MATH 724, FALL 2009, HOMEWORK 4
DUE FRIDAY 23 OCTOBER

Exercise 1. (60 pts.) Let R be a commutative ring, and let M and N be R-
modules. The natural evaluation map
M. M ®gHompr(M,N) — N
is the R-module homomorphism given by &3 (m ® ¢) = 1(m). The natural map
¥ N — Homp(M, M ®p N)
is the R-module homomorphism given by ¥4/ (n)(m) = m @ n.

(a) (30 pts.) Prove that ¥ and 4! are well-defined R-module homomorphisms.
(b) (30 pts.) Let f: N — N’ be an R-module homomorphism, and prove that the
following diagram commutes:
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Exercise 2. (40 pts.) Let R be a commutative ring. Prove that the Auslander
class Ar(R) and the Bass class Br(R) both contain every R-module.

Extra credit: Let C be a semidualizing R-module. If Ac(R) (or Bg(R)) contains
all R-modules, must C' be isomorphic to R? If so, why? If not, explain why not and
provide conditions on R that guarantee that the answer to the question is “yes”.



