MATH 720, Algebra I Exercises 6 Due Fri 21 Oct

Exercise 1. Prove the Rational Root Theorem: Let R be a UFD with K = Q(R). Let $f = a_0 + a_1x + \cdots + a_dx^d \in R[x]$ and assume that $r = a/b \in K$ is a root of f with gcd(a, b) = [1]. Then $a|a_0$ and $b|a_d$. In particular, if f is monic, then $r \in R$.

Exercise 2. Let R be a ring, and consider the following commutative diagram of R-module homomorphisms:

$$\begin{array}{c|c} M & \stackrel{f}{\longrightarrow} N \\ \phi & & & \downarrow \psi \\ M' & \stackrel{f'}{\longrightarrow} N'. \end{array}$$

(a) Prove that there are unique *R*-module homomorphisms ϕ : Ker $(f) \to$ Ker(f') and $\overline{\psi}$: N/Im $(f) \to N'/$ Im(f') making the following diagram commute:

$$\begin{split} \operatorname{Ker}(f) & \stackrel{i}{\longrightarrow} M \xrightarrow{f} N \xrightarrow{\pi} N/\operatorname{Im}(f) \\ & \overbrace{\phi}^{\downarrow} & \phi \downarrow & \downarrow \psi & \downarrow \overline{\psi} \\ & \operatorname{Ker}(f') \xrightarrow{i'} M' \xrightarrow{f'} N' \xrightarrow{\pi'} N'/\operatorname{Im}(f'). \end{split}$$

[Note: $N/\operatorname{Im}(f)$ is called the "cokernel" of f and is denoted $\operatorname{Coker}(f)$. As the kernel characterizes monomorphisms (f is 1-1 if and only if $\operatorname{Ker}(f) = 0$), the cokernel characterizes epimorphisms: f is onto if and only if $\operatorname{Coker}(f) = 0$.]

- (b) Prove that if ϕ is 1-1, then so is $\tilde{\phi}$.
- (c) Prove that if ψ is onto, then so is $\overline{\psi}$.
- (d) Prove that if ϕ is onto and ψ is 1-1, then ϕ is onto and $\overline{\psi}$ is 1-1.