MATH 720, Algebra I
Exercises 1
Due Fri 02 Sep
Exercise 1. Let $\left\{G_{\alpha}\right\}_{\alpha \in A}$ be a set of additive abelian groups, and for each $\lambda \in \Lambda$ let $H_{\lambda} \leqslant G_{\lambda}$. Prove that

$$
\begin{gathered}
\oplus_{\lambda} H_{\lambda} \leqslant \bigoplus_{\lambda} G_{\lambda} \leqslant \prod_{\lambda} G_{\lambda} \\
\bigoplus_{\lambda} H_{\lambda} \leqslant \prod_{\lambda} H_{\lambda} \leqslant \prod_{\lambda} G_{\lambda} \\
\left(\oplus_{\lambda} G_{\lambda}\right) /\left(\bigoplus_{\lambda} H_{\lambda}\right) \cong \bigoplus_{\lambda}\left(G_{\lambda} / H_{\lambda}\right) \\
\left(\prod_{\lambda} G_{\lambda}\right) /\left(\prod_{\lambda} H_{\lambda}\right) \cong \prod_{\lambda}\left(G_{\lambda} / H_{\lambda}\right) .
\end{gathered}
$$

Exercise 2. Deduce that, given additive abelian groups G_{1} and G_{2}, one has

$$
\begin{gathered}
G_{1} \oplus 0 \leqslant G_{1} \oplus G_{2} \\
0 \oplus G_{2} \leqslant G_{1} \oplus G_{2} \\
\left(G_{1} \oplus G_{2}\right) /\left(G_{1} \oplus 0\right) \cong G_{2} \\
\left(G_{1} \oplus G_{2}\right) /\left(0 \oplus G_{2}\right) \cong G_{1} .
\end{gathered}
$$

Exercise 3. Prove or give a counterexample: given additive abelian groups G_{1} and G_{2}, every subgroup of $G_{1} \oplus G_{2}$ is of the form $H_{1} \oplus H_{2}$ for some $H_{1} \leqslant G_{1}$ and $H_{2} \leqslant G_{2}$.

