MATH 720, Algebra I Exercises 5 Due Fri 07 Oct

Let R be a commutative ring with identity.

Definition 1. An element $r \in R$ is *nilpotent* if there is an integer $n \ge 1$ such that $r^n = 0$.

Exercise 1. Prove that a polynomial in $R[X_1, \ldots, X_n]$ is nilpotent if and only if all its coefficients are nilpotent. (Hint: Induction on n.)

Exercise 2. Prove that a polynomial $\sum_{\mathbf{a}\in\mathbb{N}^n} r_{\mathbf{a}}X_1^{a_1}\cdots X_n^{a_n} \in R[X_1,\ldots,X_n]$ is a unit if and only if $r_{\mathbf{0}}$ is a unit in R and $r_{\mathbf{a}}$ is nilpotent for all $\mathbf{a}\neq\mathbf{0}$. (Hint: Induction on n.)

Exercise 3. Let $I \subseteq R$ be an ideal. Prove that $I[X_1, \ldots, X_n]$ is an ideal of $R[X_1, \ldots, X_n]$ such that $R[X_1, \ldots, X_n]/I[X_1, \ldots, X_n] \cong (R/I)[X_1, \ldots, X_n]$.