MATH 720, Algebra I Exercises 11–12 Due Fri 02 Dec

Exercise 1. Let R be a ring and consider an exact sequence of R-modules:

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

Prove that M is noetherian if and only if M' and M'' are noetherian.

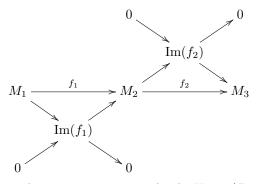
Exercise 2. Let R be a ring with identity. Prove that R is a noetherian ring if and only if every finitely generated unital R-module is noetherian.

Exercise 3. Let R be a principal ideal domain, and let M be a finitely generated unital R-module.

- (a) Prove that there are integers $n \ge k \ge 1$ and elements $d_1, \ldots, d_k \in R$ such that $M \cong R/d_1R \oplus \cdots \oplus R/d_kR \oplus R^{n-k}$ and $d_i|d_{i+1}$ for $i = 1, \ldots, k-1$.
- (b) (Bonus) State and prove a uniqueness result for the integers n, k and the elements $d_1, \ldots, d_k \in \mathbb{R}$.

Exercise 4. R is a ring with identity and P is a unital R-module. Prove that P is projective if and only if for each epimiorphism $f: M \to N$ of unitary R-modules, the induced map $f_*: \operatorname{Hom}_R(P, M) \to \operatorname{Hom}_R(P, N)$ is surjective.

[Hint for the implication \iff : Let $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3$ be an exact sequence. Show that there is a commutative diagram of unital *R*-module homomorphisms



such that each diagonal sequence is exact. Apply $\operatorname{Hom}_R(P, -)$ to this diagram. Conclude that each diagonal sequence in the resulting diagram is exact. Deduce that the horizontal sequence in the resulting diagram is exact.]

Exercise 5. R is a ring with identity and P is a unital R-module. If P is finitely generated and projective, then there is a finitely generated projective unitary R-module Q such that $P \oplus Q$ is free of finite rank.