous ideal and P1, . . . , Pm, Q1, . . . , Q` are homogeneous
primes such that

P1 ∩ · · · ∩ Pm = Q1 ∩ · · · ∩Q`

and if i 6= j, then Pi 6⊆ Pj and Qi 6⊆ Qj. Then m = ` and there exists σ ∈ Sm such that Pi = Qσ(i)

for all i.

Proof: This is a corollary to Theorem 1.5.20. �

Proposition 2.9.9 Let I ( R be a homogeneous ideal. Then I = rad(I) if and only if for some
prime ideals P1, . . . , Pm such that I = P1 ∩ · · · ∩ Pm.

Proof: Similar to the proof of Proposition 1.6.11 (a). �

Corollary 2.9.10 If I = rad(I) is homogeneous and p1 . . . , pm are prime ideals such that I =
p1 ∩ · · · ∩ pm is an irredundant decomposition, then each pi is homogeneous.
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Proof: Let P1, . . . , P` be homogeneous prime ideals such that I = P1 ∩ · · · ∩P` is an irredundant
decomposition. The uniqueness implies that pi = Pσ(i) is homogeneous. �

Question 2.9.11 How do we find irreducible components for V (I) ⊆ Pnk?

Theorem 2.9.12 Assume that k = k and I ( R is a homogeneous ideal such that V (I) 6= ∅ and
rad(I) = P1∩· · ·∩Pm is an irredundant prime decomposition (hence Pi’s are homogeneous). Then
the irreducible components of V (I) are V (P1), . . . , V (Pm).

Proof: Note that each V (Pi) 6= ∅. So we need to show Pi 6= M. If Pi = M, then Pj ⊆M = Pi
for all j. Since the decomposition is irredundant we have that I = Pi = M. But this contradicts
that V (I) 6= ∅. �

Theorem 2.9.13 Assume k = k and I ⊆ R is homogeneous such that V (I) 6= ∅. Let I =
Q1 ∩ · · · ∩Qm be an h-irreducible decomposition. Then

rad(I) = rad(Q1) ∩ · · · ∩ rad(Qm).

Remove redundancies and reorder to assume rad(I) = rad(Q1) ∩ · · · ∩ rad(Q`) is an irredundant
homogeneous prime decomposition. Then the irreducible components of V (I) are V (rad(Q1)) =
V (Q1), . . . , V (rad(Q`) = V (Q`).

Theorem 2.9.14 Let I ( R be a homogeneos ideal such that V (I) 6= ∅. Then I(V (I)) =
rad(I(V (I))) ( R, so I(V (I)) = P1∩· · ·∩Pm such that each Pi is homogeneous and prime. Assume
the decomposition is irredundant. Then the irreducible components of V (I) are V (P1), . . . , V (Pm).

Proof: Similar to the proof of Proposition 1.6.18 �

40



Chapter 3

Sheaves

3.1 Presheaves

Definition 3.1.1 Let X be a topological space. A presheaf of abelian groups on X is a rule G:

1. For all open subsets U ⊆ X, G(U) is an abelian group.

2. For every pair of open subsets U ⊆ U ′ ⊆ X there is an abelian group homomorphism
G : (U ′, U) : G(U ′)→ G(U).

such that

(a) G(∅) = 0;

(b) G(U,U) = idG(U);

(c) If U ⊆ U ′ ⊆ U ′′ ⊆ X are open, then we have the following commutative diagram

G(U ′′) G(U ′)

G(U).

G(U ′′, U ′)

G(U ′, U)
G(U ′′, U)

The group G(U) is the group of “sections” of G over U . The homomorphisms G(U ′, U) is
the “restriction map.” To rephrase: Let X be a topological space. Set Open(X) = the category
of open subsets of X with morphisms = containments. Set Ab = the category of abelian groups
with group homomorphisms = Z-Mod. A presheaf of abelian groups is nothing more than a
contravariant functor G : Open(X)→ Ab.

Example 3.1.2 For all open sets U ⊆ X, let

G(U) = {continuous functions U → R} .
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If U ⊆ U ′, then G(U ′, U) = restriction of functions G(U ′)→ G(U) where f 7→ f |U . Define addition
in G(U) pointwise:

(f + g)(u) = f(u) + g(u).

This makes G into a presheaf of abelian groups on X.

Definition 3.1.3 A presheaf of rings on X is a presheaf G of additive abelian groups such that
each G(U) is a ring and each G(U ′, U) is a ring homomorophism (i.e. G : Open(X)→ Rings).

Similarly for a presheaf of k-algebras:

• A k-algebra is a ring homomorphism φ : k → R.

• A morphism of k-algebras is a commutative diagram of ring homomorphisms:

k R

S.

φ

f
ψ

Example 3.1.4 Let k → k[x1, . . . , xn] be a k-algebra and let J ⊆ k[x1, . . . , xn] be an ideal. Then
the following diagram commutes:

k k[x1, . . . , xn]

k[x1, . . . , xn]/J.

Example 3.1.5 The presheaf G from Example 3.1.2 is a presheaf of R-algebras. Multiplication
in G(U) is pointwise (f · g)(u) = f(u) · g(u). The map R ψU−−→ G(U) where r 7→ constant function,
i.e., ψU (r) : U → R is given by ψU (r)(u) = r. The map G(U ′, U) : G(U ′)→ G(U) by restriction is
a k-algebra homomorphism (constant|U is constant on U).

