MATH 720, Algebra I Exercises 13 Due Fri 09 Dec

Let n be a positive integer.

Exercise 1. Let $A \in \mathcal{M}_{n \times n}(K)$, and consider $V = K^n$ as a K[X]-module where Xv = Av for all $v \in V$. Let $f_1, \ldots, f_t \in K[X]$ be irreducible and monic, and let $e_1, \ldots, e_t \ge 1$ such that $V \cong \bigoplus_{i=1}^t K[X]/(f_i^{e_i})$. Prove that the following conditions are equivalent.

- (i) A is diagonalizable, i.e., A is similar to a diagonal matrix D.
- (ii) V has a matrix consisting of eigenvectors for A.
- (iii) for i = 1, ..., t we have $e_i = 1 = \deg(f_i)$.

Exercise 2.

- Let R be a commutative ring with identity, and let $i, j \in \mathbb{N}$ such that $1 \leq i, j \leq n.$
- Let e₁,..., e_{n-1} ∈ Rⁿ⁻¹ and ε₁,..., ε_n ∈ Rⁿ be the standard bases.
 Let f: (Rⁿ⁻¹)ⁿ⁻¹ → R be the unique multilinear anti-symmetric function such that $f(e_1, ..., e_{n-1}) = 1$.
- Let $g: (R^n)^n \to R$ be defined by "expanding along the *i*th row" using f to take the appropriate $(n-1) \times (n-1)$ sub-determinants.
- Let $h: (R^n)^n \to R$ be defined by "expanding along the *j*th column" using f to take the appropriate $(n-1) \times (n-1)$ sub-determinants.

Prove that g and h are multilinear anti-symmetric functions such that $g(\epsilon_1, \ldots, \epsilon_n) =$ $1 = h(\epsilon_1, \ldots, \epsilon_n).$