MATH 720, Algebra I Exercises 9 Due Fri 18 Nov

Exercise 1. Let k be a field, and let V be a finite dimensional vector space over k. Prove that, given two subspaces $A, B \subseteq V$, we have

 $\dim_k(A+B) = \dim(A) + \dim(B) - \dim(A \cap B).$

Exercise 2. Let R be a commutative ring with identity. Let F be a free R-module of rank m with basis $f_1, \ldots, f_m \in F$. Let G be a free R-module of rank n with basis $g_1, \ldots, g_n \in G$. Let $e_1, \ldots, e_m \in R^m$ be the standard basis, and let $\epsilon_1, \ldots, \epsilon_n \in R^n$ be the standard basis.

The universal mapping property for free modules implies that for i = 1, ..., nthere is a unique *R*-module homomorphism $f_i^* \colon F \to R$ such that

$$f_i^*(f_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i. \end{cases}$$

- (a) Prove that $\operatorname{Hom}_R(F, R)$ is a free *R*-module of rank *n* with basis f_1^*, \ldots, f_n^* . This is called the *dual basis* for F^* .¹ Conclude that there is a unique isomorphism $\psi_F \colon F^* \to R^m$ such that $\psi(f_i^*) = e_i$ for each *i*.
- (b) Prove that if $\phi: F \to G$ is the *R*-module homomorphism represented by the matrix *A* with respect to the f_i 's and g_i 's, then there is a commutative diagram

$$\begin{array}{ccc}
G^* & \stackrel{\phi^*}{\longrightarrow} F^* \\
\psi_G & \downarrow \cong & \psi_F & \downarrow \cong \\
R^n & \stackrel{A^T}{\longrightarrow} R^m.
\end{array}$$

In other words, $\phi^*: G^* \to F^*$ is represented by the matrix transpose A^T with respect to the g_i^* 's and f_i^* 's.

(c) (Bonus) Prove that the map $\delta_F \colon F \to F^{**}$ given by $\delta_F(f)(\alpha) = \alpha(f)$ is a well-defined *R*-module isomorphism. Here $F^{**} := (F^*)^*$.

¹We frequently write $F^* = \text{Hom}_R(F, R)$. This fits with the notation ϕ^* from class: given a homomorphism of free *R*-modules $\phi: F \to G$, the induced map ϕ^* maps $G^* \to F^*$.