MATH 720, Algebra I Exercises 1 Due Fri 02 Sep

Exercise 1. Let $\{G_{\alpha}\}_{\alpha \in A}$ be a set of additive abelian groups, and for each $\lambda \in \Lambda$ let $H_{\lambda} \leq G_{\lambda}$. Prove that

Exercise 2. Deduce that, given additive abelian groups G_1 and G_2 , one has

$$G_1 \oplus 0 \leqslant G_1 \oplus G_2$$

$$0 \oplus G_2 \leqslant G_1 \oplus G_2$$

$$(G_1 \oplus G_2)/(G_1 \oplus 0) \cong G_2$$

$$(G_1 \oplus G_2)/(0 \oplus G_2) \cong G_1.$$

Exercise 3. Prove or give a counterexample: given additive abelian groups G_1 and G_2 , every subgroup of $G_1 \oplus G_2$ is of the form $H_1 \oplus H_2$ for some $H_1 \leq G_1$ and $H_2 \leq G_2$.