MATH 720, Algebra I Exercises 4 Due Fri 23 Sep

Exercise 1. Let G be a group with operation written multiplicatively, and let R be a commutative ring with identity. Let R[G] be the group ring (from Exercises 3). Let $f: G \to H$ be a multiplicative group homomorphism.

- (a) Prove that the function $F \colon R[G] \to R[H]$ given by $F(\sum_{g \in G} r_g g) = \sum_{g \in G} r_g f(g)$ is a well-defined homomorphism of rings with identity.
- (b) Prove that $\operatorname{Ker}(F)$ is the set of all elements $\sum_{g \in G} r_g g \in R[G]$ such that for each $g \in G$ one has $\sum_{h \in \operatorname{Ker}(f)} r_{gh} = 0_R$.
- (c) Let N be a normal subgroup of G, and let K be the set of all elements $\sum_{g \in G} r_g g \in R[G]$ such that for each $g \in G$ one has $\sum_{h \in N} r_{gh} = 0_R$. Prove that K is an ideal of R[G].
- (d) Continue with the notation of part (c). Prove that the ideal K is maximal if and only if N = G and R is a field.

Exercise 2. Let $\{R_{\lambda}\}_{\lambda \in \Lambda}$ be a set of non-zero commutative rings with identity, and for each $\lambda \in \Lambda$ fix an ideal $I_{\lambda} \leq R_{\lambda}$.

- (a) Prove that $\prod_{\lambda} R_{\lambda}$ is an integral domain if and only if Λ contains a single element λ , and R_{λ} is an integral domain.
- (b) Prove that $\prod_{\lambda} I_{\lambda}$ is a prime ideal of $\prod_{\lambda} R_{\lambda}$ if and only if there is an element $\mu \in \Lambda$ such that $I_{\lambda} = R_{\lambda}$ for all $\lambda \neq \mu$ and I_{μ} is a prime ideal of R_{μ} .

Exercise 3. Let $\{R_{\lambda}\}_{\lambda \in \Lambda}$ be a set of non-zero commutative rings with identity, and assume that Λ is an infinite set. Prove that $\prod_{\lambda} R_{\lambda}$ has a maximal ideal containing $\bigoplus_{\lambda} R_{\lambda}$. Use this to prove that $\prod_{\lambda} R_{\lambda}$ has a maximal ideal that is not of the form $\prod_{\lambda} I_{\lambda}$ or $\bigoplus_{\lambda} I_{\lambda}$. (Note that Exercise set 3 shows that this is very different from the case where Λ is finite.)