MATH 720, Algebra I
Exercises 6
Due Fri 21 Oct
Exercise 1. Prove the Rational Root Theorem: Let R be a UFD with $K=\mathrm{Q}(R)$. Let $f=a_{0}+a_{1} x+\cdots+a_{d} x^{d} \in R[x]$ and assume that $r=a / b \in K$ is a root of f with $\operatorname{gcd}(a, b)=[1]$. Then $a \mid a_{0}$ and $b \mid a_{d}$. In particular, if f is monic, then $r \in R$.
Exercise 2. Let R be a ring, and consider the following commutative diagram of R-module homomorphisms:

(a) Prove that there are unique R-module homomorphisms $\widetilde{\phi}: \operatorname{Ker}(f) \rightarrow \operatorname{Ker}\left(f^{\prime}\right)$ and $\bar{\psi}: N / \operatorname{Im}(f) \rightarrow N^{\prime} / \operatorname{Im}\left(f^{\prime}\right)$ making the following diagram commute:

[Note: $N / \operatorname{Im}(f)$ is called the "cokernel" of f and is denoted Coker (f). As the kernel characterizes monomorphisms (f is 1-1 if and only if $\operatorname{Ker}(f)=0$), the cokernel characterizes epimorphisms: f is onto if and only if $\operatorname{Coker}(f)=0$.]
(b) Prove that if ϕ is $1-1$, then so is $\widetilde{\phi}$.
(c) Prove that if ψ is onto, then so is $\bar{\psi}$.
(d) Prove that if ϕ is onto and ψ is 1-1, then $\widetilde{\phi}$ is onto and $\bar{\psi}$ is $1-1$.

