MATH 720, Algebra I Exercises 3 Due Fri 16 Sep

Exercise 1. Let R be a ring, and fix an integer $n \ge 2$. Let $S_1, \ldots, S_n \subseteq R$ be subsets, and set $I_j = (S_j)R$ for $j = 1, \ldots, n$.

- (a) Prove that $\sum_{j} I_j = (\cup_j S_j) R$. (b) Prove that if R is commutative, then $\prod_j I_j = (\{a_1 \cdots a_n \mid a_j \in S_j, j =$ $1, \ldots, n\})R.$
- (c) Prove that if R is commutative, then any finite product of principal ideals is principal.

Exercise 2. Let $\{R_{\alpha}\}_{\alpha \in A}$ be a set of rings, and for each $\lambda \in \Lambda$ fix an ideal $I_{\lambda} \leq R_{\lambda}$.

(a) Prove that $\bigoplus_{\lambda} I_{\lambda}$ is an ideal of $\bigoplus_{\lambda} R_{\lambda}$ and that there is a ring isomorphism $(\bigoplus_{\lambda} R_{\lambda})/(\bigoplus_{\lambda} I_{\lambda}) \cong \bigoplus_{\lambda} (R_{\lambda}/I_{\lambda}).$

$$(\bigoplus_{\lambda} R_{\lambda})/(\bigoplus_{\lambda} I_{\lambda}) \cong \bigoplus_{\lambda} (R_{\lambda}/I_{\lambda}).$$

- (b) Prove that $\prod_{\lambda} I_{\lambda}$ is an ideal of $\prod_{\lambda} R_{\lambda}$. and that there is a ring isomorphism $(\prod_{\lambda} R_{\lambda})/(\prod_{\lambda} I_{\lambda}) \cong \prod_{\lambda} (R_{\lambda}/I_{\lambda}).$
- (c) Prove that $\bigoplus_{\lambda} I_{\lambda}$ is an ideal of $\prod_{\lambda} R_{\lambda}$. Deduce that $\bigoplus_{\lambda} R_{\lambda}$ is an ideal of $\prod_{\lambda} R_{\lambda}$.
- (d) Given elements $(r_{\lambda}), (s_{\lambda}) \in \prod_{\lambda} R_{\lambda}$, prove that the cosets $\overline{(r_{\lambda})}$ and $\overline{(s_{\lambda})}$ in $(\prod_{\lambda} R_{\lambda})/(\bigoplus_{\lambda} R_{\lambda})$ are equal if and only if $r_{\lambda} = s_{\lambda}$ for all but finitely many $\lambda \in \Lambda$.

Exercise 3. Prove or give a counterexample: given rings R_1 and R_2 with identity, every ideal of $R_1 \times R_2$ is of the form $I_1 \oplus I_2$ for some ideals $I_1 \leq R_1$ and $I_2 \leq R_2$.