MATH 720, Algebra I

Exercises 10

Due Fri 18 Nov

Exercise 1. Let R be a ring.

(a) Prove that given two exact sequences
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the following sequence is also exact:
AL B pip

We say that this sequence is obtained by “splicing” the given sequences at C.
(b) Assume that R has identity. Prove that given a unital R-module M, there is
an exact sequence of R-module homomorphisms
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such that each F; is a free R-module. Such a sequence is called a free resolution
of M.

(¢) (Bonus) Assume that R has identity. Prove that given a homomorphism of
unital R-modules f: M — M’, there is a homomorphism of exact sequences
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such that F; and F] are free R-modules for all i.

Exercise 2. Let R be a ring, and consider the following commutative diagram of
R-module homomorphisms with exact rows:

M E 0
fll fJ/ f//i
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(a) Prove that there is an exact sequence

Ker(f") E) Ker(f) i Ker(f")

where F and F are the maps from Exercises 6.2.
(b) Prove that there is an exact sequence

Coker(f") <, Coker(f) G, Coker(f")

where G’ and G are the maps from Exercises 6.2.
(¢) (Snake Lemma, Bonus) Prove that there is an exact sequence
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Ker(f') — > Ker(f) — = Ker(f")
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<—> Coker(f") N Coker(f) G, Coker(f").
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(Hint: Define 0 as follows. For each m” € Ker(f”), choose m € M such that
F(m) =m”. Show that there is an element n’ € N’ such that G'(n’) = f(m).
Define d(m”) = n’ € Coker(f’). Show that 9 is well-defined by showing that
it is independent of the choice of m and independent of the choice of n’. Then
show that 0 is an R-module homomorphism. Then show that the sequence is
exact.)