R G(U ′)

G(U).

ψU′

G(U ′, U)
ψU

3.2 Regular Functions on An
k

Definition 3.2.1 Let U ⊆ Ank be open and let φ : U → k be a function.
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1. φ is regular at α ∈ U if there exists an open set U(α) ⊆ U such that α ∈ U(α) and there
exists polynomials pα, qα ∈ R = k[x1, . . . , xn] such that U(α) ⊆ Uqα and for all β ∈ U(α) we
have φ(β) = pα(β)

qα(β) .

In other words, there exists pα
qα
∈ k(x1, . . . , xn) such that φ = pα

qα
on some neighborhood of α

on which pα
qα

is a well-defined function.

2. φ is regular on U if it is regular at α for all α ∈ U .

Example 3.2.2 Let f ∈ R = k[x1, . . . , xn] and ∅ 6= U ⊆ Ank be an open set. Then f
1 = f defines

a regular function on U .

Example 3.2.3 Let f ∈ R and consider Uf ⊆ Ank . Then for all g ∈ R and for all m ∈ N, we have
g
fm is regular on Uf .

Proposition 3.2.4 Let λ ∈ k. Then the constant function U → k, given by u 7→ λ, is regular.

Proof: Let λ ∈ k ⊆ R be a polynomial. Then Example 3.2.2 implies that the constant function
is regular. �

Lemma 3.2.5 Let ∅ 6= U ⊆ Ank be open and let φ : U → k be a function. Then φ is regular on
U if and only if there exists an open cover U1 ∪ · · · ∪ Um = U and p1, . . . , pm, q1, . . . , qm ∈ R such
that qi 6= 0 for all i and Ui ⊆ Uqi for all i and φ|Ui = pi

qi

∣∣∣
Ui

for all i.

Proof: (⇐) Assume that such p1, qi, and Ui exist. Then for every α ∈ U there exists i such that
α ∈ Uqi since U = U1 ∪ · · · ∪ Um. Set

U(α) = Ui

pα = p1

qα = qi.

Then φ|U(α) = φ|Ui = pi
qi

∣∣∣
Ui

= pα
qα

∣∣∣
U(α)

. Hence φ is regular on U .

(⇒) Assume that φ is regular. We use the notation from Definition 3.2.1. Then U =⋃
α∈U U(α) since α ∈ U(α) ⊆ U for all α ∈ U . Since Ank is noetherian, we have U is noetherian

and hence this open cover has a finite sub-cover

U = U(α1) ∪ · · · ∪ U(αm).

Set qi = qαi , pi = pαi , and Ui = U(αi). Then U =
⋃m
i=1 U(αi) =

⋃m
i=1 Ui, and

φ|U(αi)
=
pi
qi

∣∣∣∣
U(αi)

=
pi
qi

∣∣∣∣
Ui

.

�

Exercise 3.2.6 Let X be a topological space and Z ⊆ X be a subset and let X = U1 ∪ · · · ∪ Um
be an open cover. Then Z is closed in X if and only if Z ∩ Ui is closed in Ui for all i.
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3. Sheaves

Proposition 3.2.7 Let φ : U → k = A1
k be a regular function. Then φ is continuous.

Proof: We need to show φ−1(V ) is closed where V is closed. So let V ⊆ k be a nontrivial closed
subset. Then V is finite by Example 1.1.7, say V = {a1, . . . , am}. Hence

φ−1({a1, . . . , an}) = φ−1(a1) ∪ · · · ∪ φ−1(am).

So it suffices to show that φ−1(a) is closed in U for all a ∈ k. Since φ is regular, Lemma 3.2.5
provides an open cover U = U1 ∪ · · · ∪ Um and nonzero q1, . . . , qm ∈ R such that each Ui ⊆ Uqi

and there exists p1, . . . , pm ∈ R such that φ|Ui = pi
qi

∣∣∣
Ui

for all i. Then for all α ∈ Ui, we have

α ∈ φ−1(a)⇔ φ(α) = a

⇔ pi(α)

qi(α)
= a

⇔ pi(α) = a · qi(α)

⇔ α ∈ V (pi − aqi)︸ ︷︷ ︸
closed in Ank

.

Hence φ−1(a) ∩ Ui = V (pi − aqi) ∩ Ui is closed in Ui. Therefore by Exercise 3.2.6 we have that
φ−1(a) ⊆ U is closed. �

Proposition 3.2.8 If φ : U → k is regular and U ′ ⊆ U is open, then φ|U ′ : U ′ → k is regular.

Proof: Let U = U1 ∪ · · · ∪ Um be an open cover such that φ|Ui = pi
qi

for all i. Set U ′i = Ui ∩ U ′.
Then

(φ|U ′)|U ′
i

= φ|U ′
i

= (φUi)|U ′
i

=

(
pi
qi

∣∣∣∣
Ui

)∣∣∣∣∣
U ′
i

=
pi
qi

∣∣∣∣
U ′
i

.

Therefore φ|Ui is regular. �

Definition 3.2.9 Let U ⊆ Ank be open. Define OAnk (U) = {regular functions U → k} and define
OAnk (∅) = 0. Let U ′ ⊆ U and define OAnk (U,U ′) : OAnk (U) → OAnk (U ′) by φ 7→ φ|U ′ . Note that
Proposition 3.2.8 implies that this map is well-defined.
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